請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27600
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陸天堯 | |
dc.contributor.author | Li-Fu Huang | en |
dc.contributor.author | 黃立夫 | zh_TW |
dc.date.accessioned | 2021-06-12T18:11:32Z | - |
dc.date.available | 2007-11-15 | |
dc.date.copyright | 2007-11-15 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-10-09 | |
dc.identifier.citation | 1. For reviews of metal-catalyzed cross-couplings and applications, see: (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442. (b) Handbook of Functionalized Organometallics: Applications in Synthesis; Knochel, P., Ed.; Wiley-VCH: Mannheim, 2005. (c) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: New York, 2004. (d) Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004. (e) Cross-Coupling Reactions: A Practical Guide, Topics in Current Chemistry Series 219; Miyaura, N., Ed.; Springer-Verlag: New York, 2002. (f) Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-i., Ed.; Wiley-Interscience: New York, 2002. (g) Danishefsky, S. J.; Chemler, S. R.; Trauner, D. Angew. Chem. Int. Ed. 2001, 40, 4544.
2. For reviews and highlights, see: (a) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651. (b) Beller, M.; Frisch, A. C. Angew. Chem. Int. Ed. 2005, 44, 674. (c) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525. (d) Luh, T.-Y.; Leung, M.-k.; Wong, K.-T. Chem. Rev. 2000, 100, 3187. (e) Cárdenas, D. J. Angew. Chem. Int. Ed. 2003, 42, 384. (e) Cárdenas, D. J. Angew. Chem. Int. Ed. 1999, 38, 3018. 3. Copper-catalyzed reactions: (a) Tamaru, M.; Kochi, J. K. Synthesis. 1971, 303. (b) Kochi, J. K.; Tamaru, M. J. Am. Chem. Soc. 1972, 93, 1483. (c) Kochi, J. K.; Tamaru, M. J. Am. Chem. Soc. 1972, 93, 1485. (d) Tamaru, M.; Kochi, J. K. J. Organomet. Chem. 1972, 42, 205. 4. Cobalt-catalyzed reactions: Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2002, 41, 4137. 5. Corey, E. J.; Semmelhack, M. F. J. Am. Chem. Soc. 1967, 89, 2755. 6. Castle, P. L.; Widdowson, D. A. Tetrahedron Lett. 1986, 27, 6013. 7. (a) Yuan, K.; Scott, W. J. Tetrahedron Lett. 1989, 30, 4779. (b) Yuan, K.; Scott, W. J. J. Org. Chem. 1990, 55, 6188. (c) Yuan, K.; Scott, W. J. Tetrahedron Lett. 1991, 32, 189. 8. Park, K.; Yuan, K.; Scott, W. J. J. Org. Chem. 1993, 58, 4866. 9. Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992, 691. 10. (a) Charette, A. B.; Giroux, A. J. Org. Chem. 1996, 61, 8718. (b) Charette, A. B.; De Freitas-Gil, R. P. Tetrahedron Lett. 1997, 38, 2809. (c) Martin, S. F.; Dwyer, M. P. Tetrahedron Lett. 1998, 39, 1521. 11. Gschwend, H. W.; Rodriguez, H. R. Org. React. (N.Y.) 1979, 26, 1-360. 12. Snieckus, V. Chem. Rev. 1990, 90, 879. 13. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307. 14. Luh, T.-Y. Synlett. 1996, 201. 15. (a) Wong, K.-T.; Yuan, T.-M.; Wang, M. C.; Tung, H.-H.; Luh, T.-Y. J. Am. Chem. Soc. 1994, 116, 8920. (b) Wong, K.-T.; Luh, T.-Y. J. Am. Chem. Soc. 1992, 114, 7308. 16. Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem. Int. Ed. 1995, 34, 2723. 17. Giovannini, R.; Stüdemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. 1999, 64, 3544. 18. (a) Netherton, M. R.; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099. (b) Kirchhoff, J. H.; Dai, C.; Gu, G. C. Angew. Chem. Int. Ed. 2002, 41, 1945. (c) Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 3910. (d) Kirchhoff, J. H.; Netherton, M. R.; Hills, D. I.