Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27582
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成,朱錦洲
dc.contributor.authorChien-Fu Chenen
dc.contributor.author陳建甫zh_TW
dc.date.accessioned2021-06-12T18:10:44Z-
dc.date.available2007-11-15
dc.date.copyright2007-11-15
dc.date.issued2007
dc.date.submitted2007-10-19
dc.identifier.citation1 L. M. Lazar, P. Trisiripisal and H. A. Sarvaiya, “Microfluidic Liquid Chromatography System for Proteomic Applications and Biomarker Screening”, Anal. Chem., 2006, 78, 5513-5524.
2 J. E. MacNair, K. C. Lewis and J. W. Jorgenson, “Ultrahigh-Pressure Reversed-Phase Liquid Chromatography in Packed Capillary Columns”, Anal. Chem., 1997, 69, 983-989.
3 J. Xie, Y. N. Miao, J. Shih, Y. C. Tai and T. D. Lee, “Microfluidic Platform for Liquid Chromatography-Tandem Mass Spectrometry Analyses of Complex Peptide Mixtures”, Anal. Chem., 2005, 77, 6947–6953.
4 M. Sakata, M. Nakayama, T. Fujisaki, S. Morimura, M. Kunitake and C. Hirayama, “Chromatographic Removal of Host Cell DNA from Cellular Products Using Columns Packed with Cationic Copolymer Beads“, Chromatographia, 2005, 62, 465-470.
5 M. C. Xu, D. S. Peterson, T. Rohr, F. Svec, and J. M. Frechet, “Polar Polymeric Stationary Phases for Normal-Phase HPLC Based on Monodisperse Macroporous Poly(2,3-Dihydroxypropyl Methacrylate-co-Ethylene Dimethacrylate) Beads”, Anal. Chem., 2003, 75, 1011-1021.
6 K. Hosoya, N. Hira, K. Yamamoto, M. Nishimura and N. Tanaka, “High Performance Polymer-Based Monolithic Capillary Column”, Anal. Chem., 2006, 78, 5729-5735.
7 Q. Luo, J. S. Page, K. Tang and R. D. Smith, “MicroSPE-nanoLC-ESI-MS/MS Using 10-μm-i.d. Silica-Based Monolithic Columns for Proteomics”, Anal. Chem., 2007, 79, 540-545.
8 Y. Yang, C. Li, J. Kameoka, K. H. Lee and H. G. Craighead, “A Polymeric Microchip with Integrated Tips and In Situ Polymerized Monolith for Electrospray Mass Spectrometry”, Lab Chip, 2005, 5, 869-876.
9 S. Le Gac, C. Cren-Olive´, C. Rolando, J. Carlier and J. C. Camart, “Monoliths for Microfluidic Devices in Proteomics”, J. Chromatogr. B, 2004, 808, 3–14.
10 Y. Fan, M. Zhang, S. L. Da and Y. Q. Feng, “Determination of Endocrine Disruptors in Environmental Waters Using Poly(acrylamide-vinylpyridine) Monolithic Capillary for in-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence Detection”, Analyst, 2005, 130, 1065-1069.
11 L. Rieux, D. Lubda, H. A. G. Niederlander, E. Verpoorte and R. Bischoff, “Fast, High-Efficiency Peptide Separations on a 50-µm reversed-phase silica monolith in a nanoLC-MS set-up”, J. Chromatogr. A, 2006, 1120, 165-172.
12 D. A. Wolters, M. P. Washburn, and J. R. Yates III, “An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics”, Anal. Chem. 2001, 73, 5683-5690.
13 A. E. Kamholz, “Proliferation of Microfluidics in Literature and Intellectual Property”, Lab Chip, 2004, 4, 16N-20N.
14 A. J. de Mello and N. Beard, “Dealing with 'Real' Samples: Sample Pre-Treatment in Microfluidic Systems”, Lab Chip, 2003, 3, 11N-19N.
15 E. T. Lagally, C. A. Emrich and R. A. Mathies, “Fully Integrated PCR-Capillary Electrophoresis Microsystem for DNA Analysis”, Lab Chip, 2001, 1, 102-107.
