請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27628
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇金佳 | |
dc.contributor.author | Chih-Yung Huang | en |
dc.contributor.author | 黃智勇 | zh_TW |
dc.date.accessioned | 2021-06-12T18:12:48Z | - |
dc.date.available | 2012-10-09 | |
dc.date.copyright | 2007-10-09 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-10-03 | |
dc.identifier.citation | 1、D. J. Seo, W. L. Yoon, Y. G. Yoon, S. H. Park, G. G. Park, and C. S. Kim, Development of a Micro Fuel Processor for PEMFCs, Electrochim. Acta, Vol. 50, pp. 719-723 (2004)
2、C. Horny, L. K. Minsker, and A. Renken, Micro-Structured String-Reactor for Autothermal Production of Hydrogen, Chem. Eng. J., Vol. 101, pp. 3-9 (2004) 3、J. D. Holladay, E. O. Jones, M. Phelps, and J. Hu, Microfuel Processor for Use in a Miniature Power Supply, J. Power Sources, Vol. 108, pp. 21-27 (2002) 4、吳國華,超音波霧化於燃料電池甲醇重組器製氫之研究,碩士論文,國立成功大學航空太空工程研究所,中華民國九十二年。 5、G. J. K. Acres, J. C. Frost, G. A. Hards, R. J. Potter, T. R. Ralph, D. Thompsett, G. T. Burstein, and G. J. Hutchings, Electrocatalysts for Fuel Cells, Catal. Today, Vol. 38, pp. 393-400 (1997) 6、Y. M. Lin, G. L. Lee, and M. H. Rei, An Integrated Purification and Production of Hydrogen with a Palladium Membrane-Catalytic Reactor, Catal. Today, Vol. 44, pp. 343-349 (1998) 7、李秋煌, 黃瓊輝, 林萃, 燃料重組器系統概論, 石油季刊, 第39卷, 第4期, pp. 45-62 (2003)。 8、Y. Choi and H. G. Stenger, Kinetics, Simulation and Insights for CO Selective Oxidation in Fuel Cell Applications, J. Power Sources, Vol. 129, pp. 246-254 (2004) 9、房德仁, 張慧敏, 富氫條件下CO脫除催化技術進展, 化學通報, 第66卷 (2003) 10、萬本儒, 黃慶村, 郭建男, 李財興, 富氫氣體中一氧化碳抑低方法研究, 行政院原子能委員會核能研究所委託研究計畫研究報告 (2005)。 11、金杏妹, 工業應用催化劑, 臺灣高等教育出版社, 中華民國九十四年。 12、I. H. Son, A. M. Lane, and D.T. Johnson, The Study of the Deactivation of Water-Pretreated Pt/γ-Al2O3 for Low-Temperature Selective CO Oxidation in Hydrogen, J. Power Sources, Vol. 124, pp. 415-419 (2003) 13、F. Fischer, H. Tropsch , and P. Dilthey, The Reduction of Carbon Monoxide to Methane in the Presence of Various Metals, Brennstoff-Chemie, Vol. 6, pp. 265-271 (1925) 14、A. Y. Tonkovich, J. L. Zilka, M. J. Lamont, Y. Wang, and R. S. Wegeng, Microchannel Reactors for Fuel Processing Applications. I. Water Gas Shift Reactor, Chem. Eng. Sci., Vol. 54, pp. 2947-2951 (1999) 15、A. Manasilp and E. Gulari, Selective CO Oxidation Over Pt/Alumina Catalysts for Fuel Cell Applications, Appl. Catal. B: Environ., Vol. 37, pp. 17-25 (2002) 16、G. Xu and Z. G. Zhang, Preferential CO Oxidation on Ru/γ-Al2O3 Catalyst: An Investigation by Considering the Simultaneously Involved Methanation, J. Power Sources, Vol. 157, pp. 64-77 (2005) 17、J. C. Amphlett, R. D. Klassen, R. F. Mann, and B. A. Peppley, Methanol Diesel Oil and Ethanol as Liquid Sources of Hydrogen for PEM Fuel Cells, Proceedings of 28th Intersociety Energy Conversion Engineering Conference, Vol. 1, pp. 1221-1226 (1993) 18、M. Prigent, On Board Hydrogen Generation for Fuel Cell Powered Electric Cars, Rev. Ins. Francais Petrole, Vol. 52, pp. 349-359 (1997) 19、S. Ahmed, R. Doshi, R. Kumar, and M. Krumpelt, Gasoline to Hydrogen a New Route for Fuel Cells, Electric & Hybrid Vehicle Technology, Vol. 97, pp. 77-80 (1997) 20、K. A. Adamson and P. Pearson, Hydrogen and Methanol:a Comparison of Safety, Economics, Efficiencies and Emissions, J. Power Sources, Vol. 86, pp. 548-555 (2000) 21、L. F. Brown, A Comparative Study of Fuels for On-Board Hydrogen Production for Fuel-Cell-Powered Automobiles, Int. J. Hydrogen Energy, Vol. 26, pp. 381-397 (2001) 22、宋隆裕,燃料電池用甲醇重組器之測試研究,能源季刊,第24卷,第1期,pp. 69-88 (1994)。 23、黃大仁,小型甲醇重組器技術開發-期末報告,工業技術研究院能資所委託研究計劃,中華民國八十九年。 24、Y. Lin and M. Rei, Study on the Hydrogen Production from Methanol Steam Reforming in Supported Palladium Membrane Reactor, Catal. Today, Vol. 67, pp. 77-84 (2001) 25、陳泓政,燃料電池用之甲醇重組器氫氣產生研究,碩士論文,國立成功大學航空太空工程研究所,中華民國九十一年。 26、林弘民,燃料電池用自發熱甲醇重組器性能量測與數值模擬,碩士論文,國立中興大學機械工程研究所,中華民國九十三年。 27、R. F. Horng, Transient Behaviour of a Small Methanol Reformer for Fuel Cell during Hydrogen Production after Cold Start, Ener. Conv. Manag., Vol. 46, pp. 1193-1207 (2005) 28、詹前歆,蔡賢德,郭宗欽,洪榮芳,吳澤松,小型甲醇重組器部分氧化法冷起動之產氫特性研究,中華民國燃燒學會第十五屆學術研討會論文集,中華民國九十四年。 