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662. 19. Mechanistic study of alkyl-alkyl Suzuki coupling reactions, see: Hills, I. D.; Netherton, M. R.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 5749. 20. Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340. 21. (a) Frisch, A. C.; Shaikh, N.; Zapf. A.; Beller, M. Angew. Chem. Int. Ed. 2002, 41, 4056. (b) Frisch, A. C.; Rataboul, F.; Zapf, A.; Beller, M. J. Organomet. Chem. 2003, 687, 403. 22. Tang, H.; Menzel, K.; Fu, G. C. Angew. Chem. Int. Ed. 2003, 42, 5079. 23. (a) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788. (b) Lee, J.-Y.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 5616. 24. (a) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726. (b) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12527. 25. Eckhardt, M.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 13642. 26. Arentsen, K.; Caddick, S.; Cloke, F. G. N.; Herring, A. P.; Hitchcock, P. B. Tetrahedron Lett. 2004, 45, 3511. 27. (a) Giovannini, R.; Stüdemann, T.; Dussin, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 2387. (b) Giovannini, R.; Knochel, P. J. Am. Chem. Soc. 1998, 120, 11186. 28. Piber, M.; Jensen, A. E.; Rottländer, M.; Knochel, P. Org. Lett. 1999, 1, 1323. 29. Jensen, A. E.; Knochel, P. J. Org. Chem. 2002, 67, 79. 30. (a) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222. (b) Terao, J.; Naitoh, Y.; Kuniyasu, H.; Kambe, N. Chem. Lett. 2003, 32, 890. (c) Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646. 31. For reviews, see: (a) Luh, T.-Y.; Ni, Z.-J. Synthesis 1990, 89. (b) Luh, T.-Y. Acc. Chem. Res. 1991, 24, 257. 32. (a) Ni, Z.-J.; Luh, T.-Y. J. Chem. Soc., Chem. Commun. 1987, 5151. (b) Ni, Z.-J.; Mei, N.-W.; Shi, X.; Wang, M. C.; Tzeng, Y.-L.; Luh, T.-Y. J. Org. Chem. 1991, 56, 4035. 33. (a) Ni, Z.-J.; Luh, T.-Y. J. Org. Chem. 1988, 53, 2129. (b) Ni, Z.-J.; Yang, P.-F.; Ng, D. K. P.; Tzeng, Y.-L.; Luh, T.-Y. J. Am. Chem. Soc. 1990, 112, 9356. (c) Ni, Z.-J.; Luh, T.-Y. Org. Syn. 1991, 70, 240-245. 34. (a) Ng, D. K. P.; Luh, T.-Y. J. Am. Chem. Soc. 1989, 111, 9119. (b) Yu, C. C.; Ng, D. K. P.; Chen, B.-L.; Luh, T.-Y. Organometallics 1994, 13, 1487. 35. (a) Bullock, R. M.; Samsel, E. G. J. Am. Chem. Soc. 1987, 109, 6542. (b) Bullock, R. M.; Rappoli, B. J.; Samsel, E. G.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1989, 261. (c) Donaldson, W. A.; Brodt, C. A. J. Organomet. Chem. 1987, 330, C33; d) Hill, E. A.; Park, Y.-W.; J. Organomet. Chem. 1988, 356, 1. (e) Fournet, G.; Balme, G.; Gore, J.; Tetrahedron Lett. 1987, 28, 4533. (f) Fournet, G.; Balme, G.; Gore, J.; Tetrahedron 1988, 44, 5809. (g) Fournet, G.; Balme, G.; Barieux, J. J.; Gore, J. Tetrahedron 1988, 44, 5821. 36. (a) Pinke, P. A.; Stauffer, R. D.; Miller, R. G. J. Am. Chem. Soc. 1974, 96, 422. (b) Salomon, R. G.; Salomon, H. F.; Kachinske, J. L. C. J. Am. Chem. Soc. 1977, 99, 1043. (c) Doyle, M. R.; van Leusen, D. J. J. Org. Chem. 1982, 47, 5236. (d) Sarel, S.; Langbeheim, M. J. J. Chem. Soc., Chem. Commun. 1979, 73. (e) Sarel, S. Acc. Chem. Res. 1978, 11, 204 and references therein. (f) Chiusoli, G. P.; Costa, M.; Melli, L. J. Organomet. Chem. 1988, 358, 495. 37. (a) Tseng, H.-R.; Luh, T.-Y. J. Org. Chem. 1996, 61, 8685. (b) Tseng, H.-R.; Luh, T.-Y. J. Org. Chem. 1997, 62, 4568. (c) Tseng, H.-R.; Lee, C.-F.; Yang, L.-M.; Luh, T.-Y. J. Org. Chem. 1999, 64, 8582. 38. Tu, H.