16 A. T. Wooley, D. Hadley, P. Landre, A. J. de Mello, R. A. Mathies and M. A. Northrup, “Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device”, Anal. Chem., 1996, 23, 4081-4086.
17 R. Karlsson, et al., “Kinetic Analysis of Monoclonal Antibody-Antigen Interactions with a New Biosensor Based Analytical System”, J. Immuno. Methods, 1991, 145, 229–240.
18 D. C. Duffy, J. C. McDonald, O. J. A. Schueller and G. M. Whitesides, “Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane)”, Anal. Chem., 1998, 70(23), 4974–4984.
19 D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss and B. H. Jo, “Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic Channels”, Nature, 2000, 404(6778), 588–590.
20 M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography”, Science, 2000, 288(5463), 113–116.
21 D. R. Reyes, D. Iossifidis, P. Auroux, and A. Manz, “Micro Total Analysis Systems. 1. Introduction, Theory, and Technology”, Anal. Chem., 2002, 74(12), 2623–2636.
22 D. S. Reichmuth, T. J. Shepodd and B. J. Kirby, “Microchip HPLC of Peptides and Proteins”, Anal. Chem., 2005, 77, 2997-3000.
23 J. J. Liu, H. F. Li and J. M. Lin, “Measurements of Surface Tension of Organic Solvents Using a Simple Microfabricated Chip”, Anal. Chem., 2007, 79, 371-377.
24 D. Figeys and R. Aebersold, “Nanoflow Solvent Gradient Delivery from a Microfabricated Device for Protein Identifications by Electrospray Ionization Mass Spectrometry”, Anal. Chem., 1998, 70, 3721-3727.
25 B. He, N. Tait and F. Regnier, “Fabrication of Nanocolumns for Liquid Chromatography”, Anal. Chem., 1998, 70, 3790-3797.
26 K. W. Ro, J. Liu and D. R. Knapp, “Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns”, J. Chromatogr. A, 2006, 1111, 40-47.
27 M. A. Roberts, J. S. Rossier, P. Bercier and H. Girault, “UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems”, Anal. Chem., 1997, 69, 2035-2042.
28 H. Klank, J. P. Kutter, O. Geschke, “CO2-Laser Micromachining and Back-End Processing for Rapid Production of PMMA-Based Microfluidic Systems”, Lab Chip, 2002, 2, 242-246.
29 Y. Sun, Y. C. Kwok, N. T. Nguyen, “Low-Pressure, High-Temperature Thermal Bonding of Polymeric Microfluidic Devices and Their Applications for Electrophoretic Separation”, J. Micromech. Microeng., 2006, 16, 1681-1688.
30 N. S. Cameron, H. Roberge, T. Veres, S. C. Jakeway and H. J. Crabtree, “High Fidelity, High Yield Production of Microfluidic Devices by Hot Embossing Lithography: Rheology and Stiction”, Lab Chip, 2006, 6, 936-941.
31 L. Brown, T. Koerner, J. H. Horton and R. D. Oleschuk, “Fabrication and Characterization of Poly(methylmethacrylate) Microfluidic Devices Bonded Using Surface Modification and Solvents”, Lab Chip, 2006, 6, 66-73.
32 R. D. Chien, “Micromolding of Biochip Devices Designed with Microchannels”, Sens. Actuatuators, A, 2006, 128, 238-247.
33 J. Wang, M. Pumera, M. P. Chatrathi, A. Escarpa, R. Konrad, A. Griebel, W. Dorner and H. Lowe, “Towards Disposable Lab-on-a-Chip: Poly(methylmethacrylate) Microchip Electrophoresis Device with Electrochemical Detection”, Electrophoresis, 2002, 23, 596-601.
34 R. Lin and M. A. Burns, “Surface-Modified Polyolefin Microfluidic Devices for Liquid Handling”, J. Micromech. Microeng. 2005, 15, 2156-2162.
35 Y. N. Xia and G. M. Whitesides, “Soft Lithography”, Annu. Rev. Mater. Sci., 1998, 28, 153-184.
36 S. K. Sia and G. M. Whitesides, “Advantages of Using PDMS for Miniaturized Bioassays”, Electrophoresis, 2003, 24, 3563-3576.
37 J. C. McDonald and G. M. Whitesides,”Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices”, Acc. Chem. Res. 2002, 35, 491–499.
