請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27605
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉超雄(Chau-Shioung Yeh) | |
dc.contributor.author | Chung-Kai Hsu | en |
dc.contributor.author | 徐仲凱 | zh_TW |
dc.date.accessioned | 2021-06-12T18:11:45Z | - |
dc.date.available | 2009-11-15 | |
dc.date.copyright | 2007-11-15 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-10-08 | |
dc.identifier.citation | [1] http://www.nsc.gov.tw/pub/whitepaper/index.htm
[2] 黃念祖(2005),生醫檢測用旋轉分析板雙偏極光波導干涉儀之設計與研製, 國立台灣大學應用力學研究所碩士論文 [3] 郭志斌(2006),多通道波導干涉儀之設計與研製,國立台灣大學應用力學研 究所碩士論文 [4] 李舒昇(2004),以拋物面鏡為基礎之表面電漿共振儀研究生物晶片上分子反 應介面親和力,國立台灣大學應用力學研究所博士論文 [5] Elwing, H. (1998), “Protein Absoption and Elliposometry in biomaterial research,” Biomaterials, 19, 397-406. [6] 徐維良(2004),光學與電子生醫檢測技術之開發:多功光電生醫晶片儀與 新式電化學量測方式,國立台灣大學應用力學研究所碩士論文。 [7] 詹家銘(2006),圓偏表面電漿子干涉儀之研製,國立台灣大學應用力學研究 所碩士論文 [8] http://www.ti.com/sc/docs/products/msp/control/spreeta/index.htm [9] Ligler, F. S., and Taitt, C. A. R. (2002), “Optical Biosensors: Present and Future,” Elsevier Science, 277-304. [10] Lukosz, W., (1995) “Integrated optical chemical and direct biochemical sensors,” Sensors and Actuators B, 29, 37-50. [11] Lukosz, W., Stamm, C., Moser, H.R. Ryf R., Dübendorfer J. (1997), “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sensors and Actuators B, 38-39, 316-323. [12] Culshaw, B., and Dakin, J., (1988), “Optical Fiber Sensors: System and Application,” Vols. 2, Artech House, Boston. [13] Ansari, F. (1993), “Applications of Fiber Optic Sensors In Engineering Mechanics,” American Society of Civil Engineers, New York. [14] Jackson, D. A., Dandridge, A., and Sheem, S. K. (1980), “Measurements of small phase using a single mode optical fiber interferometer,” Opt. Lett., 5, 139-141. [15] Yu, F. T. S., and Yin, S. (2002), “Fiber Optic Sensors,” Dekker, New York. [16] Petuchowski, S. J., Giallorenzi, T. G., and Sheem, S. K. (1981), ”A sensitive fiber-optic Fabry-Perot interferometer,” IEEE Quantum Electron,17, 2168-2170. [17] Heideman, R. G., Kooyman, R. P. H., Greve, J., and Altenburg B. S. F. (1991), “Simple interferometer for evanescent fild refractive index sensing as a feasibility study for an immunosensor,“Applied optics, 30 (12), 1474-1479. [18] Duport, I. S., Benech, P., and Rimet, R. (1994), ”New integrated-optics interferometer in planar technology,” Applied optics, 33 (25), 5954-5958. [19] Schubert, Th., Haase, N., Kuck, H., and Gottfried-Gottfried, R. (1997), “Refractive-index measurements using an integrated Mach-Zehnder interferometer,” Sensors and Actuators A, 60, 