-Y.; Liu, Y.-H.; Wang, Y.; Luh, T.-Y. Tetrahedron Lett. 2005, 46, 771. 39. (a) Lee, C.-F.; Yang, L.-M.; Hwu, T.-Y.; Feng, A.-H.; Tseng, J.-C.; Luh, T.-Y. J. Am. Chem. Soc. 2000, 122, 4992. (b) Zhang, L.-Z.; Chen, C.-W.; Lee, C.-F.; Wu, C.-C.; Luh, T.-Y. Chem. Commun. 2002, 2336. (c) Lee, C.-F.; Liu, C.-Y.; Song, H.-C.; Luo, S.-J.; Tseng, J.-C.; Tso, H.-H.; Luh, T.-Y. Chem. Commun. 2002, 2824. (d) Liu, C.-Y.; Luh, T.-Y. Org. Lett. 2002, 4, 4305. (e) Chou, C.-M.; Chen, W.-Q.; Chen, J.-H.; Tseng, J.-C.; Lee, C.-F.; Luh, T.-Y. Chem. Asian J. 2006, 1-2, 46. 40. Tseng, J.-C.; Chen, J.-H.; Luh, T.-Y. Synlett. 2006, 1209. 41. (a) 李進發 博士論文 台灣大學 2002年. (b) 曾瑞昌 博士論文 台灣大學 2003年. 42. 曾憲榮 博士論文 台灣大學 1998年 43. (a) Tseng, J.-C.; Lin, H.-C.; Huang, S.-L.; Lin, C.-L.; Jin, B.-Y.; Chen, C.-Y.; Yu, J.-K.; Chou, P.-T.; Luh, T.-Y. Org. Lett. 2003, 5, 4381. (b) Lin, H.-C.; Lin,-W.-Y.; Bai, H.-T.; Chen, J.-H.; Jin, B.-Y.; Luh, T.-Y. Angew. Chem. Int. Ed. 2007, 46, 897. 44. (a) Naso, F. Pure Appl. Chem. 1988, 60, 79. (b) Fiandanese, V. Pure Appl. Chem. 1990, 62, 1987. 45. Baumann, E. Ber. Dtsch. Chem. Ges. 1885, 18, 883. 46. Greene, T. W. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1992. 47. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 4th ed.; Kluwer Academic/Plenum Publishers: New York, 2001, Part B, pp. 249-309. 48. Page, P. C. B.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45, 7643. 49. (a) Colvin, E. Silicon in Organic Synthesis; Butterworth: London, 1981. (b) The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z. Eds.; Wiley: Chichester, 1989, Parts 1 and 2. (c) Luh, T.-Y.; Wong, K.-T. Synthesis 1993, 349. (d) Luh, T.-Y.; Liu, S.-T. In The Chemistry of Organosilicon Compounds; Rappoport, Z., Apeloig, Y. Eds.; Wiley: Chicester, 1998, Vol. 2, pp. 1793. 50. Luh, T.-Y. Pure Appl. Chem. 1996, 68, 105. 51. Tolman, C. A. Chem. Rev. 1977, 77, 313. 52. Huang, L.-F.; Huang, C.-H.; Stulgies, B.; de Meijere, A.; Luh, T.-Y. Org. Lett. 2003, 5, 4489. 53. For selected recent reviews, see: (a) Amemiya, R.; Yamaguchi, M. Eur. J. Org. Chem. 2005, 5145. (b) Ma, S. Eur. J. Org. Chem. 2004, 1175; c) Gung, B. W. Org. React., 2004, 64, 1. (d) Teobald, B. J. Tetrahedron, 2002, 58, 4133. (e) Prakesch, M.; Gree, D.; Gree, R. Acc. Chem. Res. 2002, 35, 175. (f) Green, J. R. Curr. Org. Chem. 2001, 5, 809. (g) Muller, T. J. J. Eur. J. Org. Chem. 2001, 2021. (h) Li, C.-L.; Liu, R.-S. Chem. Rev. 2000, 100, 3127. (i) Bruneau, C.; Darcel, C.; Dixneuf, P. H. Curr. Org. Chem. 1997, 1, 197. (j) Tsuji, J.; Mandai, T. Synthesis, 1996, 1. (k) Tsuji, J.; Mandai, T. Angew. Chem. Int. Ed. 1996, 34, 2589. (l) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. (m) Overman, L. E. Acc. Chem. Res. 1980, 13, 218. 54. For a recent review, see: Luh, T.-Y.; Lee, C.-F. Eur. J. Org. Chem. 2005, 3875. 55. Marshall, J. A.; Robinson, E. D.; Zapata, A. J. Org. Chem. 1989, 54, 5854. 56. Marshall, J. A.; Wang, X.-j. J. Org. Chem. 1990, 55, 2995. 57. (a) Marshall, J. A.; Wang, X.-j. J. Org. Chem. 1992, 57, 1242. (b) Marshall, J. A.; Wang, X.-j. J. Org. Chem. 1992, 57, 3387. 58. Kadota, I.; Hatakeyama, D.; Seki, K.; Yamamoto, Y. Tetrahedron Lett. 1996, 37, 3059. 59. Yoshikawa, E.; Kasahara, M.; Asao, N.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 4499. 60. Ishikawa, T.; Aikawa, T.; Mori, Y.; Saito, S. Org. Lett. 2003, 5, 51. 61. Chen, S.; Wang, J. J. Org. Chem. 2007, 72, 4993. 