38 M. Heckele and W. K. Schomburg, “Review on Micro Molding of Thermoplastic Polymers”, J. Micromech. Microeng., 2004, 14, R1-R14.
39 D. S. Lee, H. Yang, K. H. Chung and H. B. Pyo, “Wafer-Scale Fabrication of Polymer-Based Microdevices Via Injection Molding and Photolithographic Micropatterning Protocols”, Anal. Chem., 2005, 77, 5414-5420.
40 F. Dang, S. Shinohara, O. Tabata, Y. Yamaoka, M. Kurokawa, Y. Shinohara, M. Ishikawa and Y. Baba, “Replica Multichannel Polymer Chips with a Network of Sacrificial Channels Sealed by Adhesive Printing Method”, Lab Chip, 2005, 5, 472-478.
41 H. Kawazumi, A. Tashiro, K. Ogino and H. Maeda, “Observation of Fluidic Behavior in a Polymethylmethacrylate-Fabricated Microchannel by a Simple Spectroscopic analysis”, Lab Chip, 2002, 2, 8-10.
42 S. Y. Lai, X. Cao and L. J. Lee, “A Packaging Technique for Polymer Microfluidic Platforms”, Anal. Chem. 2004, 76, 1175-1183.
43 P. C. Brister and K. D. Weston, “Patterned Solvent Delivery and Etching for the Fabrication of Plastic Microfluidic Devices”, Anal. Chem., 2005, 77, 7478-7482.
44 R. H. Liu, N. J. Yang, R. Lenigk, J. Bonanno and P. Grodzinski, “Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection”, Anal. Chem., 2004, 76, 1824-1831.
45 L. G. Song, D. F. Fang, R. K. Kobos, S. J. Pace and B. Chu, “Separation of dsDNA Fragments in Plastic Capillary Electrophoresis Chips by Using E99P69E99 as Separation Medium”, Electrophoresis, 1999, 20, 2847-2855.
46 G. X. Xu, J. Wang, Y. Chen, L. Y. Zhang, D. R. Wang and G. Chen, “Fabrication of Poly(methyl methacrylate) Capillary Electrophoresis Microchips by In Situ Surface Polymerization”, Lab Chip, 2006, 6, 145-148.
47 G. Chen, J. H. Li, S. Qu, D. Chen and P. Y. Yang, “Low Temperature Bonding of Poly(methylmethacrylate) Electrophoresis Microchips by In Situ Polymerisation”, J. Chromatogr. A, 2005, 1094, 138-147.
48 L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen and W. A. MacCrehan, “Fabrication of Plastic Microfluid Channels by Imprinting Methods”, Anal. Chem. 1997, 69, 4783-4789.
49 J. J. Shah, J. Geist, L. E. Locascio, M. Gaitan, M. V. Rao and W. N. Vreeland, “Capillarity Induced Solvent-Actuated Bonding of Polymeric Microfluidic Devices”, Anal. Chem., 2006, 78, 3348-3353.
50 R. T. Kelly, T. Pan and A. T. Woolley, “Phase-Changing Sacrificial Materials for Solvent Bonding of High-Performance Polymeric Capillary Electrophoresis Microchips”, Anal. Chem., 2005, 77, 3536-3541.
51 Y. J. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski and N. Kroutchinina, “Microfabricated Polycarbonate CE Devices for DNA Analysis”, Anal. Chem., 2001, 73, 4196-4201.
52 D. A. Mair, M. Rolandi, M. Snauko, R. Noroski, F. Svec and J. M. J. Frechet, “Room-Temperature Bonding for Plastic High-Pressure Microfluidic Chips”, Anal. Chem., 2007, 79, 5097-5102.
53 X. M. Zhou, Z. P. Dai, X. Liu, Y. Luo, H. Wang and B. C. Lin, “Modification of a Poly(Methyl Methacrylate) Injection-Molded Microchip and its Use for High Performance Analysis of DNA”, J. Sep. Sci., 2005, 28, 225-233.
54 C. K. Fredrickson and Z. H. Fan, “Macro-to-Micro Interfaces for Microfluidic Devices”, Lab Chip, 2004, 4, 526-533.
55 T. Vilkner, D. Janasek and A. Manz, “Micro Total Analysis Systems. Recent Developments”, Anal. Chem., 2004, 76, 3373-3386.
