請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27648
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王瑜 | |
dc.contributor.author | Yuh-Sheng Wen | en |
dc.contributor.author | 聞昱生 | zh_TW |
dc.date.accessioned | 2021-06-12T18:13:45Z | - |
dc.date.available | 2007-09-19 | |
dc.date.copyright | 2007-09-19 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-09-03 | |
dc.identifier.citation | 1.Coppens, P.; Hansen, N. K. Acta Cryst. 1978, A34, 909-921.
2.Coppens, P.; Hall, M. B. Electron Distributions and the Chemical Bond; Oxford University press, Inc.: 1982. 3.Proceeding of Crystallographic Computing Workshop, Academia Sinica: 1985. 4.Glusker, J. P.; Lewis, M.; Rossi, M. Crystal Structure Analysis for Chemists and Biologists; VCH Publishers, Inc.: 1994. 5.Mitschler, A.; Rees, B.; Wiest, R.; Benard, M. J. Am. Chem. Soc. 1982, 104, 7501-7509. 6.Coppens, P. Coord. Chem. Rev. 1985, 65, 285-307. 7.Hirshfeld, F. L. Isr. J. Chem. 1977, 16, 198-201. 8.Bertran, J.; Gallardo, I.; Moreno, M.; Saveant, J. M. J. Am. Chem. Soc. 1992, 114, 9576-9583. 9.McWeeny, R. Rev. Mod. Phys. 1960, 32 (2), 335-369. 10.Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1959, 22, 571. 11.Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69. 12.Fermi, E. Z. Phys. 1928, 48, 73-79. 13.Thomas, L. H. Proc. Cambridge Phil. Soc. 1927, 23, 542-548. 14.Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871. 15.Kohn, W.; Sharn, L. Phys. Rev. 1965, 140, A1133-A1138. 16.Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785-789. 17.Becke, D. A. J. Chem. Phys. 1993, 98, 5648-5652. 18.Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338-2342. 19.Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833-1840. 20.Mulliken, R. S.; Ermler, W. C. Diatomic Molecules. Results of ab Initio Calculations; New York: Academic Press: 1977. 21.Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926. 22.Luthi, H. P.; Ammeten, J. H.; Almlof, J.; Faegrisk, K. J. Chem. Phys. 1982, 77, 2002-2009. 23.Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83 (2), 735-746. 24.Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78 (6), 4066-4073. 25.Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211-7218. 26.Lowdin, P. O. Phys. Rev. 1955, 97 (6), 1474-1489. 27.Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press, Inc.: 1990. 28.Gillespie, R. J.; Nyholm, R. S. Rev. Chem. Soc. 1957, 11, 339-380. 29.Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular Geometry; Allyn and Bacon: 1991. 30.Gillespie, R. J. Molecular Geometry; Van Nostrand Reinhold: 1972. 31.Gillespie, R. J.; Bytheway, L.; DeWitte, R. S.; Bader, R. F. W. Inorg. Chem. 1994, 33, 2115-2121. 32.Bader, R. F. W.; Streitwieser, A.; Neuhaus, A.; Laidig, K. E.; Speers, P. J. Am. Chem. Soc. 1983, 105, 5061-5068. 33.Faraday, M. Experimental Researches in Electricity, Vol. I,III; New York: 1851. 34.Lewis, G. N. J. Am. Chem. Soc. 1916, 38, 762-785. 35.Lewis, G. N. J. Chem. Phys. 1933, 1, 17-28. 36.Morse, P.; Feshbach, H. Methods of Theoretical Physics, Part 1; McGrawHill: 1953. 