62. Sonye, J. P.; Koide, K. J. Org. Chem. 2007, 72, 1846. 63. Luh, T.-Y.; Leung, M.-k. Science of Synthesis; Otera, J. Ed.; Thieme: Stuttgart, 2006, Vol. 30; Thieme: Stuttgart, Chapter 30.3, pp 111-117. 64. Williams, J. R.; Sarkisian, G. M. Synthesis 1974, 32. 65. Yuan, T.-M.; Luh, T.-Y. Org. Syn. 1996, 74, 187. 66. (a) Negishi, E.-i.; Akiyoshi, K.; Takahashi, T. J. Chem. Soc. Chem. Commun. 1987, 477. (a) Negishi, E.-i.; Anastasia, L. Chem. Rev. 2003, 103, 1979. 67. (a) Brandsma, L. Preparative Acetylenic Chemistry; 2nd ed. Elsevier: Amsterdam, 1988. (b) Sankaranarayanan, S.; Chattopadhyay, S. Tetrahedron: Asymmetr 1998, 9, 2627. (c) Tyman, J.; Ghorbanian, S.; Muir, M.; Tychopoulous, V.; Bruce, I.; Fisher, I. Syn. Commun. 1989, 19, 179. 68. Thorand, S.; Krause, N. J. Org. Chem. 1998, 23, 8551. 69. Gómez-Lor, B.; de Frutos, Ó; Ceballos, P. A.; Granier, T.; Echavarren, A. M. Eur. J. Org. Chem. 2001, 11, 2107. 70. Yang, L.-M.; Huang, L.-F.; Luh, T.-Y. Org. Lett. 2004, 6, 1461. 71. Huang, L.-F.; Luh, T.-Y. Unpublished results. 72. (a) 鄭彥如 博士論文 台灣大學 2004年. (b) Cheng, Y.-J.; Luh, T.-Y. Chem. Eur. J. 2004, 10, 5361. 73. Huang, L.-F.; Lee, C.-F.; Tseng, J.-C.; Luh, T.-Y. Synlett. 2006, 3173. 74. Luh, T.-Y.; Huang, L.-F. Org. Synth. Maniscript in preparation. 75. (a) Tamura, M.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 1487. (b) Neumann, S. M.; Kochi, J. K. J. Org. Chem. 1975, 40, 599. (c) Smith, R. S.; Kochi, J. K. J. Org. Chem. 1976, 41, 502. (d) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351. 76. (a) Molander, G. A.; Rahn, B. J.; Shubert, D. C.; Bonde, S. E. Tetrahedron Lett. 1983, 24, 5449. (b) Reddy, C. K.; Knochel, P. Angew. Chem. Int. Ed. 1996, 35, 1700. (c) Fürstner, A.; Brunner, H. Tetrahedron Lett. 1996, 37, 7009. (d) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199. (e) Fakhakh, M. A.; Franck, X.; Hocquemiller, R.; Figadère, B. J. Organomet. Chem. 2001, 624, 131. 77. (a) Fürstner, A.; Leitner, A. Angew. Chem. Int. Ed. 2002, 41, 609. (b) Fürstner, A.; Leitner, A.; Méndez, M.; Krause, H. J. Am. Chem. Soc. 2002, 124, 13856. (c) Martin, R.; Fürstner, A. Angew. Chem. Int. Ed. 2004, 43, 3955. (d) Fürstner, A.; Martin, R. Chem. Lett. 2005, 34, 624. 78. Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 3686. 79. Nagano, T.; Hayashi, T. Org. Lett. 2004, 6, 1297. 80. (a) Beford, R. B.; Bruce, D. W.; Frost, R. M.; Goodby, J. W.; Hird, M. Chem. Commun. 2004, 2822. (b) Beford, R. B.; Bruce, D. W.; Frost, R. M.; Hird, M. Chem. Commun. 2005, 4161. 81. Dongol, K. G.; Koh, H.; Sau, M.; Chai, C. L. L. Adv. Synth. Catal. 2007, 349, 1015 82. (a) Cardellicchio, C.; Fiandanese, V.; Marchese, G.; Ronzini, L. Tetrahedron Lett. 1985, 26, 3595. (b) Fiandanese, V.; Marchese, G.; Naso, F. Tetrahedron Lett. 1988, 29, 3587. (c) Itami, K.; Higashi, S.; Mineno, M.; Yoshida, J.-i. Org. Lett. 2005, 7, 1219. 83. (a) Alper, H.; Prince, T. L. Angew. Chem. Int. Ed. 1980, 19, 315. (b) Alper, H.; Ripley, S.; Prince, T. L. J. Org. Chem. 1983, 48, 250. (c) Alper, H.; Sibtain, F.; Haveling, J. Tetrahedron Lett. 1985, 24, 5329. 84. Zhang, D.; Ready, J. M. J. Am. Chem. Soc. 2006, 128, 15050. 85. (a) Smith, M. B.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th ed.; Wiley: Hoboken, 2007; pp 1534-1546. (b) Bruckner, R. Advanced Organic Chemistry: Reaction Mechanisms; Harcourt: San Diego, 2002; pp 160-167. (c) Concellón, J. M.; Rodríguez-Solla, H. Chem. Soc. Rev. 2004, 33, 599. (d) Shinokubo, H.; Oshima, K. Synlett 2000, 322. 