56 P. Abgrall and A. M. Gue, “Lab-on-Chip Technologies: Making a Microfluidic Network and Coupling it into a Complete Microsystem—a Review”, J. Micromech. Microeng., 2007, 17, R15-R49.
57 P. S. Dittrich, K. Tachikawa and A. Manz, “Micro Total Analysis Systems. Latest Advancements and Trends”, Anal. Chem., 2006, 78, 3387-3907.
58 T. D. Boone, Z. H. Fan, H. H. Hooper, A. J. Ricco, H. Tan and S. J. Williams,” Plastic Advances Microfluidic Devices”, Anal. Chem., 2002, 74, 78A–86A.
59 D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser and A. Manz,” Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip”, Science, 1993, 261, 895–897.
60 S. A. Soper, S. M. Ford, S. Qi, R. L. McCarley, K. Kelly and M. C. Murphy, “Fabricated in Polymeric Materials: Applications in Chemistry and Life Sciences”, Anal. Chem., 2000, 72, 642A–651A.
61 A. E. Herr, J. I. Molho, K. A. Drouvalakis, J. C. Mikkelsen, P. J. Utz, J. G. Santiago and T. W. Kenny, “On-Chip Coupling of Isoelectric Focusing and Free Solution Electrophoresis for Multi-Dimensional Separations”, Anal. Chem., 2003, 75, 1180–1187.
62 W. Tan, Z. H. Fan, C. X. Qiu, A. J. Ricco and I. Gibbons, “Miniaturized capillary isoelectric focusing in plastic microfluidic devices”, Electrophoresis, 2002, 23, 3638–3645.
63 E. A. Schilling, A. E. Kamholz and P. Yager, “Cell Lysis and Protein Extraction in a Microfluidic Device with Detection by a Fluorogenic Enzyme Assay”, Anal. Chem., 2002, 74, 1798–1804.
64 Q. Xue, A. Wainright, S. Gangakhedkar and I. Gibbons, “Multiplexed Enzyme Assays in Capillary Electrophoretic Single-Use Microfluidic Devices ”, Electrophoresis, 2001, 22, 4000–4007.
65 A. Puntambekar and C. H. Ahn, “Self-Aligning Microfluidic Interconnects for Glass- and Plastic-Based Microfluidic Systems”, J. Micromech. Microeng., 2002, 12, 35-40.
66 C. H. Chiou and G. B. Lee, “Minimal Dead-Volume Connectors for Microfluidics Using PDMS Casting Techniques”, J. Micromech. Microeng., 2004, 14, 1484-1490.
67 M. Brivio, R. E. Oosterbroek, W. Verboom, A. van den Berg and D. N. Reinhoudt, “Simple Chip-Based Interfaces for On-Line Monitoring of Supramolecular Interactions by Nano-ESI MS”, Lab Chip, 2005, 5, 1111-1122.
68 A. Tan, S. Benetton and J. D. Henion, “Chip-Based Solid-Phase Extraction Pretreatment for Direct Electrospray Mass Spectrometry Analysis Using an Array of Monolithic Columns in a Polymeric Substrate”, Anal. Chem., 2003, 75, 5504-5511.
69 V. Nittis, R. Fortt, C. H. Legge and A. J. de Mello, “A High-Pressure Interconnect for Chemical Microsystem Applications”, Lab Chip, 2001, 1, 148-152.
70 H. Yin, K. Killeen, R. Brennen, D. Sobek, M. Werlich and T. van de Goor, “Microfluidic Chip for Peptide Analysis with an Integrated HPLC Column, Sample Enrichment Column, and Nanoelectrospray Tip”, Anal. Chem, 2005, 77, 527-533.
71 D. A. Mair, E. Geiger, A. P. Pisano, J. M. J. Frechet and F. Svec, “Injection Molded Microfluidic Chips Featuring Integrated Interconnects”, Lab Chip, 2006, 6, 1346-1354.