29、B. Höhlein, M. Bee, J. BØgild-Hansen, P. BrÖckerhoff, G. Colsnman, B. Emonts, R. Menzer, and E. Riedel, Hydrogen from Methanol for Fuel Cells in Mobile Systems:Development of a Compact Reformer, J. Power Sources Vol. 611, pp. 143-147 (1996) 30、W. Wiese, B. Emonts, and R. Peters, Methanol Steam Reforming in a Fuel Cell Drive System, J. Power Sources, Vol. 84, pp. 187-193 (1999) 31、B. Emonts, J. BØgild-Hansen, H. Schmidt, T. Grube, B. HÖhlein, R. Peters, and A. Tschauder, Fuel Cell Drive System with Hydrogen Generation in Test, J. Power Sources, Vol. 86, pp. 228-236 (2000) 32、J. S. Han, I. S. Kim, and K. S. Choi, High Purity Hydrogen Generation for On-Site Hydrogen Production, Int. J. Hydrogen Energy, Vol. 27, pp. 1043-1047 (2002) 33、N. Edwards, S. R. Ellis, J. C. Frost, S. E. Golunski, A. N. J. van Keulen, N. G. Lindewald, and J. G. Reinkingh, On-Board Hydrogen Generation for Transport applications:the HotSpot(TM) Methanol Processor, J. Power Sources, Vol. 71, pp. 123-128 (1998) 34、J. Han, I. S. Kim, and K. S. Choi, Pruridier-Integrated Methanol Reformer for Fuel Cell Vehicles, J. Power Sources, Vol. 86, pp. 223-227 (2000) 35、T. Okada, Y. Gonjo, M. Matsumura, and K. Mitsuda, Development of Methanol Reformer for PEMFC, Proceedings of 2000 fuel Cell Seminar, pp. 248 (2000) 36、J. S. Han, S. M. Lin, and H. Chang, Metal Membrane-Type 25Kw Methanol Fuel Processor for Fuel-Cell Hybrid Vehicle, J. Power sources, Vol. 112, pp. 484-490 (2002) 37、L. J. Pettersson and B. LindstrÖm, Development of a Methanol Fuelled Reformer for Fuel Cell Applications, J. Power Sources, Vol. 118, pp. 71-78 (2003) 38、Y. Lwin, W. R. Wan Daud, A. B. Mohamad, and Z. Yaakob, Hydrogen Production from Steam-Methanol Reforming: Thermodynamic Analysis, Int. J. Hydrogen Energy, Vol. 25, pp. 47-53 (2000) 39、S. Nagano, H. Miyagawa, O. Azegami, and K. Ohsawa, Heat Transfer Enhancement in Methanol Steam Reforming for a Fuel Cell, Ener. Conv. Manag., Vol. 42, pp. 1817-1829 (2001) 40、K. Takeda, A. Baba, Y. L. Hishinuma, B. HÖhlein, Y. Hishinuma, and T. Chikahisa, Performance of a Methanol Reforming System for Fuel Cell Powered Vehicle and System Evaluation of a PEFC System, JSAE Review, Vol. 23, pp. 183-188 (2002) 41、S. H. Chan and H. M. Wang, Thermodynamic and Kinetic Modelling of an Autothermal Methanol Reformer, J. Power Sources, Vol. 126, pp. 8-15 (2004) 42、L. Pan and S. Wang, Methanol steam Reforming in a Compact Plate-Fin Reformer for Fuel-Cell Systems, Int. J. Hydrogen Energy, Vol. 30, pp. 973-979 (2005) 43、L. Pan and S. Wang, Modeling of a Compact Plate-Fin Reformer for Methanol Steam Reforming in Fuel Cell Systems, Chem. Eng. J., Vol. 108, pp. 51-58 (2005) 44、J. D. Holladay, E. O. Jones, R. A. Dagle, G. G. Xia, C. Cao, and Y. Wang, High Efficiency and Low Carbon Monoxide Micro-Scale, J. Power Sources, Vol. 131, pp. 69-72 (2004) 45、J. D. Holladay, J. S. Wainright, E. O. Jones, and S. R. Gano, Power Generation Using a Mesoscale Fuel Cell Integrated with a Microscale Fuel Processor, J. Power Sources, Vol. 130, pp. 111-118 (2004) 46、G. G. Park, D. J. Seo, S. H. Park, Y. G. Yoon, C. S. Kim, and W. L. Yoon, Development of Microchannel Methanol Steam Reformer, Chem. Eng. J., Vol. 101, pp. 87-92 (2004) 47、G. G. Park, S. D. Yim, Y. G. Yoon, C. S. Kim, D. J. Seo, and K. Eguchi, Hydrogen Production with Integrated Microchannel Fuel Processor Using Methanol for Portable Fuel Cell Systems, Catal. Today, Vol. 110, pp. 108-113 (2005) 48、P. Reuse, A. Renken, K. Haas-Santo, O. GÖrke, and K. Schubert, Hydrogen Production for Fuel Cell Application in an Autothermal Micro-Channel Reactor, Chem. Eng. J., Vol. 101, pp.133-141 (2004) 49、S. Tanaks, K. S. Chang, K. B. Min, D. Satoh, K. Yoshida and M. Esashi, MEMS-Based Components of a Miniature Fuel Cell/Fuel Reformer System, Chem. Eng. J., Vol. 101, pp. 143-149 (2004) 50、T. Terazaki, M. Nomura, K. Takeyama, O. Nakamura, and T. Yamamoto, Development of Multi-Layered Microreactor with Methanol Reformer for Small PEMFC, J. Power Sources, Vol. 145, pp. 691-696 (2005) 51、M. S. Lim, M. R. Kim, J. Noh, and S. I. Woo, A Plate-Type Reactor Coated with Zirconia-Sol and Catalyst Mixture for Methanol Steam-Reforming, J. Power Sources, Vol. 140, pp. 66-71 (2005) 52、X. Yu, S. T. Tu, Z. Wang, and Y. Qi, Development of a Microchannel Reactor Concerning Steam Reforming of Methanol, Chem. Eng. J., Vol. 116, pp. 123-132 (2006) 53、Y. Kawamura, N. Ogura, T. Yamamoto, and A. Igarashi, A Miniaturized Methanol Reformer with Si-Based Microreactor for a Small PEMFC, Chem. Eng. Science, Vol. 61, pp. 1092-1101 (2006) 54、T. J. Huang and S. W. Wang, Hydrogen Production via Partial Oxidation of Methanol