86. (a) Percy, J. M. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W. Eds., Pergamon: Oxford, 1995; Vol. 1 (Roberts, S. M., Ed.), pp 553-587. (b) Piva, O. In Comprehensive Organic Functional Group Transformations II; Katritzky, A. R., Taylor, R. J. K., Eds.; Pergamon: Oxford, 2005; Vol. 1 (Cossy, J., Ed.), pp 586-600. 87. Corey, E. J.; Winter, A. E. J. Am. Chem. Soc. 1963, 85, 2677. 88. For a review, see: Wong, H. N. C.; Fok, C. C. M.; Wong, T. Heterocycles 1987, 26, 1345. 89. For reviews, see: (a) Maercker, A. Org. React. 1965, 14, 270. (b) Wadsworth, W. S. Org. React. 1977, 25, 73. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (d) Shen, Y.-C. Acta Chim. Sin. 2000, 58, 253. 90. For reviews, see: (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780. (b) Ager, D. J. Org. React. 1990, 38, 1. (c) Barrett, A. G. M.; Hill, J. M.; Wallace, E. M.; Flygare, J. A. Synlett 1991, 764. (d) van Staden, L. F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 31, 195. 91. For reviews, see: (a) Kocienski, P. J. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 6 (Winterfeldt, E., Ed.), pp 975-1039. (b) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563. 92. For reviews, see: (a) Gröbel, B.-T.; Seebach, D. Synthesis 1977, 357. (b) Page, P. C. B.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45, 7643. (c) Yus, M.; Nájera, C.; Foubelo, F. Tetrahedron 2003, 59, 6147. 93. (a) Sowerby, R. L.; Coates, R. M. J. Am. Chem. Soc. 1972, 94, 4758. (b) Denis, J. N.; Dumont, W.; Krief, A. Tetrahedron Lett. 1979, 20, 4111. (c) Hoye, T. R.; Kurth, M. J. J. Org. Chem. 1980, 45, 3549. (d) Shimagaki, M.; Shiokawa, M.; Sugai, K.; Teranaka, T.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1988, 29, 659. (e) Chevrie, D.; Lequeux, T.; Pommelet, J.-C. Org. Lett. 1999, 1, 1539. 94. (a) Heck, R. F. Organotransition Metal Chemistry; Academic Press: New York, 1974. (b) Kochi, J. K. Organometallic Mechanism and Catalysis; Academic Press: New York, 1978. (c) Yamamoto, A. Organotransition Metal Chemistry: Fundamental Concepts and Applications; Wiley-VCH: New York, 1986. (d) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987, Chapter 7. 95. (a) Hegedus, L. S. The Chemistry of the Metal-Carbon Bond; Hartley, F. R.; Patai, S. Eds.; Wiley: Chichester, U.K., 1985, Vol. 2, pp 401-512. (b) Henniingsen, M.; Jeropoulos, S.; Smith, E. H. J. Org. Chem. 1989, 54, 3015. (c) Keinan, E.; Kumar, S.; Dangur, V.; Vaya, J. J. Am. Chem. Soc. 1994, 116, 11151 and references therein. 96. For stoichiometric reactions, see: (a) Rosenblum, M. Pure Appl. Chem. 1984, 56, 129. (b) Hacksell, U.; Daves, G. D., Jr. Organometallics 1983, 2, 772. (c) Osakada, K.; Matsumoto, K.; Yamamoto, T.; Yamamoto, A. Organometallics 1985, 4, 857. (d) Cheng, J. C.-Y.; Hacksell, U.; Daves, G. D., Jr. J. Org. Chem. 1986, 51, 3093.(e) Daves, G. D., Jr. Acc. Chem. Res. 1990, 23, 201. (f) Cohen, H.; Feldman, A.; Ish-Shalom, R.; Meyerstein, D. J. Am. Chem. Soc. 1991, 113, 5292. (g) Hg-promoted-S elimination: Trost, B. M; Tanigawa, Y. J. Am. Chem. Soc. 1979, 101, 4745. 97. For catalytic reactions, see: (a) B-Cl elimination: Henry, P. M. Acc. Chem. Res. 1973, 6, 16. (b) B-Si elimination: Karabelas, K.; Hallberg, A. J. Org. Chem. 1986, 51, 5286. (c) B-Sn elimination: Shi, X.; Luh, T.-Y. Organometallics 1990, 9, 3019. 