37.Cremer, D.; Kraka, E. Croatica Chem. Acta 1984, 57, 1259-1281. 38.Bader, R. F. W.; Laidig, K. E. Trans. Am. Cryst. Assoc. 1990, 26, 1-21. 39.Coppens, P. Trans. Am. Cryst. Assoc. 1990, 26, 91-104. 40.Coppens, P.; Guru Row, T. N.; Leung, P.; Stevens, E. D.; Becker, P. J.; Yang, Y. W. Acta Cryst. 1979, A35, 63-72. 41.Bader, R. F. W.; Streitwieser, A.; Neuhaus, A.; Laidig, K. E.; Speers, P. J. Am. Chem. Soc. 1996, 118, 4959-4965. 42.Breneman, G. L.; Parker, O. J. Polyhedron 1993, 12, 891-895. 43.Webb, M.; Thomas, J. O. J. Mol. Biol. 1999, 294, 373-387. 44.Wilmot, C. M. Biochem. Soc. Trans. 2003, 31, 493-496. 45.Klinman, J. P. J. Biolog. Chem. 2006, 281, 3013-3016. 46.Batten, S. R.; Hoskins, B. F.; Moubaraki, B.; Murray, K. S.; Robson, R. Chem. Commun. 2000, 1095-1096. 47.Losier, P.; Zaworotko, M. J. Chem. Commun. 2001, 1-9. 48.Losier, P.; Zaworotko, M. J. Angew. Chem. Int. Ed. 1996, 35, 2779-2782. 49.Noro, S. I.; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem. Int. Ed. 2000, 39, 2081-2084. 50.Kulkarni, P.; Padhye, S.; Anson, C. E.; Powell, A. K. Inorg. Chem. Acta 2002, 332, 167-175. 51.Parker, O. J.; Aubol, S. L.; Breneman, G. L. Acta Cryst. 1996, C52, 39-41. 52.Jahn, H. E.; Teller, E. Proc. Roy. Soc. 1937, A161, 220-235. 53.Solomon, E. I.; LaCroix, L. B.; Randall, D. W. Pure&Appl. Chem. 1998, 70, 799-808. 54.Gaussian 98,revision A.7, Gaussian, Inc.: 2006 55.Pople, J. A.; Nesbet, R. K. J. Chem. Phys. 1959, 22, 571. 56.Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69. 57.AIMPAC program package, McMaster University: 2000 58.SMART(Apex2): Area-Detector Software Package, Siemens Industrial Automation, Inc.: 1993 59.SADABS: Area-Detector Absorption Correction, Siemens Industrial Automation, Inc.: 1996 60.Coppens, P.; de Meulenaer, J.; Tompa, H. Acta Cryst. 1967, 22, 601-602. 61.Coppens, P.; Eibschutz, M. Acta Cryst. 1965, 19, 524-531. 62.Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838. 63.SHELX97. Programs for Crystal Structure Analysis (Release 97-2), University of Gottingen, GermanyUniversity of Gottingen, Germany: 1997 64.Real, J. A.; Bernard, G.; Granier, T.; Franz S.-P.; Jacqueline Zarembowitch Inorg. Chem. 1992, 31, 4972-4979. 65.Lee, J.-J. Electron Density Distribution and Electronic Configuration on Transition Metal Complexes and Magnetic Molecular Materials. Ph.D. Department of CHemistry, National Taiwan University, 1998. 66.Raithby, P. R.; Shields, G. P.; Anson, C. E.; Motherwell, W. D. S. Acta Cryst. 2000, B56, 444-454. 67.Zheng, Y.-Q.; Lin, J.-L.; Sun, J. Z. Anorg. Chem. 2001, 627, 1647-1651. 68.Nardelli, M. J. J. Appl. Crystallogr. 1995, (28), 659. 69.Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. soc. 1990, 112, 5525-5534. 70.Christoph, J. J. Chem. Soc. Dalton. Trans. 2000, 3885-3896. 71.Crawford, V. H.; Richardson, W.; Wasson, J. R.; Hodgson, D. J.; Hatfield W.E. Inorg. Chem. 1976, 15 (9), 2107-2110. 72.Sabino, J. R.; Coppens, P. Acta Cryst. 2003, A59, 127-131. 73.Pillet, S.; Souhassou, M.; Lecomte, C. Acta Cryst. 2004, A60, 455-464. 74.