over Copper-Zinc Catalysts, Appl. Catal., Vol. 24, pp. 287-297 (1986) 55、T. J. Huang and S. L. Chren, Kinetics of Partial Oxidation of Methanol over a Copper-Zinc Catalyst, Appl. Catal., Vol. 40, pp. 43-52 (1988) 56、C. J. Jiang, D. L. Trimm, and M. S. Wainwright, Kinetic Study of Steam Reforming of Methanol over Copper-Based Catalysts, Appl. Catal. A: Gen., Vol. 93, pp. 245-255 (1993) 57、C. J. Jiang, D. L. Trimm, and M. S. Wainwright, Kinetic Mechanism for the Reaction between Methanol and Water over a Cu-ZnO-Al2O3 Catalyst, Appl. Catal. A: Gen., Vol. 97, pp. 145-158 (1993) 58、J. C. Amphlett, R. F. Mann, and B. A. Peppley, Performance and Operating Characteristics of Methanol Steam-Reforming, Proceedings of 11th World Hydrogen Energy Conference, Stuttgart, Germany, pp. 1737-1743 (1996) 59、L. Alejo, R. Lago, M. A. Peña, and J. L. G.. Fierro, Partial Oxidation of Methanol to Produce Hydrogen over Cu-Zn-Based Catalysts, Appl. Catal. A: Gen., Vol. 162, pp. 281-297 (1997) 60、B. A. Peppley, J. C. Amphlett, L. M. Kearns, and R. F. Mann, Methanol-Steam Reforming on Cu/ZnO/Al2O3 Part 1: the Reaction Network, Appl. Catal. A: Gen., Vol. 179, pp. 21-29 (1999) 61、B. A. Peppley, J. C. Amphlett, L. M. Kearns, and R. F. Mann, Methanol-Steam Reforming on Cu/ZnO/Al2O3 Part 2: A Comprehensive Kinetic Model, Appl. Catal. A: Gen., Vol. 179, pp. 31-49 (1999) 62、T. Utaka, K. Sekizawa, and K. Eguchi, CO Removal by Oxygen-Assisted Water Gas Shift Reaction over Supported Cu Catalysts, Appl. Catal. A:Gen., Vol. 194-195, pp. 21-26 (2000) 63、P. J. Wild and M. J. F. M. Verhaak, Catalyst Production of Hydrogen from Methanol, Catal. Today, Vol. 60, pp. 3-10 (2000) 64、S. Velu, K. Suzuki, M. P. Kapoor, F. Ohashi, and T. Osaki, Selective Production of Hydrogen for Fuel Cells via Oxidation Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts, Appl. Catal. A: Gen., Vol. 213, pp. 47-63 (2001) 65、B. LindstrÖm and L. J. Pettersson, Hydrogen Generation by Steam Reforming of Methanol over Copper-Based Catalysts for Fuel Cell Applications, Int. J. Hydrogen Energy, Vol. 26, pp. 923-933 (2001) 66、C. Kiyohara, T. Ishino, and H. Kameyama, Cu-Zn/Al2O3/Al-Plate Catalyst for a Methanol Reformer, NTT Advanced Technology Corporation (2003) 67、Y. Li, X. Dong, and W. Lin, Methanol Steam Reforming Reactions on CuZn(Zr)AlO, Journal of Nature Gas Chemistry, Vol. 13, pp. 49-52 (2004) 68、Kansai Research Institute (KRI), Fuel Cell Materials (Update-III), Report No.5 (2001) 69、M. Brown and A. Green, US Patent 3,088,919 (1963) 70、A. Cohn, US Patent 3,216,783 (1965) 71、V. J. Vlastnik, F. J. Armellini, and F. A. Jordano, Los Alamos National Laboratory (1987) 72、M. J. Kahlich, H. A. Gasteiger, and R. J. Behm, Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3, J. Catal., Vol. 171, pp. 93-105 (1997) 73、H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, and M. Watanabe, Removal of Carbon Monoxide from Hydrogen-Rich Fuels by Selective Oxidation over Platinum Catalyst Supported on Zeolite, Appl. Catal. A: Gen., Vol. 159, pp. 159-169 (1997) 74、O. Korotkikh and R. Farrauto, Selective Catalytic Oxidation of CO in H2: Fuel Cell Applications, Catal. Today, Vol. 62, pp. 249-254 (2000) 75、K. L. Hey, J. Roes, and R. Wolters, CO-Scrubbing and Methanation as Purification System for PEFC, J. Power Sources, Vol. 86, pp. 556-561 (2000) 76、I. H. Son, M. Shamsuzzoha, and A. M. Lane, Promotion of Pt/γ-Al2O3 by New Pretreatment for Low-Temperature Preferential Oxidation of CO in H2 for PEM Fuel Cells, J. Catal., Vol. 210, pp. 460-465 (2002) 77、M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4, J. Catal., Vol. 144, pp. 175-192 (1993) 78、S. H. Oh and R. M. Sinkevitch, Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation, J. Catal., Vol. 142, pp. 254-262 (1993) 79、H. Tanaka, S. I. Ito, S. Kameoka, K. Tomishige, and K. Kunimori, Promoting Effect of Potassium in Selective Oxidation of CO in Hydrogen-Rich Stream on Rh Catalysts, Catal. Commum., Vol. 4, pp. 1-4 (2003) 80、H. Tanaka, S. I. Ito, S. Kameoka, K. Tomishige, and K. Kunimori, Catalytic Performance of K-Promoted Rh/USY Catalysts in Preferential Oxidation of CO in Rich Hydrogen, Appl. Catal. A: Gen., Vol. 250, pp. 255-263 (2003) 81、H. Tanaka, S. I. Ito, S. Kameoka, Y. Minemura, K. Tomishige, and K. Kunimori, Selective CO Oxidation in H2-Rich Gas over K2CO3-Promoted Rh/SiO2 Catalysts: Effects of Preparation Method, Appl. Catal. A: Gen., Vol. 