98. For catalytic B-OR elimination reactions, see: (a) Sen, A.; Lin, M.; Kao, L.-C.; Huston, A. C. J. Am. Chem. Soc. 1992, 114, 6385. (b) Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 733. (c) Ma, S.; Lu, X. J. Org. Chem. 1991, 56, 5120. (d) Zhu, G.; Ma, S.; Lu, X. J. Chem. Res. (S) 1993, 366. (e) Zhu, G.; Ma, S.; Lu, X. J. Chem. Res. (M) 1993, 2467. (f) Ma, S.; Lu, X. J. Organomet. Chem. 1993, 447, 305. (g) Zhu, G.; Lu, X. Organometallics 1995, 14, 4899. 99. (a) Stang, P. J.; Kitamura, T. J. Am. Chem. Soc. 1987, 109, 7561. (b) Stang, P. J.; Kitamura, T. Org. Synth. 1992, 70, 215. 100. Pornet, J.; Princet, B.; Mévaa, L. M.; Miginiac, L. Syn. Commun. 1996, 26, 2099. 101. (a) Alami, M.; Linstrumelle, G. Tetrahedron Lett. 1991, 32, 6109. (b) Lomberget, T.; Bouyssi, D.; Balme, G. Synlett 2002, 1439. 102. (a) Zeni, G.; Alves, D.; Pena, J. M.; Braga, A. L.; Stefani, H. A.; Nogueira, C. W. Org. Biomol. Chem. 2004, 2, 803. (b) Zeni, G.; Braga, A. L.; Stefani, H. A. Acc. Chem. Res. 2003, 36, 731. 103. Lyapkalo, I. M.; Vogel, M. A. K. Angew. Chem. Int. Ed. 2006, 45, 4019. 104. Negishi, E.-i.; Qian, M.; Zeng, F.; Anastasia, L.; Babinski, D. Org. Lett. 2003, 5, 1597. 105. Stille, J. K.; Simpson, J. H. J. Am. Chem. Soc. 1987, 109, 2138. 106. Hoshi, M.; Shirakawa, K. Synlett 2002, 1101. 107. Wilson, S. R.; Georgiadis, G. M.; Khatri, H. N.; Bartmess, J. E. J. Am. Chem. Soc. 1980, 102, 3577. 108. Bogadanovic, B.; Schwichardi, M. Angew.Chem. Int. Ed. 2000, 39, 4610. 109. Huang, L.-F.; Chen, C.-W.; Luh, T.-Y. Org. Lett. 2007, 9, 3663. 110. Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. 111. (a) Mori, M. Adv. Synth. Catal. 2007, 349, 121. (b) Hansen, E.; Lee, D. Acc. Chem. Res. 2006, 39, 692. 112. (a) McMurry, J. E.; Fleming, M. P. J. Am Chem. Soc. 1974, 96, 4708. (b) Fürstner, A.; Bogdanovic, B. Angew. Chem. Int. Ed. 1996, 35, 2442. 113. Urbaniak, W.; Franski, R.; Gierczyk, B. Pol. J. Chem. 2001, 75, 429. 114. Davidson, N. E.; Rutherford, T. J.; Botting, N. P. Carbohydr. Res. 2001, 330, 295. 115. Kim, S.-G.; Kim, S.-S.; Lim, S.-T.; Shim, S.-C. J. Org. Chem. 1987, 52, 2114. 116. Bartmess. J. E.; Khatri, H. N.; Georgiadis, G. M.; Wilson, S. R. J. Am. Chem. Soc. 1980, 102, 3577. 117. Nickon, A.; Rodriguez, A.; Shirhatti, V.; Ganguly, R. J. Org. Chem. 1985, 50, 4218. 118. Chan, M.-C.; Cheng, K.-M.; Ho, K.-M.; Ng, C.-T.; Yam, T.-M.; Wang, B. S. L.; Luh, T.-Y. J. Org. Chem. 1988, 53, 4466. 119. Efange, S. M. N.; Michelson, R. H.; Dutta, A. K.; Parsons, S. M. J. Med. Chem. 1991, 34, 2638. 120. Osburn, P. L.; Wilson, A.; Sink, E. M.; Bergbreiter, D. E. J. Am. Chem. Soc. 2000, 122, 9058. 121. Lukevits, E.; Sturkovich, R. Y.; Pudova, O. A.; Polis, Y. Y.; Gaukhman, A. P. J. Gen. Chem. USSR 1985, 55, 553. 122. Masilamani, D.; Rogic, M. M. J. Am. Chem. Soc. 1978, 100, 4634. 123. Kametani, T.; Kawamura, K.; Tsubuki, M.; Honda, T. J. Chem. Soc. Perkin Trans. 1 1988, 193. 124. Han, N.; Lei, X.; Turro, N. J. J. Org. Chem. 1991, 56, 2927. 125. Russell, J. C.; Witten, D. G.; Braun, A. M. J. Am. Chem. Soc. 1981, 103, 3219. 126. Vanhessche, K. P. M.; Sharpless K. B. J. Org. Chem. 1996, 61, 7978. 127. Toler, J. R.; Carey, F. A. J. Org. Chem. 1976, 41, 1966. 128. Kabalka, G.; Wang, L.; W.; Pagni, R. M. Tetrahedron 2001, 57, 8017. 129. Stephens, K. A.; Turner, P. D.; Crisp, G. T. J. Organomet. Chem. 1998, 570, 219. 130. Stüdemann, T.; Ibrahim-Ouali, M.; Knochel, P. Tetrahedron 1998, 54, 1299. 