108-112. [20] Luff, B. J., Wilkinson, J. S., Piehler, J., Hollenbach, U., Ingenhoff, J., and Fabricius, N. (1998), “Integrated Optical Mach-Zehnder Biosensor,” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.16, NO. 4. [21] Klotz, A., Brecht, A., and Gauglitz, G. (1997), “Channel waveguide mode beat interferometer,” Sensors and Actuators B, 38, 310-315. [22] Ymeti, A., Kanger, J. S., Wijn, R., Lambeck, P. V., Greve, J. (2002), “Development of a multichannel integrated interferometer immunosensor,” Sensors and Actuators B, 83, 1-7. [23] Ymeti, A., Kanger, J. S., Greve, J., Lambeck, P. V., Wijn, R., and Heideman, R. G. (2003), “Realization of a multichannel integrated Young interferometer chemical sensor,” Applied Optics, 42(28), 5649-5660. [24] Ymeti, A., Kanger, J. S., Greve, J., Lambeck, P. V., Wijn, R., and Heideman, R. G. (2003), “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosensors and Bioelectronics, 20, 1417-1421. [25] Sarkisov, S. S., Diggs, D. E., Adamovsky, G., and Curley, M. J. (2001), “Single-arm double-mode double-order planar waveguide interferometric sensor,” Applied Optics, 40(3), 349-359. [26] Qi, Z. M., Matsuda, N., and Santos, J. H. (2002), “Prism-coupled multimode waveguide refractometer,” OPTICS LETTERS, 27(9),689-691 [27] Qi, Z. M., Matsuda, N., Itoh, K., and Qing, D. (2002), “Characterization of an optical waveguide with a composite structure,” JOURNAL OF LIGHTWAVE TECHNOLOGY, 20(8), 1598-1603. [28] Kurrat, R., Textor, M., Ramsden, J. J., Boni, P., and Spencer, N.D. (1997), “Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption,” Rev. Sci. Instrum., 68(5), 2172-2176 [29] Horvath, R., Pedersen, H. C., and Larsen, N. B. (2002), “Demonstration of reverse symmetry waveguide sensing in aqueous solution,” Appl. Phys. Lett.,81(12), 2166-2168. [30] Voros, J., Graf, R., Kenausis, G. L., Bruinink, A., Mayer, J., Textor, M., Wintermantel, E., and Spencer, N.D. (2000), “Feasibility study of an online toxicological sensor based on the optical waveguide technique,” Biosensor & Bioelectronics, 15, 423-429. [31] 李政隆(2004),掺鍺二氧化矽光波導表面電漿共振生物感測晶片之研發, 國立台灣大學醫學工程研究所碩士論文。 [32] Schubert, Th., Haase, N., Kuck, H., and Gottfried-Gottfried, R. (1997), “Refractive-index measurements using an integrated Mach-Zehnder interferometer,” Sensors and Actuators A, 60, 108-112. [33] Ymeti, A., Kanger, J. S., Wijn, R., Lambeck, P. V., Greve, J. (2002), “Development of a multichannel integrated interferometer immunosensor,” Sensors and Actuators B, 83, 1-7. [34] Lukosz, W., Stamm, C., Moser, H.R. Ryf R., Dübendorfer J. (1997), “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sensors and Actuators B, 