273, pp. 295-302 (2004) 82、M. L. Brown, and A. W. Green, Purifying Hydrogen by Selective Oxidation of Carbon Monoxide, Ind. & Eng. Chem. Res., Vol. 52, pp. 841-844 (1960) 83、Y. F. Han, M. Kinne, and R. J. Behm, Selective Oxidation of CO on Ru/γ-Al2O3 in Methanol Reformate at Low Temperatures, Appl. Catal. B: Environ., Vol. 52, pp. 123-134 (2004) 84、Y. F. Han, M. J. Kahlich, and R. J. Behm, CO Removal from Realistic Methanol Reformate via Preferential Oxidation-Performance of a Rh/MgO Catalyst and Comparison to Ru/γ-Al2O3, and Pt/γ-Al2O3, Appl. Catal. B: Environ., Vol. 50, pp. 209-218 (2004) 85、M. Echigo and T. Tabata, Development of Novel Ru Catalyst of Preferential CO Oxidation for Residential Polymer Electrolyte Fuel Cell Systems, Catal. Today, Vol. 90, pp. 269-275 (2004) 86、S. Y. Chin, O. S. Alexeev, and M. D. Amiridis, Preferential Oxidation of CO under Excess H2 Conditions over Ru Catalysts, Appl. Catal. A: Gen., Vol. 286, pp. 157-166 (2005) 87、X. Liu, O. Korotkikh, and R. Farrauto, Selective Catalytic Oxidation of CO in H2: Structural Study of Fe Oxide-Promoted Pt/Alumina Catalyst, Appl. Catal. A: Gen., Vol. 226, pp. 293-303 (2002) 88、G. W. Roberts, P. Chin, X. Sun, and J. J. Spivey, Preferential Oxidation of Carbon Monoxide with Pt/Fe Monolithic Catalysts: Interactions between External Transport and the Reverse Water-Gas-Shift Reaction, Appl. Catal. B: Environ., Vol. 46, pp. 601-611 (2003) 89、C. B. Wang, H. K. Lin, J. L. Bi, and S. J. Gau, Characterization of High Valence Cobalt Oxide and CO Adsorption/Oxidation, Journal of C.C.I.T., Vol. 33, No.1 (2004) 90、A. Sirijaruphan, J. G. Goodwin, and Jr. R. W. Rice, Effect of Fe Promotion on the Surface Reaction Parameters of Pt/γ-Al2O3 for the Selective Oxidation of CO, J. Catal., Vol. 224, pp. 304-313 (2004) 91、Y. Jing, M. J. Xin, and Z. Wei, Effect of Cobalt Modifying Pt/γ-Al2O3 Catalyst for Preferential Oxidation of CO in Hydrogen-Rich Stream, ACTA CHIMICA AINICA, Vol. 62, NO. 21, pp. 2143-2149 (2004) 92、D. J. Suh, C. Kwak, J. H. Kim, Se M. Kwon, and T. J. Park, Removal of Carbon Monoxide from Hydrogen-Rich Fuels by Selective Low-Temperature Oxidation over Base Metal Added Platinum Catalysts, J. Power Sources, Vol. 142, pp. 70-74 (2005) 93、C. Kwak, T. J. Park, and D. J. Suh, Effects of Sodium Addition on the Performance of PtCo/Catalysts for Preferential Oxidation of Carbon Monoxide from Hydrogen-Rich Fuels, Appl. Catal. A: Gen.,Vol. 278, pp. 181-186 (2005) 94、C. Kwak, T. J. Park, and D. J. Suh, Preferential Oxidation of Carbon Monoxide in Hydrogen-Rich Gas over Platinum-Cobalt-Alumina Aerogel Catalysts, Chem. Eng. Sci., Vol. 60, pp. 1211-1217 (2005) 95、M. Kotobuki, A. Watanabe, H. Uchida, H. Yamashita, and M. Watanabe, Reaction Mechanism of Preferential Oxidation of Carbon Monoxide on Pt, Fe and Pt-Fe/Mordenite Catalysts, J. Catal., Vol. 236, pp. 262-269(2005) 96、W. P. Dow and T. J. Huang, Effects of Oxygen Vacancy of Yttria-Stabilized Zirconia Support on Carbon Monoxide Oxidation over Copper Catalyst, J. Catal., Vol. 147. pp. 322-332 (1994) 97、林聖欽,以CuO/SDC觸媒在富氫下行一氧化碳選擇氧化,碩士論文,國立清華大學化學工程研究所,中華民國九十年。 98、G. Avgouropoulos, T. Ioannides, H. K. Matralis, J. Batista, and S. Hocevar, CuO–CeO2 Mixed Oxide Catalysts for the Selective Oxidation of Carbon Monoxide in Excess Hydrogen, Catal. Lett., Vol. 73, No. 1, pp. 33-40 (2001) 99、G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, and H.K. Matralis, A Comparative Study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 Catalysts for the Selective Oxidation of Carbon Monoxide in Excess Hydrogen, Catal. Today, Vol. 75, pp. 157-167 (2002) 100、陳翰全,CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究,碩士論文,國立中央大學化學工程與材料工程研究所,中華民國九十三年。 101、M. Haruta, N. Yamada, T. Kobayashi, and S. J. Iijima, Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide, J. Catal., Vol. 115, pp. 301-309(1989) 102、M. Haruta, Size- and Support-Dependency in the Catalysis of Gold, Catal. Today, Vol. 36, pp. 153-166 (1997) 103、G. K. Bethke and H. H. Kung, Selective CO Oxidation in a Hydrogen-Rich Stream over Au/γ-Al2O3 Catalysts, Appal. Catal. A: Gen., Vol. 194, pp. 43-53 (2000) 104、R. J. H. Grisel and B. E. Nieuwenhuys, Selective Oxidation of CO, over Supported Au Catalysts, J. Catal., Vol. 199, pp. 48-59 (2001) 105、R. J. H. Grisel, C. J. Weststrate, A. Goossens, M. W. J. Craje, A. M. van der Kraan, and B. E. Nieuwenhuys, Oxidation of CO over Au/MOx/Al2O3 