131. Harms, A. E.; Stille, J. R. Tetrahedron Lett. 1992, 44, 6565. 132. Willett, B. C.; Moore, W. M. Salajegheh, A.; Peters, D. G. J. Am. Chem. Soc. 1979, 101, 1162. 133. Apparu, M.; Comet, M.; Leo, P. M.; Mathieu, J.-P.; Du Moulinet, A. Bull. Soc. Chim. Fr. 1988, 118. 134. Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255. 135. Binger, P.; Günther, K.; Regitz, M. Synthesis 1999, 1363. 136. Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627. 137. Cozzi, P. G.; Rudolph, J.; Bolm, C.; Norrby, P.-O.; Tomasini, C. J. Org. Chem. 2005, 70, 5733. 138. Wenkert, E.; Leftin, M. H.; Michelotti, E. L. J. Org. Chem. 1985, 50, 1122. 139. Wipf, P.; Aoyama, Y.; Benedum, T. E. Org. Lett. 2004, 6, 3593. 140. Kitano, Y.; Matsutomo, T.; Sato, F. Tetrahedron 1988, 44, 4073. 141. Allan, R. E.; Beswick, M. A.; Davies, M. K.; Raithby, P. R.; Steiner, A.; Wright, D. S. J. Organomet. Chem. 1988, 344, 71. 142. Evans, J. C.; Goralski, C. T.; Hasha, D. L. J. Org. Chem. 1992, 57, 2941. 143. Bach, J.; Berenguer, R.; Garcia, J.; Loscertales, T.; Vilarrasa, J. J. Org. Chem. 1996, 61, 9021. 144. Bunce, R. A.; Hertzler, D. V. J. Org. Chem. 1986, 51, 3451. 145. Logue, M. W.; Teng, K. J. Org. Chem. 1982, 47, 2549. 146. Nishimura, T.; Ohtaka, S.; Hashimoto, K.; Yamauchi, T.; Hasegawa, T.; Imanaka, K.; Tateiwa, J.-i.; Takeuchi, H.; Uemura, S. Bull.Chem. Soc. Jpn. 2004, 77, 1765. 147. Kruithof, K. J. H.; Schmitz, R. F.; Klumpp, G. W. Tetrahedron 1983, 39, 3073. 148. Leonhard, B.; Klaus, R. Chem. Ber. 1979, 112, 2829. 149. Jeko, J.; Timár, T.; Jaszberenyi, J. Cs. J. Org. Chem. 1991, 56, 6748. 150. Sondej, S. C.; Katzenellenbogen, J. A. J. Org. Chem. 1986, 51, 3508. 151. Khan, A. T.; Mondal, E.; Ghosh, S. ; Islam, S. Eur. J. Org. Chem. 2004, 2002. 152. Besra, R. C.; Rudrawar, S.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46, 6213. 153. Eisch, J. J.; Adeosun, A. A. Eur. J. Org. Chem. 2005, 993. 154. Serijan, K. T.; Wise, P. H. J. Am. Chem. Soc. 1951, 73, 4766. 155. Song, C.; Jun, D.-u.; Choung, S.-Y.; Roh, E.; Lee, S.-g. Angew. Chem. Int. Ed. 2004, 43, 6183. 156. Terao, Y.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2004, 69, 6942. 157. Tewari, R. S.; Suri, S. K.; Gupta, K. C. Z. Naturforsch, B 1979, 34B, 606. 158. Dunet, G.; Knochel, P. Synlett 2006, 407. 159. Kameyama, M.; Shimezawa, H.; Satoh, T.; Kamigata, N. Bull. Chem. Soc. Jpn. 1988, 61, 1231. 160. Anke, L.; Reinhard, D.; Weyerstahl, P. Lieb. Ann. Chem. 1981, 591. 161. Cai, M.-Z.; Huang, J.-D.; Peng, C.-Y. J. Organomet. Chem. 2003, 681, 98. 162. Ranu, B. C.; Banerjee, S.; Das, A. Tetrahedron Lett. 2006, 47, 881. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27600 | - |
dc.description.abstract | 本篇論文圍繞在硫縮酮的新合成方法和應用。依以下三大部分作深入的探討。
首先,利用具有強給電子能力的三烷基磷配基,可以有效地活化脂肪族硫縮醛 (酮) 的碳-硫鍵。因此在適當的鎳觸媒存在下,脂肪族硫縮醛 (酮) 在不需要特別的螯合作用下,即可以與一系列的格林那試劑進行烯化反應。藉由改變起始物硫縮醛 (酮) 的取代基,或是使用不同的格林那試劑,我們能利用此烯化反應得到在有機合成上有許多應用的有機矽化合物。 第二部分是有關於碳-碳鍵的形成反應。為了改善以往在合成炔丙基硫縮酮的困難,我們嘗試利用末端炔的炔丙基硫縮酮衍生物,以偶合反應的方式來合成一系列的炔丙基硫縮酮。在研究的過程中,我們發展了一套有效的鈀催化炔丙基親核基與鹵烷的偶合反應。在鈀觸媒和三苯基磷的存在下,我們可利用炔基格林那試劑或炔基鋰和簡單的鹵烷進行偶合,而這樣的反應條件也能應用在苯基取代炔丙基硫縮酮衍生物的合成上。烷基取代的炔丙基硫縮酮衍生物,則能利用相對應的末端炔和碘烷親電基進行取代反應所獲得。 第三部分則是雙烷基取代炔丙基硫縮酮的新型態反應。我們發現在鐵觸媒和格林那試劑的存在下,利用雙烷基取代炔丙基硫縮酮和羰基化合物反應生成的beta-硫烷氧基醇,可以進行不常見的beta-氧消去反應,而得到烯炔衍生物。 | zh_TW |
dc.description.abstract | The new synthetic methods and applications of dithioacetal are fully described in this thesis.