72 K. W. Oh, C. Park, K. Namkoong, J. Kim, K. S. Ock, S. Kim, Y. A. Kim, Y. K. Cho and C. Ko, “World-to-Chip Microfluidic Interface with Built-in Valves for Multichamber Chip-Based PCR Assays”, Lab Chip, 2005, 5, 845-850.
73 Z. Yang and R. Maeda, “Socket with Built-in Valves for the Interconnection of Microfluidic Chips to Macro Constituents”, J. Chromatogr. A, 2003, 1013, 29-33.
74 D. A. LaVan, D. M. Lynn and R. Langer, “Moving Smaller in Drug Discovery and Delivery”, Nat. Rev. Drug Discov., 2002, 1, 77–84.
75 W. M. Saltzman, “Drug Delivery: Engineering Principles for Drug Delivery”, 2001, (London: Oxford)
76 R. F. Service, “Coming Soon: the Pocket DNA Sequencer”, Science, 1998, 282, 399–401.
77 M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, “An Integrated Nanoliter DNA Analysis Device”, Science, 1998, 282, 484–487.
78 S. K. Mazumder, K. Acharya, C. L. Haynes, R. Williams Jr., M. R. V. Spakovsky, D. J. Nelson, D. F. Rancruel, J. Hartvigsen and R. S. Gemmen, “Solid-Oxide-Fuel-Cell Performance and Durability: Resolution of the Effects of Power-conditioning Systems and Application Loads”, IEEE Trans. Power Electron., 2004, 19, 1263–1278.
79 S. V. Karnik, M. K. Hatalis and M. V. Kothare, “Towards a Palladium Micro-Membrane for the Water Gas Shift Reaction: Microfabrication Approach and Hydrogen Purification Results”, J. Microelectromech. Syst., 2003, 12, 93–100.
80 D. E. Hertzog, B. Ivorra, B. Mohammadi, O. Bakajin, and J. G. Santiago, “Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics”, Anal. Chem., 2006, 78, 4299-4306.
81 D. J. Wilson and L. Konermann, “A Capillary Mixer with Adjustable Reaction Chamber Volume for Millisecond Time-Resolved Studies by Electrospray Mass Spectrometry”, Anal. Chem., 2003, 75, 6408-6414.
82 D. S. Kim, S. H. Lee, C. H. Ahn, J. Y. Lee and T. H. Kwon, “Disposable integrated microfluidic biochip for blood typing by plastic microinjection moilding. Lab Chip, 2006, 6, 794-802.
83 D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding”, Anal. Chem., 2004, 76 , 7169 -7178.
84 B. Ivorra1, D. E. Hertzog, B. Mohammadi and J. G. Santiago, “Semi-Deterministic and Genetic Algorithms for Global Optimization of Microfluidic Protein-Folding Devices”, Int. J. Numer. Meth. Engng., 2006, 66, 319–333.
85 A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic and H. A. Stone, “Chaotic Mixer for Microchannels”, Science, 2002, 295, 647–651.
86 A. D. Stroock, S. K. W. Dertinger, G. M. Whitesides and A. Ajdari, “Patterning Flows Using Grooved Surfaces”, Anal. Chem., 2002, 74, 5306–5312.
87 A. D. Stroock and G. M. Whitesides, “Controlling Flows in Microchannels with Patterned Surface Charge and Topography”, Acc. Chem. Res., 2003, 36, 597–604.
88 H. A. Stone, A. D. Stroock and A. Ajdari, “Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip”, Annu. Rev. Fluid Mech., 2004, 36, 381–411.
89 M. Koch, D. Chatelain, A. G. R. Evans and A. Brunnschweiler, “Two Simple Micromixers Based on Silicon”, J. Micromech. Microeng., 1998, 8, 123–126.
90 J. Voldman, M. L. Gray and M. A. Schmidt, “An Integrated Liquid Mixer/Valve”, J. Microelectromech. Syst., 2000, 9, 295–302.
91 C. Simonnet and A. Groisman, “Chaotic Mixing in a Steady Flow in a Microchannel”, Phys. Rev. Lett., 2005, 94, 134501.
92 T. Rohr, C. Yu, M. H. Davey, F. Svec and J. M. J. Frechet, “Porous Polymer Monoliths: Simple and Efficient Mixers Prepared by Direct Polymerization in the Channels of Microfluidic Chips”, Electrophoresis, 2001, 22, 3959-3967.