Multi-Component Catalysts in a Hydrogen-Rich Environment, Catal. Today, Vol. 72, pp. 123-132 (2002) 106、A. Luengnaruemitchai, S. Osuwan, and E. Gulari, Selective Catalytic Oxidation of CO in the Presence of H2 over Gold Catalyst, Int. J. Hydrogen Energ., Vol. 29, pp. 429-435 (2004) 107、P. V. Snytnikov, V. A. Sobyanin, V. D. Belyaev, P. G. Tsyrulnikov, N. B. Shitova, and D. A. Shlyapin, Selective Oxidation of Carbon Monoxide in Excess Hydrogen over Pt-, Ru- and Pd-Supported Catalysts, Appl. Catal., Vol. 239, pp. 149-156 (2003) 108、C. Y. Huang, J. H. Lin, C. Y. Chou, and C. C. Su, Experimental Studies of the Performance of a Small Reformer for Hydrogen Generation, Paper No. FUELCELL2006-97045, 4th Int. Conf. on Fuel Cell Science, Engineering, and Technology, June 19-21, 2006, Irvine, CA, USA. 109、C. Y. Huang, Y. M. Sun, C. Y. Chou, and C. C. Su, Performance of Catalysts CuO-ZnO-Al2O3, CuO-ZnO-Al2O3-Pt-Rh, and Pt-Rh in a Small Reformer for Hydrogen Generation, J. Power Sources, Vol. 166, pp. 450-457 (2007) 110、J. C. Amphlett, M. J. Evans, R. F. Mann, and R. D. Weir, Hydrogen Production by the Catalytic Steam Reforming of Methanol Part 2: Kinetics of Methanol Decomposition Using Girdler G66B Catalyst, Can. J. Chem. Eng., Vol. 63, pp. 605-611 (1985) 111、C. D. Dudfield, R. Chen, P. L. Adcock, Evaluation and Modelling of a CO Selective Oxidation Reactor for Solid Polymer Fuel Cell Automotive Applications, J. Power Sources, Vol. 85, pp. 237-244 (2000) 112、D. H. Kim and M. S. Lim, Kinetics of Selective CO Oxidation in Hydrogen-Rich Mixtures on Pt/Alumina Catalysts, Appl. Catal. A: General, Vol. 224, pp. 27-38 (2002) 113、C. Cao, G. Xia, J. Holladay, E. Jones and Y. Wang, Kinetic Studies of Methanol Steam Reforming over Pd/ZnO Catalyst Using a Microchannel Reactor, Appl. Catal. A: General, Vol. 262, pp. 19-29 (2004) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27628 | - |
dc.description.abstract | 本研究設計並組裝一套可將甲醇蒸汽轉化為氫的小型重組器,以提供可攜式燃料電池的原料,且並測試及分析該重組器在各種情形下的性能。該重組器可以分成甲醇蒸汽重組產氫與氫氣純化兩部分,其中甲醇蒸汽重組使用的觸媒為CuO-ZnO-Al2O3、CuO-ZnO-Al2O3-Pt-Rh及Pt-Rh。而由於甲醇水溶液經蒸汽重組會產生H2、CO及CO2與極少量的O2,其中CO會造成PEMFC白金電極的毒化,所以必須將其濃度降低到一定濃度以下,以提供PEMFC使用。因此在後端設計一小型氣體處理器系統,探討將不同含量的Pt與Ru/r-A12O3觸媒與加入促進物Co、Fe或水對CO轉化率與甲烷產量的影響。
甲醇蒸汽重組產氫的部分,CuO-ZnO-Al2O3、CuO-ZnO-Al2O3-Pt-Rh及Pt-Rh觸媒之氫氣產生率與甲醇轉化率均隨溫度的上升而增加,但是在溫度超過大約320℃時,則CuO-ZnO-Al2O3出現劣化現象。若在此觸媒中加入貴金屬Pt與Rh,則在測試溫度範圍內無高溫劣化情形,且經穩定性的測試結果,也呈現良好的穩定性。不過,在溫度低於300℃左右時,仍以CuO-ZnO-Al2O3之性能為最佳。另一方面,若觸媒中僅含Pt與Rh,則高溫劣化現象不明顯,但是催化性能最差。在甲醇進料方面,氫氣產生率隨進料率增加,但是甲醇轉化率會減少。而水對甲醇之莫耳比的增加會使甲醇轉化率與氫氣產生率都減少,但是會隨擔體孔徑密度及長度的增加而增加。另外在反應器裡擾流器之設計可以有效增加反應效果。 在CO去除的部分,當Pt含量從1wt%增加到5wt%時,CO轉化率在低溫區有明顯提升,且隨著溫度的增加,甲烷產量增加的幅度較不明顯。Ru含量越多,則CO轉化率在低溫80℃以前有較佳的效果,且甲烷產量隨著溫度的增加會變得更明顯。在觸媒蜂巢孔徑密度方面,Pt與Ru/r-A12O3觸媒的孔徑密度從300CPSI增加到400CPSI,則呈現出相似的高CO轉化率區間,但是甲烷產量沒有增加,反而下降。在添加過渡金屬Fe與Co方面,加Fe的效果可以使高CO轉化率的溫度區間加大,且可以稍微抑制甲烷化,但是添加Co後的CO轉化率在高溫時較為明顯,且甲烷產量比添加Fe的效果強。最後,5wt%Pt/r-A12O3與1wt%Ru-1%Fe/r-A12O3觸媒歷經12小時穩定性測試,呈現出極佳的穩定性。 另外在優先氧化反應中額外加入水參與反應,則可以發現,5wt%Pt/r-A12O3的觸媒可以提升CO轉化率,而且加水可降低各種觸媒於高溫時產生的甲烷化現象,尤其以Ru系列觸媒最為明顯,可在220℃時,將甲烷產量降至1414ppm左右,相較於無水參與優先氧化反應時,降低極多,因此加水的優點可以減少氫氣損失,進而提升系統效率。 | zh_TW |
dc.description.abstract | This study details the design and fabrication of a small reformer for the generation of hydrogen gas from a solution of methanol and water. The catalysts used for the methanol steam reforming process were CuO-ZnO-Al2O3, CuO-ZnO-Al2O3-Pt-Rh and Pt-Rh. The solution of methanol and water, when passed through the reformer, produced H2, CO, CO2, and small amounts of O2. As the CO in the products can induce degradation of the electrode in a proton exchange membrane fuel cell, the concentration of CO must be reduced to an acceptable level by preferential oxidation. The purification process used different contents of catalysts Ru and Pt; moreover, Co, Fe or water were also added in order to study the effect on the CO conversion rate and methane yield.