38-39, 316-323. [35] Horvath, R., Pedersen, H. C., and Larsen, N. B. (2002), “Demonstration of reverse symmetry waveguide sensing in aqueous solution,” Appl. Phys. Lett.,81(12), 2166-2168. [36] Sarkisov, S.S., Diggs, D. E., Adamovsky, G., and Curley, M. J. (2001), “Single-arm double-mode double-order planar waveguide interferometric sensor,” Applied Optics, 40(3), 349-359. [37] Horvath, R., Pedersen, H.C., and Skivesen, N. (2003), “Optical waveguide sensor for on-line monitoring of bacteria,” Optics letters, 28(14), 1233-1235. [38] Harris, R.D., and Wilkinson, J.S., ”Waveguide surface plasmon resonance sensors,” Sensors and Actuators B, 29, 261-267. [39] 謝振傑(2006),光纖生物感測器,物理雙月刊(二十八卷四期) [40] 劉盈村(2002),光纖式表面電漿子共振生醫微感測器之研發,國立台灣大 學醫學工程學研究所碩士論文 [41] 余聲宏(2004),光纖漸逝波感測器應用於微量生物分子檢測,國立陽明大 學醫學工程研究所碩士論文 [42] Frank L. Pedrotti, S.J., and Leno S. Pedrotti, “Introduction to optics,”Prentice Hall, U.S.,1993 [43] http://www.thorlabs.com/ [44] 吳曜東,光纖原理與應用,全華科技圖書,台北,88年2月 [45] 李銘淵,光纖通信概論,全華科技圖書,台北,86年5月 [46] Jian R. Lu, Marcus J.Swann, Louise L. Peel, and Neville J. Freeman, “Lysozyme Adsorption Studies at the Silica/Water Interface Using Dual Polarization Interferometry,”Langmuir 2004,20,1827-1832 [47] Farfield市售波導干涉儀AnaLight bio200操作手冊 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27605 | - |
dc.description.abstract | 波導干涉術(Waveguide Interferometry)的基本精神是利用當光由高折射率入射至低折射率時產生全反射的特性,將耦合入波導的光侷限在同一介質中傳遞,再藉由與樣本接觸之樣本光以及參考光進行干涉並擷取出待測物中所需資訊。由於全反射在垂直界面方向上會產生漸逝波,所以光波對於界面上的特性變化相當靈敏,隨著不同的特性將會對光造成不同的相位變化,相對的就可在干涉訊號中看見這些來自於樣本所造成的變化。
本研究主要目的是為了建構出一光纖式波導干涉儀系統,主軸在於設計並製備出可與光纖式馬赫-曾德架構結合之光纖晶片。晶片方面有鑑於以往製程步驟繁瑣且高成本,故在此希望以光纖進行蝕刻來取代,論文中以鐵氟龍材質設計出放置光纖的平台,除了固定光纖方便蝕刻的設計外更將防止扯斷光纖的樣本流道一並考慮,特色是架構簡單、製備容易且低成本,此外,在論文中亦對光纖製備常遇到的問題做了完整的分析與討論,期望能夠提高晶片製備的良率。解相部份由於光纖耦合器可將樣本光與參考光完全的疊合,故元件由以往的CCD擷取影像變成使用光偵測器偵測單一光強値來得到干涉後訊號,如此不僅僅降低了系統元件成本更實現了縮小化的目的。由於光纖的可撓性特質大幅降低了波導干涉儀體積,加以系統具有簡單、快速與高靈敏度等特性,所以未來相當適合朝向縮小化機構繼續前進。 本論文實驗中首先以酒精與空氣進行重現性試驗,經實驗結果可知系統訊號雖然會受環境影響稍為飄動,但是仍然可以區分出此二樣本,並且對相同樣本有著相同的光強反應。接著採用不同濃度之酒精以及葡萄糖(Glucose)水溶液做為檢測樣本,結果可發現干涉後之光強値會隨著樣本濃度變化而改變,因此可得知本系統的確具有判斷不同濃度樣本的能力。 | zh_TW |
dc.description.abstract | The fundamental theory of Waveguide Interferometry is the characteristics of total reflection and sensing by the evanescent wave. When coupling a light beam into a waveguide structure, we can get the information of the specimen from the interference signal produced by the reference and sample beams. The evanescent field is sensitive to the surface of guiding layer and different environment will induce different phase change of the light beam, so we can apply this property to detect the surface condition of dielectric media.