93 V. Mengeaud, J. Josserand and H. H. Girault, “Mixing Processes in a Zigzag Microchannel:Finite Element Simulations and Optical Study”, Anal. Chem. 2002, 74, 4279-4286.
94 C. F. Chen, C. F. Kung, H. C. Chen, C. C. Chu, C. C. Chang and F. G. Tzeng, “A Microfluidic Nanoliter Mixer with Optimized Grooved Structures Driven by Capillary Pumping”, J. Micromech. Microeng., 2006, 16, 1358-1365.
95 K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan and C. Liu, “Micro Magnetic Stir-Bar Mixer Integrated with Parylene Microfluidic Channels”, Lab Chip, 2004, 4, 608–613.
96 S. M. Shin, I. S. Kang and Y. K. Cho, “Mixing Enhancement by Using Electrokinetic Instability under Time-Periodic Electric Field”, J. Micromech. Microeng., 2005, 15, 455-462.
97 N. Sasaki, T. Kitamori and H. B. Kim, “AC Electroosmotic Micromixer for Chemical Processing in a Microchannel”, Lab Chip, 2006, 6 ,550–554.
98 T. B. Stachowiak, T. Rohr, E. F. Hilder, D. S. Peterson, M. Yi, F. Svec and J. M. J. Frechet, “Fabrication of Porous Polymer Monoliths Covalently Attached to the Walls of Channels in Plastic Microdevices”, Electrophoresis, 2003, 24, 3689-3693.
99 T. Rohr, D. F. Ogletree, F. Svec and J. M. J. Frechet, ”Surface Functionalization of Thermoplastic Polymers for the Fabrication of Microfluidic Devices by Photoinitiated Grafting”, Adv. Funct. Mater., 2003, 13, 264–270.
100 L. Geiser, S. Eeltink, F. Svec and J. M. J. Frechet, “Stability and Repeatability of Capillary Columns Based on Porous Monoliths of Poly(Butyl Methacrylate-co-Ethylene Dimethacrylate)”, J. Chromatogr. A, 2007, 1140, 140-146.
101 P. Coufal, M. Cihak, J. Suchankova, E. Tesarova, Z. Bosakova and K. Stulik, “Methacrylate Monolithic Columns of 320 mm I.D. for Capillary Liquid Chromatography”, J. Chromatogr. A, 2002, 946, 99-106.
102 X. Shu, L. Chen, B. Yang and Y. Guan, “Preparation and Characterization of Long Methacrylate Monolithic Column for Capillary Liquid Chromatography”, J. Chromatogr. A, 2004, 1052, 205-209.
103 J. Grafnettera, P. Coufal, E. Tesarova, J. Suchankova, Z. Bosakova and J. Sevcik, “Optimization of Binary Porogen Solvent Composition for Preparation of Butyl Methacrylate Monoliths in Capillary Liquid Chromatography”, J. Chromatogr. A, 2004, 1049, 43-49.
104 L. S. Ettre and K. I. Sakodynskii, “M. S. Tswett and the discovery of chromatography I: Early work (1899–1903)”, Chromatographia, 1993, 35, 223-231.
105 M. T. Saltzman, “High Performance Liquid Chromatography”, 1987, (Wright)
106 L. R. Snyder and J. W. Dolan, “High-Performance Gradient Elution The practical Application of the Linear-Solvent-Strength Model”, 2007, (Wiley Inter-Science)
107 L. S. Ettre and K. I. Sakodynskii, “M. S. Tswett and the discovery of chromatography II: Completion of the development of chromatography (1903–1910)”, Chromatographia, 1993, 35, 329-338.
108 A. M. SiouffiFrom, “Paper to Planar: 60 Years of Thin Layer Chromatography”, Sep. Purif. Rev. , 2005, 34, 155-180.
109 V. P. Pakhomov, “Chromatography in Pharmaceutical Chemistry (100 Years of the Discovery of Chromatography by M. S. Tswett)”, Pharm. Chem. J., 2003 , 37, 451-452.