In general, the reformer system can be divided into two parts: one for the production of hydrogen and the other for the removal of carbon monoxide. The first experimental investigation produced hydrogen in the methanol reformer unit. The results show that both the methanol conversion and the hydrogen yield rates increase with temperature. Of the three catalysts tested, CuO-ZnO-Al2O3 provides the best performance at temperatures lower than 320℃; however, at higher temperatures, the performance of this catalyst deteriorates, while that of CuO-ZnO-Al2O3-Pt-Rh and Pt-Rh continues to improve. This suggests that the addition of Pt and Rh to the original CuO-ZnO-Al2O3 catalyst has a stabilizing effect upon the reforming process under higher temperature conditions. The results also show that a higher methanol feed rate reduces the methanol conversion rate but increases the hydrogen yield rate. It was found that both the methanol conversion and the hydrogen yield rates reduce as the steam-to-methanol ratio is increased. Finally, the performance can be significantly improved by introducing a turbulence inducer upstream of the catalyst carrier and by increasing both the length and the cell density of the honeycomb structure of the catalysts. The purification of hydrogen involves a preferential oxidation (PROX) reaction. When the content of Pt in the base catalyst r-A12O3 was increased from 1wt% to 5wt%, the CO conversion rate was increased significantly at lower temperatures; however, the methane yield was lower at higher temperatures. When the Ru content was increased from 0.5wt% to 5wt%, the CO conversion rate was increased at lower temperatures and the methane yield increased with increasing temperature. As the cell densities of catalysts Pt and Ru were increased from 300 to 400CPSI, the ranges of the high CO conversion rates were similar, while the methane yields decreased. The effect of addition of Fe can increase the range of the high CO conversion rate and can also slightly suppress methane production. The CO conversion rate for the addition of a Co catalyst was increased at higher temperatures, while the methane yield was higher than that found upon addition of Fe. Finally, catalysts 5wt%Pt/r-A12O3 and 1wt%Ru-1wt%Fe/r-A12O3 remained stable throughout the 12-hour stability test. The existence of water in preferential oxidation reactions can increase the CO conversion, especially with the 5%Pt catalyst; it can also reduce the methanation phenomenon of all catalysts used in the experiment at high temperatures, especially in the series of Ru catalysts. At a temperature of 220℃ and a water flow rate of 1 ml/min, the 1wt%Ru/r-A12O3 catalyst can reduce the methane concentration to 1414ppm. Therefore, it can decrease the loss of hydrogen and improved the efficiency of the reformer system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:12:48Z (GMT). No. of bitstreams: 1 ntu-96-D92522019-1.pdf: 2766241 bytes, checksum: 1be8d82fae1abcd101aa5e05db86d13d (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
內容 頁次 中文摘要..................................................I 英文摘要................................................III 目錄......................................................V 表目錄....................................................X 圖目錄...................................................XI 符號說明.................................................XV 第一章 緒論..............................................1 1.1 燃料重組器系統.......................................1 1.2 甲醇重組產氫.........................................3 1.2.1 蒸汽重組法..........................................3 1.2.2 部分氧化重組法......................................3 1.2.3 自發熱重組法........................................4 1.2.4 甲醇重組方法比較....................................4 1.3 重組氣體純化.....................................5 1.3.1 氣體分離膜..........................................6 1.3.2 優先氧化法..........................................6 1.3.3 水氣轉移法..........................................8 1.3.4 各種氣體純化方法的比較..............................8 第二章 文獻回顧.........................................10 2.1 蒸汽重組.............................................10 2.1.1 燃料選用...........................................10 2.1.2 重組器設計.........................................11 2.1.3 各種觸媒的探討.....................................15 2.2 優先氧化法..........................................17 2.2.1 鉑(Pt)觸媒.........................................17 2.2.2 銠(Rh)觸媒.........................................19 2.2.3 釕(Ru)觸媒.........................................19 2.2.4 鐵(Fe)和鈷(Co)添加物...............................20 2.2.5 氧化銅(CuO)添加物..................................22 2.2.6 金(Au)觸媒.........................................23 2.2.7 各種優先氧化觸媒的比較.............................25 2.3 水對優先氧化法之影響................................25 2.4 研究目的............................................27 第三章 實驗設備與步驟...................................28 3.1 甲醇蒸汽重組系統....................................28 