In this dissertation, a fiber-based waveguide interferometer system that includes low-cost optical fiber based guiding tunnel was built. The principal goal is trying to design a fiber based chip that can be combined with the traditional Mach-Zehnder system. In order to simplify complicated steps before, I design a Teflon fixture that can fix fiber to make etching easier. Besides, there is a flow tunnel design to prevent that specimen pull apart the sensing fiber. This chip has many characteristics including simple structure、easy to fabricate and low-cost. In order to promote the yield of chip making, completely analysis so as to foster the fabrication process was made in this thesis. Because fiber coupler can couple the light beam completely, interference signal will be a single spot of light and need one photo detector to capture signal only. This method not only reduces the cost of system components but also realizes the goal to minimum system volume. The property of flexible of fiber make the volume of system smaller than before and system gets simpler, faster, and has higher sensitivity, so it has the potential to extend the current system into a handheld meter in the future. This fiber-based waveguide interferometry system has been proved to have ability of differentiating between different sample by using air and alcohol solution as the specimen. By way of experimental verifications, we can find that proper signal level change was found with respect to different alcohol and glucose concentrations solutions. In summary, this system was verified experimentally to be able to detect the refractive index changes on the waveguide surface. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:11:45Z (GMT). No. of bitstreams: 1 ntu-96-R94543043-1.pdf: 3189455 bytes, checksum: 024e3472509fb95cd80611266ea2c917 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 謝誌……………………………………………………………………….….i
中文摘要……………………………………………………………………..v Abstract…………………………………...………………………………..vi 目錄………………………………………...………………………….…...viii 圖目錄……………………………………...……………………….……….xi 表目錄……………………………………..………………………………..xv 第 1 章 緒論……………………………………………………………….1 1-1 研究背景………………………………………………………….1 1-2 文獻回顧………………………………………………………….2 1-3 研究動機與貢獻………………………………………………….9 1-4 論文架構………………………………………………………...10 第 2 章 波導干涉儀之基本原理………………………………………...12 2-1 基本光學原理…………………………………………………...12 2-1-1 漸逝波原理……………………………………………...12 2-1-2幾何光學分析……………………………………………15 2-1-3電磁波原理與傳播形式…………………………………20 2-2 波導之波動光學分析…………………………………………...23 2-2-1 三層波導之分析………………………………………...23 2-2-1 四層波導之分析………………………………………...26 2-3光纖之應用與原理………………………………………………28 2-3-1光纖基本結構簡介 ………………………..……………28 2-3-2光纖種類…………………………………………………29 2-3-3光纖傳遞之基本原理……………………………………33 2-3-4光纖感測原理……………………………………………39 2-3-5光纖中TM、TE光定義之探討……………………………40 2-4 光學干涉原理………..………..…….……………………………42 2-4-1 基本干涉原理……………………………………….……42 2-4-2 干涉儀種類……………………………………….………44 第 3 章 光纖晶片之設計與製作………..………………………………...49 3-1 光纖晶片介紹……………………………………………….……49 3-2 光纖晶片設計…………………………………………. …………50 3-3 光纖晶片參數量測……………………………….………………53 3-4 光纖定義偏極態之處理……………………………….…………59 3-5 光纖晶片製作流程………………………………….……………60 3-6 晶片商業價值比較………………………………….……………61 第 4 章 光纖式波導干涉儀之設計與研製………………….……………64 4-1 系統設計理念與目標……………………………….……………64 4-2 系統光路與元件選擇………………………….…………………65 4-3 系統光路架設…………………………………….………………70 第 5 章 實驗結果與探討………………………………….………………72 5-1 鍍膜模擬……………………………………….…………………72 5-2 光纖晶片製備探討……………………………….………………73 5-3 系統測試與非生物性樣本量測………………….………………76 5-3-1 系統穩定度測試……………………………...……………77 5-3-2 TM、TE偏振光試驗………………………..………………78 5-3-3 重現性測試……………………………...…………………79 5-3-4 酒精溶液測試與分析……………………...………………80 5-3-5 葡萄糖溶液測試與分析…………………...………………82 第 6 章 結論與未來展望…………………………………..……...………85 6-1 結論………………………………………………………….……85 6-2 未來展望……………………………………………. ….…………86 第 7 章 參考文獻……………………….…………………….……….……88 | |
dc.language.iso | zh-TW | |
dc.title | 光纖式波導干涉儀之設計與研製 | zh_TW |
dc.title | Design and Fabrication of a Fiber based Waveguide Interferometer | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李世光(Chih-Kung Lee) | |
dc.contributor.oralexamcommittee | 林世明,黃君偉,李舒昇 | |
dc.subject.keyword | 光纖,干涉儀,馬赫曾德, | zh_TW |
dc.subject.keyword | Fiber,Interferometer,Mach-Zehnder, | en |
dc.relation.page | 93 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-10-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。