李其融“博士論文:3d過渡金屬錯合物之鍵性分析”,台大化學系,1997. 75.黃俊薰“博士論文:Bond Characterization of Metal Complexes Containing Carbon, Nitrogen and Oxygen dornor Atoms.”,台大化學系,1998. 76.Lee, C.-R.; Tan, L.-Y.; Wang, Y. J. Phys. Chem. Solids 2001, 62, 1613-1628. 77.Pillet, S.; Souhassou, M.; Mathoniere, C.; Lecomte, C. J. Am. Chem. Soc. 2004, 126 (4), 1219-1228. 78.沈欣惠“碩士論文:Charge Density Study and Role of Hydrogen Bond in trans-[Ni(cyanurate)2(NH3)4] : Comparison between Experiment and Theory.”,台大化學系,2004. 79.Munshi, P.; Row, T. N. G. J. Phys. Chem. A 2005, 109, 659-672. 80.Boyonoski, A. C.; Spronck, J. C.; Jacobs, R. M.; Shah, G. M.; Poirier, G. G.; Kirkland, J. B. J. Nutr. 2002, 132, 115-120. 81.Okabe, N.; Nakamura, T.; Fukuda, H. Acta Cryst. 1993, C49, 1761-1762. 82.Liu, Q.; Wei, Y.; Wang, W.; Zhang, S. Acta Cryst. (Cr. Str. Comm. ) 2006, C55, 9900127. 83.Lu, J. Y.; Babb, A. M. Inorg. Chem. Commun. 2006, 4, 716-718. 84.Lu, J. Y.; Runnels, K. A. Inorg. Chem. Commun. 2001, 4, 678-681. 85.Lu, J. Y. Coord. Chem. Rev. 2003, 246, 327-347. 86.Xiong, R.-G.; Wilson, S. R.; Lin, W. J. Chem. Soc. , Dalton Trans. 1998, 4089-4090. 87.Min, D.; Yoon, S. S.; Lee, C. Y.; Han, W. S.; Lee, S. W. Bull. Korean Chem. Soc. 2001, 22, 1041-1044. 88.Choi, K.-Y.; Kim, M.-J.; Suh, I.-H. Coord. Chem. Rev. 2002, 13, 17-20. 89.Cingi, M. B.; Manfredotti, A. G.; Guastini, C.; Musatti, A. Gazz. Chim. Ital. 1971, 101, 815-824. 90.O'Keeffe, M.; Eddaoudi, M.; Li, H.; Reineke, T.; Yaghi, O. M. J. Solid state Chem. 2000, 152, 3-20. 91.Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353-389. 92.Mandal, S.; Natarajan, S.; Klein, W.; PanthOfer, M.; Jansen, M. J. Solid State Chem. 2003, 173, 367-373. 93.Wang, X.-J.; Jiang, X.-H.; Guo, X.-Y.; Wang, H.-Z.; Zhang, X.-T.; Li, Y.-C.; Du, Z.-L. Acta Chim. Sinica 2005, 63, 1033-1036. 94.Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989-1992. 95.Bartlett, B. M.; Nocera, D. G. J. Am. Chem. Soc. 2005, 127, 8985-8993. 96.Bethe, H. A. Ann. Physik 1929, 3, 133-206. 97.Van Vleck, J. H. J. Chem. Phys. 1935, 3, 807-813. 98.Van Vleck, J. H. Phys. Rev. 1932, 41, 208-215. 99.Shannon, R. D.; Prewitt, C. T. Acta Cryst. 1969, B25, 925-946. 100.Nardelli, M. Comput. Chem. 1983, 7, 95-97. 101.Fu, Y.-L.; Xu, Z.-W.; Ren, J.-L.; Ng, S. W. Acta Cryst. 2005, E61, m596-m597. 102.Brown, I. D.; Altermatt, D. Acta Cryst. 1985, B41, 244-247. 103.Overgaard, J.; Larsen, F. K.; Schiott, B.; Iversen, B. B. J. Am. Chem. Soc. 2003, 125, 11088-11099. 104.許火順 “博士論文:非線性光學晶體與無機固態化合物的電荷密度分析研究”,台大化學系,1996. 105.Hansen, N. K.; Protas, J.; Marnier, G. Acta Cryst. 1991, B47, 660-672. 106.Streltsov, V. A.; Belokoneva, E. L.; Tsirelson, V. G.; Hansen, N. K. Acta Cryst. 1993, B49, 147-153. 107.Souhassou, M.; Espinosa, E.; Lecomte, C.; Blessing, R. H. Acta Cryst. 1995, B51, 661-668. 108.Blessing, R. Acta Cryst. 2006, B45, 200. 109.Lee, J.-J.; Lee, G. H.; Wang, Y. Chem. Eur. J. 2002, 8, 1821-1831. 110.Abramov, Y. A. Acta Cryst. 1997, A53, 264-272. 111.Aubert, E.; Porcher, F.; Souhassou, M.; Lecomte, C. Acta Cryst. 2003, B59, 687-700. 