3.1.1 甲醇水溶液供應系統.................................28 3.1.2 甲醇反應系統.......................................29 3.1.3 熱交換系統.........................................31 3.2 CO優先氧化系統......................................31 3.2.1 供氧系統...........................................32 3.2.2 氣體混合槽系統.....................................32 3.2.3 優先氧化系統.......................................32 3.3 水流量控制系統......................................33 3.3.1 供水系統...........................................34 3.3.2 蒸發系統...........................................34 3.4 其它裝置............................................35 3.4.1 逆止閥.............................................35 3.4.2 管狀加熱器.........................................35 3.4.3 隔熱裝置...........................................35 3.4.4 溫度控制器.........................................35 3.4.5 熱電偶.............................................36 3.5 測量設備............................................36 3.5.1 質量流量計.........................................36 3.5.2 壓力傳送器.........................................36 3.5.3 燃燒性氣體偵測器...................................36 3.5.4 氣相層析儀.........................................36 3.6 實驗流程............................................37 3.7 實驗過程中所遇到的問題及解決的方式..................38 第四章 結果與討論.......................................40 4.1 甲醇蒸汽重組產氫....................................40 4.1.1 溫度與觸媒種類的效應...............................40 4.1.2 甲醇進料率之影響...................................42 4.1.3 比的影響..........................................43 4.1.4 擔體孔徑數與長度之影響.............................44 4.1.5 擾流之效應.........................................45 4.1.6 觸媒之穩定性.......................................46 4.1.7 甲醇反應器熱效率...................................46 4.2 優先氧化觸媒對於重組反應後氣體CO濃度的影響..........48 4.2.1 甲醇蒸汽重組的設定.................................48 4.2.2 λ比對優先氧化反應的影響............................49 4.2.3 Pt/r-A12O3觸媒對CO轉化率與甲烷產量的影響...........50 4.2.4 Ru/r-A12O3觸媒對CO轉化率與甲烷產量的影響...........51 4.2.5 觸媒蜂巢孔徑密度對CO轉化率與甲烷產量的影響.........53 4.2.6 在Ru/r-A12O3觸媒中分別添加鈷及鐵對CO轉化率與甲烷產量 的影響...................................................55 4.2.7 觸媒5wt%Pt/r-A12O3與1wt%Ru-1wt%Fe/r-A12O3的穩定性測 試.......................................................56 4.2.8 較佳優先氧化觸媒的設定.............................57 4.3 水對於CO氧化的影響..................................58 4.3.1 甲醇蒸汽重組氣體成分...............................58 4.3.2 λ比對水之優先氧化反應的影響........................58 4.3.3 水對Pt/r-A12O3觸媒的影響...........................58 4.3.4 水對Ru/r-A12O3觸媒的影響...........................61 4.3.5 水對過渡金屬Co與Fe的影響...........................62 4.3.6 不同觸媒在λ=1時對於CO轉化率的影響..................64 4.3.7 不同觸媒在λ=4對於CO轉化率的影響....................65 4.3.8 水對5wt%Pt/r-A12O3觸媒的穩定性測試.................66 第五章 結論與建議.......................................68 5.1 結論................................................68 5.1.1 甲醇蒸汽重組產氫...................................68 5.1.2 優先氧化觸媒對於重組反應後氣體CO濃度的影響.........68 5.1.3 水對於CO氧化的影響.................................69 5.2 建議................................................70 參考文獻.................................................71 附表.....................................................85 附圖....................................................99 附錄A 誤差分析.........................................167 附錄B 流量計校正.......................................170 附錄C 反應速率的計算...................................172 表目錄 內容 頁次 表2.1 不同碳氫化合物重組後之氫氣濃度.....................85 表3.1 甲醇蒸汽重組產氫之操作變因表.......................86 表3.2 甲醇水泵規格表.....................................87 表3.3 甲醇蒸汽重組之觸媒擔體規格表.......................88 表3.4 甲醇蒸汽重組觸媒之成分表...........................89 表3.5 熱交換器規格.......................................90 表3.6 物理式空氣乾燥器規格...............................91 表3.7 CO優先氧化之操作變因表.............................92 表3.8 優先氧化觸媒規格...................................93 表3.9 水參與反應之操作變因表.............................94 表3.10 質量流量器規格....................................95 表3.11 GC規格與設定......................................96 表3.12 標準氣體規格......................................97 表4.1 最佳重組器規格...................................98 圖目錄 內容 頁次 圖2.1 工研院能源與環境研究所設計之甲醇重組器............99 圖2.2 黃所設計的甲醇重組器..............................99 圖2.3 Lin and Rei所設計的甲醇重組器.....................100 圖2.4 陳所設計的甲醇重組器..............................100 圖2.5 吳所設計的超音波霧化器............................101 圖2.6 林所設計的重組器..................................101 圖2.7 Horng等人所設計的重組器...........................102 圖2.8 Edwards等人所設計之模組化甲醇重組器...............102 