Firstly, we founded that the carobn-sulfur bonds of aliphatic dithioacetals could be efficiently activated by electron-donating trialkylphosphine ligands. In the presence of suitable nickel catalyst and without the chelation effect of special designed dithioacetals, simple aliphatic dithioacetals could react with a series of Grignard reagents to give the corresponding olefinic products. By using this methodology, alkenyl silanes which have useful applications from a synthetic point of view could be easily obtained. The second part is about the carbon-carbon bond forming reaction. In order to solve the problem on the synthesis of propargylic dithioacetals, we try a new route for this synthesis by the corresponding terminal alkyne via transition-metal catalyzed cross-coupling reactions. During the study of this topic, we have developed palladium-catalyzed cross-coupling reactions of alkynyl nucleophiles and alkyl halides. In the presence of palladium catalyst and triphenylphosphine, alkynyl Grignards or alkynyllithiums could successfully couple with alkyl bromides and iodides. Aryl-substituted propargylic dithioacetals could also be obtained by this strategy. However, alkyl-substituted propargylic dithioacetals could be synthesized by the displacement reaction of the corresponding terminal alkynes with alkyl iodides. The last part is concerning the new application of dialkyl-substituted propargylic dithioacetals. The beta-thioalkoxyalcohols could be obtained in good yields by the reaction of dialkyl-substituted propargylic dithioacetals with a series of carbonyl compounds. The carbon-sulfur bond of beta-thioalkoxyalcohol can be activated in the presence of iron salt and Grignard reagent. The active intermediate is found to undergo beta-OMgI elimination and give the corresponding enyne. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:11:32Z (GMT). No. of bitstreams: 1 ntu-96-F91223023-1.pdf: 7857557 bytes, checksum: 6465e82098bcbec1c6e32fe8f60126bf (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 主目錄
口試委員會審定書 謝誌 I 中文摘要 III 英文摘要 IV 章節目錄 V 表目錄 VI 圖目錄 VII 附錄 VII 縮寫對照表 VIII 第一章 緒論 1 1.1 前言 1 1.2 簡單的烷基親電基偶合反應 2 1.3 螯合效應參與的烷基親電基偶合反應 4 1.4 推電子配基參與的烷基親電基偶合反應 6 1.5 烯類添加物參與的烷基親電基偶合反應 8 1.6 鎳催化硫縮醛與格林那試劑的烯化反應 9 1.7 炔丙基硫縮酮的合成 11 1.8 雙烷基取代炔丙基硫縮酮的應用 13 第二章 鎳催化格林那試劑與脂肪族硫縮醛 (酮) 的烯化反應 15 2.1 背景資料 15 2.2 結果與討論 19 2.3 結論 25 第三章 建構具有sp-sp2和sp-sp3混成的碳-碳鍵 26 3.1 炔基親核基與一級鹵烷的Kumada-Corriu偶合反應 26 3.1.1背景資料 26 3.1.2結果與討論 32 3.1.3 結論 44 3.2 炔丙基硫縮酮的合成方法 45 3.2.1 結果與討論 45 3.2.2 結論 53 第四章 Fe(acac)3推動β-硫烷氧基醇的消去反應:炔丙基硫縮酮與羰基化合物的烯化反應 55 4.1 背景資料 55 4.2 結果與討論 57 4.3 結論 74 第五章 總結與展望 75 第六章 實驗部份 77 第七章 參考文獻 179 附錄 192 I 著作目錄 193 II 新化合物之1H NMR 光譜 194 表目錄 表 2-1 鎳觸媒與不同磷配基催化硫縮醛38a 與甲基格林納試劑的烯化反應 20 表 2-2Ni(acac)2/三烷基磷催化脂肪族硫縮醛37b-g 與格林那試劑的烯化反應 23 表 3-1不同條件下鈀催化苯基乙炔基格林納試劑66 與正辛基溴的偶合反應 35 表 3-2Pd2(dba)3/PPh3 催化苯基或三甲基矽基乙炔基格林納試劑與鹵烷的偶合反應 37 表 3-3 Pd2(dba)3/PPh3 催化乙炔基鋰與鹵烷的偶合反應 39 表 3-4 由炔丙基酮63 合成末端炔65 的一鍋反應 47 表 3-5 Pd2(dba)3/PPh3 催化炔基格林那試劑與碘苯的偶合反應 48 表 3-6 炔基鋰試劑65a’’和甲基碘取代反應的研究 51 表 3-7 烷基取代的炔丙基硫縮酮衍生物86 的合成:末端炔65 和碘烷的取代反應 52 表 4-1 以不同親電子試劑焠息有機鋰中間體97 的反應 59 表 4-2 不同條件下Fe(acac)3催化高炔丙基醇95a 與甲基格林納試劑的反應 64 表 4-3 鎳觸媒參與高炔丙基醇95a 與甲基格林那試劑的消去反應 65 表 4-4 由炔丙基硫縮酮合成β-硫烷氧基醇95 67 表 4-5 Fe(acac)3 推動β-硫烷氧基醇95 的消去反應:烯炔衍生物105 的合 成 68 表 4-6 Fe(acac)3 推動β-硫烷氧基醇108 的消去反應 70 圖目錄 圖 1-1 過渡金屬催化烷基親電子試劑的推測反應機構 2 圖 2-1 鎳催化硫縮醛與格林那試劑烯化反應的反應機構 18 圖 4-1 Fe(acac)3 推動β-硫烷氧基醇消去反應的反應機構 72 附錄 附錄 192 附錄I 著作目錄 193 附錄II 新化合物之1H NMR 光譜 194 | |
dc.language.iso | zh-TW | |
dc.title | 硫縮醛 (酮) 的新形態合成方法與反應 | zh_TW |
dc.title | New Synthetic Methods and Reactions Involved the Dithioacetal Functionality | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡蘊明,汪根欉,葉名倉,羅芬臺 | |
dc.subject.keyword | 硫縮酮,三烷基磷配基,炔丙基硫縮酮,beta-硫烷氧基醇,烯炔, | zh_TW |
dc.subject.keyword | dithioacetal,trialkylphosphine,propargylic dithioacetal,beta-thioalkoxyalcohol,enyne, | en |
dc.relation.page | 191 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-10-09 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。