112.Espinosa, E.; Lecomte, C.; Molins, E.; Veintemillas, S.; Cousson, A.; Paulus, W. Acta Cryst. 1996, B52, 519-534. 113.Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170-173. 114.Espinosa, E.; Lecomte, C.; Molins, E. Chem. Phys. Lett. 1999, 300, 745-748. 115.Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, J. J. Chem. Phys. 2002, 117, 5529-5542. 116.Lee, C.-R.; Tang, T.-H.; Chen, L.; Wang, Y. Chem. Eur. J. 2003, 9, 3112-3121. 117.Cingi, M. B.; Villa, A. A.; Guastini, C.; Viterbo, D. Gazz. Chim. Ital. 1974, 104, 1087-1093. 118.Liu, Q.; Wei, Y.; Wang, W.; Zhang, S. Acta Cryst. (Cr. Str. Comm. ) 1999, C55, 9900127. 119.Jia, H.-B.; Yu, J.-H.; Xu, J.-Q.; Ye, L.; Jing, W.-J.; Wang, T.-G.; Xu, J.-N.; Qu, X.-J.; Li, Z.-C. Chem. Res. Chin. Univ. 2002, 18, 385-387. 120.Waizumi, K.; Takuno, M.; Fukushima, N.; Masuda, H. J. Coord. Chem. 1998, 44, 269-279. 121.Batten, S. R.; Harris, A. R. Acta Cryst. 2001, E57, m7-m8. 122.Choi, K.-Y.; Kim, M.-J.; Suh, I.-H. Coord. Chem. Rev. 2002, 13, 17-20. 123.Cingi, M. B.; Manfredotti, A. G.; Guastini, C.; Musatti, A. Gazz. Chim. Ital. 1971, 101, 815-824. 124.Duisenberg, A. J. M.; Kroon-Batenburg, L. M. J.; Schreurs, A. M. M. J. Appl. Crystallogr. 2003, 36, 220-229. 125.Falvello, L. R. J. Chem. Soc. , Dalton Trans. 1997, 4463-4475. 126.Lee, C.-R.; Wang, C.-C.; Chen, K.-C.; Lee, G.-H.; Wang, Y. J. Chem. Phys. 1999, A103, 156-165. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27648 | - |
dc.description.abstract | 本論文主要利用多極模型精算方式處理由低溫X光單晶繞射儀器實驗,得到的錯合物晶體結構因子,以獲得分子的總電荷密度分佈,再輔以分子軌域計算與密度泛函數理論計算方法,描述一系列以3d過渡金屬為中心的錯合物分子中,原子與原子相互間鍵結的電子組態。
論文中第一系列錯合物是以Cu原子為中心的三個錯合物,分別是[CuI(phen)(μ-NCS)]、[CuII2(phen)2(NCS)2(μ-OH)2•2H2O]及[CuII(phen)2(NCS)2],此三個分子具有相同(phen)與(NCS)配位基,但是中心Cu原子分別為四、五及六配位三種不同的配位環境,經多極模型精算分析與拓樸學分析的結果,顯示金屬與配基Cu-L鍵結的鍵性,其中從Laplacian的數值為正值(3.90(1) ~ 12.28(1) e/Å5),以及總能量密度數值為負值(-0.11 ~ -0.46 Hartree/Å3)兩種指標,Cu-L鍵性為具過渡封閉性殼層作用性質的極性共價鍵鍵性,另藉由拓樸學上量化的數據分析,也觀測到分子與分子間微弱作用力的鍵性,如氫鍵,π-π堆疊等電子分佈性質。 第二系列錯合物分別是[FeIII(C5H4NHCOO)(μ-SO4)(μ-OH) (H2O)]錯合物以及 [MII(C5H4NCOO)2(H2O)4], ( M = Mn, Fe, Co, Ni, Cu, Zn )錯合物,此系列錯合物是由一系列3d過渡金屬與尼古丁酸分子所形成具相同配位環境的同型異構物,主要目的是藉由固定金屬原子週邊配位基,更換錯合物上不同的金屬原子方式,模擬探討在配位環境不變情形時金屬原子的氧化價態變化後的金屬—配基間的鍵性性質。經由多極模型精算與拓樸學方法的分析後,對於金屬-配基鍵結的部分可以觀察到,配位基分子為σ-電子施予者連接金屬的原子上的電子是集中指向金屬原子方向,而金屬則為σ-電子接受者,相同的從數值為正值的Laplacian ( 3.22(1) ~ 12.08(1) e/Å5),以及總能量密度數值為負值(-0.01 ~ -0.12 Hartree/Å3)兩種指標,可知金屬-配基鍵的鍵性為極性共價鍵的性質,另外依據此系列錯合物的晶體結構數據資料、多極模型精算以及拓模學計算等分析結果,3d金屬部分顯示出有離子半徑收縮以及銅金屬錯合物的Jahn-Teller形變的特性。 | zh_TW |
dc.description.abstract | A series of 3d transition metal complexes were investigated in this dissertation, of which bonding characteristics and the electronic configuration of metal centers were pursued. Single crystal X-ray diffraction experiment at low temperature was applied. An aspherical multipole model was introduced subsequently to give a better description of total electron density distribution, based on which topological analysis was also carried out. Molecular orbital calculations and single-point theoretical calculations at density-functional-theory level (DFT) were performed as well for comparison.