圖2.9 Han等人所設計之甲醇重組器.........................103 圖2.10 Han等人所設計應用於車上的甲醇重組器..............104 圖2.11 Pan與Wang所設計的鰭片式重組器....................105 圖2.12 Holladay等人所設計的第一代微小型重組器...........106 圖2.13 Holladay等人所設計的第二代微小型重組器...........106 圖2.14 Holladay等人比較第一與第二代微小型重組器.........107 圖3.1 系統流程圖........................................108 圖3.1 實際系統圖........................................109 圖3.2 長反應器尺寸圖....................................110 圖3.3 中反應器尺寸圖....................................111 圖3.4 短反應器尺寸圖....................................112 圖3.5 擾流器尺寸........................................113 圖3.6 T型通道尺寸.......................................114 圖3.7 G型螺帽尺寸.......................................115 圖3.8 觸媒擔體..........................................116 圖3.9 熱交換器零組件分解爆炸圖..........................116 圖3.10 熱交換器尺寸圖...................................117 圖3.11 氧氣流量控制器...................................118 圖3.12 氣體混合槽.......................................118 圖3.13 蒸發裝置.........................................119 圖3.14 加熱帶與溫度控制器...............................119 圖3.15 300W加熱器.......................................120 圖3.16 質量流量計.......................................120 圖3.17 (a)H2檢量線......................................121 圖3.17 (b)O2檢量線......................................121 圖3.17 (c)N2檢量線......................................122 圖3.17 (d)CO檢量線......................................122 圖3.17 (e)Ch4檢量線.....................................123 圖3.17 (e)CO2檢量線.....................................123 圖3.18 反應器零件爆炸圖.................................124 圖4.1 溫度與觸媒種類的效應..............................125 圖4.2 不同溫度下之產物濃度..............................126 圖4.3 CuO-ZnO-Al2O3觸媒之甲醇進料率影響.................127 圖4.4 CuO-ZnO-Al2O3-Pt-Rh觸媒之甲醇進料率影響...........128 圖4.5 Pt-Rh觸媒之甲醇進料率影響.........................129 圖4.6 比對CuO-ZnO-Al2O3觸媒的影響.......................130 圖4.7 比對CuO-ZnO-Al2O3-Pt-Rh觸媒的影響.................131 圖4.8 比對Pt-Rh觸媒的影響0..............................132 圖4.9 擔體孔徑數之影響..................................133 圖4.10 擔體長度之影響...................................134 圖4.11 CuO-ZnO-Al2O3觸媒的擾流器效應....................135 圖4.12 CuO-ZnO-Al2O3-Pt-Rh觸媒的擾流器效應..............136 圖4.13 Pt-Rh觸媒的擾流器效應............................137 圖4.14 觸媒之穩定性.....................................138 圖4.15 Pt含量對CO轉化率的影響...........................139 圖4.16 Pt含量對甲烷產量的影響...........................140 圖4.17 Ru含量對CO轉化率的影響...........................141 圖4.18 Ru含量對甲烷產量的影響...........................142 圖4.19 Pt/r-A12O3觸媒孔徑密度對CO轉化率的影響...........143 圖4.20 Pt/r-A12O3觸媒孔徑密度對甲烷產量的影響...........144 圖4.21 Ru/r-A12O3觸媒孔徑密度對CO轉化率的影響...........145 圖4.22 Ru/r-A12O3觸媒孔徑密度對甲烷產量的影響...........146 圖4.23 含Fe與Co對CO轉化率的影響.........................147 圖4.24 含Fe與Co對甲烷產量的影響.........................148 圖4.25 5wt%Pt/r-A12O3與1wt%Ru-1wt%Fe/r-A12O3觸媒之出口CO濃 度對時間的關係..........................................149 圖4.26 水量與λ比對1wt%Pt/r-A12O觸媒之CO轉化率的影響.....150 圖4.27 水量與λ比對5wt%Pt/r-A12O觸媒之CO轉化率的影響.....151 圖4.28 水量與λ比對1wt%Pt/r-A12O觸媒之甲烷產量的影響.....152 圖4.29 水量與λ比對5wt%Pt/r-A12O觸媒之甲烷產量的影響.....153 圖4.30 水量與λ比對1wt%Ru/r-A12O觸媒之CO轉化率的影響.....154 圖4.31 水量與λ比對1wt%Ru/r-A12O觸媒之甲烷產量的影響.....155 圖4.32 水量與λ比對1wt%Co-1wt%Ru/r-A12O觸媒之CO轉化率的影響......................................................156 圖4.33 水量與λ比對1wt%Fe-1wt%Ru/r-A12O觸媒之CO轉化率的影響......................................................157 圖4.34 水量與λ比對1wt%Co-1wt%Ru/r-A12O觸媒之甲烷產量的影響......................................................158 圖4.35 水量與λ比對1wt%Fe-1wt%Ru/r-A12O觸媒之甲烷產量的影響......................................................159 圖4.36 不同觸媒種類對CO轉化率的影響( , λ=1)...........160 圖4.37 不同觸媒種類對CO轉化率的影響( , λ=1)...........161 圖4.38 不同觸媒種類對CO轉化率的影響( , λ=1)...........162 圖4.39 不同觸媒種類對CO轉化率的影響( , λ=4)...........163 圖4.40 不同觸媒種類對CO轉化率的影響( , λ=4)...........164 圖4.41 不同觸媒種類對CO轉化率的影響( , λ=4)...........165 圖4.42 5wt%Pt/r-A12O觸媒出口CO濃度對時間的關係..........166 | |
dc.language.iso | zh-TW | |
dc.title | 實驗研究小型重組器產氫之性能 | zh_TW |
dc.title | An Experimental Study of the Performance of a Small Reformer for Hydrogen Generation | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 謝曉星,楊儒,李奕昇,李昭仁 | |
dc.subject.keyword | 重組器,觸媒,甲醇轉化率,氫氣產生率,優先氧化反應,CO轉化率,甲烷產量, | zh_TW |
dc.subject.keyword | Reformer,Catalyst,Methanol Conversion,Hydrogen Yield,Preferential Oxidation,CO Conversion,Methane yield, | en |
dc.relation.page | 84 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-10-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。