In the first part three Cu-complexes, [CuI(phen)(μ-NCS)], [CuII2(phen)2(NCS)2(μ-OH)2•2H2O] and [CuII(phen)2(NCS)2], were studied. Though, same ligands (phen and NCS-) were found in all three compounds, of which local environments around Cu centers were different (coordination number = 4, 5 and 6, respectively). All Cu-ligand bonds are classified as transit closed-shell interaction (or polarized covalent bond) according to the corresponding positive Laplacian ( 3.90(1) ~ 12.28(1) e/Å5) and negative total energy densities ( -0.11 ~ -0.46 Hartree/Å3) given by the topological analysis. In addition, weak interactions such as hydrogen bonds and π-π stacking interactions were observed as well supported by the numerical evidence on the bond path. In the second part a series of complexes constructed by 3d transition metal and nicotinic acid ([FeIII(C5H4NHCOO)(μ-SO4)(μ-OH)(H2O)] and [MII(C5H4NCOO)2(H2O)4] where M = Mn, Fe, Co, Ni, Cu, Zn) were investigated. In these iso-structural compounds different metal centers are crystallized in roughly the same local coordination environment, of which the oxidation states and the corresponding bonding characteristics (M-L) are inspected. Local charge concentrations addressed on atoms in the first coordination shell are clearly toward metal centers showing the σ-donor behavior. All the metal-ligand bonds in these complexes are also classified as transit closed-shell interaction due to the positive Laplacian ( 3.22(1) ~ 12.08(1) e/Å5) and negative total energy densities ( -0.01 ~ -0.12 Hartree/Å3). Besides, wd-block contraction of the 3d transition metal centers and the Jahn-Teller distortion around Cu ones were observed as well. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:13:45Z (GMT). No. of bitstreams: 1 ntu-96-D86223014-1.pdf: 15442938 bytes, checksum: e88901fbdb7045de48aa5b6b6cb08cf8 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 論文口試委員審定書
中文摘要 英文摘要 圖目錄 v 表目錄 xi 第一章 原理與實驗方法 1 1-1原理 1 1-1-1自由原子模型理論 1 1-1-2 多極精算之非球形原子模型理論 3 1-2 理論計算方法 7 1-2-1 Hartree-Fock自洽場 7 1-2-2密度泛函數理論 9 1-2-3電子密度分佈分析 12 1-2-3-1 Mulliken Population Analysis, MPA 12 1-2-3-2 Natural Population Analysis, NPA 14 1-3總電子密度拓樸分析 18 1-3-1「分子內原子」理論 (Atoms in Molecules) 18 1-3-2臨界點 19 1-3-3梯度向量場 25 1-3-4原子空間和鍵結路徑 28 1-3-5 *2* 和化學鍵的關係 29 1-4 d-軌域電子分佈(d-orbital population)及電子密度分佈 31 1-5淨電荷 (net atomic charge) 32 1-6 Fermi-hole理論 33 第二章金屬銅錯合物之鍵性分析 35 2-1簡介 35 2-2實驗部分 38 2-2-1 樣品製備 38 2-2-2 X光低溫單晶結構數據收集及處理與電子密度分佈分析 39 2-3結果與討論 48 2-3-1 結構 48 2-3-2變形電子密度分析 57 2-3-3拓樸學分析 65 第三章金屬尼古丁酸錯合物鍵性分析 77 3-1簡介 77 3-2 [FeIII(C5H4NHCOO)(u-SO4)(u-OH)(H2O)]錯合物 80 3-2-1實驗部分:合成、養晶及X-光低溫單晶數據收集 80 3-2-2結果與討論 86 3-2-2-1 結構 86 3-2-2-2變形電子密度分析 91 3-2-2-3拓樸學分析 98 3-3 [MII(C5H4NCOO)2(H2O)4],(M=Mn, Fe, Co, Ni, Cu, Zn)錯合物 106 3-3-1實驗部分:合成、養晶及X-光低溫單晶數據收集 106 3-3-1-1 樣品製備 106 3-3-1-2結果與討論 114 3-3-1-2-1 結構 114 3-3-1-2-2變形電子密度分析 118 3-3-1-2-3拓樸學分析 126 結論與後續工作 133 參考資料 137 附錄 145 | |
dc.language.iso | zh-TW | |
dc.title | 3d過渡金屬錯合物之鍵性研究 | zh_TW |
dc.title | Bond Characterization of 3d Transition Metal Complexes | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 彭旭明,劉陵崗,呂光烈,王志傑,李其融 | |
dc.subject.keyword | 鍵性分析,變形電子密度分析,拓樸學分析, | zh_TW |
dc.subject.keyword | Bond characterization,Deformation density analysis,Topology analysis, | en |
dc.relation.page | 257 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-09-03 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 15.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。