110 L. S. Ettre, “Nomenclature for Chromatography”, Pure & Appl. Chem., 1993, 65, 819-872.
111 J. J. van Deemter, F. J. Zuiderweg and A. Klinkenberg, “Longitudinal diffusion and resistance to mass transfer as causes of non ideality in chromatography”, Chem. Eng. Sc., 1956, 5, 271–289.
112 D. E. Kataoka and S. M. Troian, “Patterning Liquid Flow on the Microscopic Scale”, Nature, 1999, 402, 794–797.
113 K. S. Yun, I. J. Cho, J. U. Bu, C. J. Kim and E. Yoon, “A Surface-Tension Driven Micropump for Low-Voltage and Low-Power Operations”, J. Microelectromech. Syst., 2002, 11, 454–461.
114 M. Washizu, “Electrostatic Actuation of Liquid Droplets for Microreactor Application”, IEEE Trans. Ind., 1998, 34, 732–737.
115 W. S. N. Trimmer, “Microrobots and Micromechanical Systems”, Sensors Actuators, 1989, 19, 267–287.
116 H. J. Cho and C. H. Ahn, “A Bidirectional Magnetic Microactuator Using Electroplated Permanent Magnet Arrays”, J. Microelectromech. Syst., 2002, 11, 78–84.
117 B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah and N. L. Abbott, “Electrochemical Principles for Active Control of Liquids on Submillimeter Scales”, Science, 1999, 283, 57–60.
118 B. Zhao, J. S. Moore and D. J. Beebe, “Surface-Directed Liquid Flow inside Microchannels”, Science, 2001, 291, 1023–1026.
119 C. C. Chu, L. Y. Yao, C. C. Chang, S. C. Kuo and F. G. Tseng, “Surface Tension Driven Flow inside Top-Bottom Constrained Microchannels”, Bull. Am. Phys. Soc., 2000, 45, 186.
120 C. F. Chen, S. C. Kuo, C. C. Chu and F. G. Tseng, “A Power-Free Liquid Driven Method for Micro Mixing Application”, Proc. IEEE MEMS Conf. (Kyoto, Japan), 2003, 100–103.
121 S. Bouaidat, O. Hansen, H. Bruus, C. Berendsen, N. K. Bau-Madsen, P. Thomsen, A. Wolff and J. Jonsmann, “Surface-Directed Capillary System: Theory, Experiments and Applications”, Lab Chip, 2005, 5, 827–836.
122 A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach and C. J. Seliskar, ”The Autofluorescence of Plastic Materials and Chips Measured under Laser Irradiation”, Lab Chip, 2005, 5, 1348–1354.
123 P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons and B. J. Kirby, “The Zeta Potential of Cyclo-Olefin Polymer Microchannels and its Effects on Insulative (Electrodeless) Dielectrophoresis Particle Trapping Devices”, Electrophoresis, 2005, 26, 1792–1799.
124 Y. N. Yang, C. Li, K. H. Lee and H. G. Craighead, “Coupling on-Chip Solid-Phase Extraction to Electrospray Mass Spectrometry through an Integrated Electrospray Tip”, Electrophoresis, 2005, 26, 3622–3630.
125 J. Kameoka, H. G. Craighead, H. W. Zhang and J. Henion, “A Polymeric Microfludic Chip for CE/MS Determination of Small Molecules”, Anal. Chem., 2001, 73, 1935–1941.
126 W. Ehrfeld, V. Hessel, H. Lowe, C. Schulz and L. Weber, “Materials of LIGA technology”, Microsyst. Technol., 1999, 5, 105–112.
127 J. Gaudioso and H. G. Craighead, “Characterizing Electroosmotic Flow in Microfluidic Devices”, J. Chromatogr., A, 2002, 971, 249–253.
128 C. Li, Y. N. Yang, H. G. Craighead and K. H. Lee, “Kinetic Characterization of Sequencing Grade Modified Trypsin”, Electrophoresis, 2005, 26, 1800–1806.
129 Y. Yang, J. Kameoka, T. Wachs, J. D. Henion and H. G. Craighead, “Quantitative Mass Spectrometric Determination of Methylphenidate Concentration in Urine Using an Electrospray Ionization Source Integrated with a Polymer Microchip”, Anal. Chem., 2004, 76, 2568–2574.
130 I. Gusev, X. Huang and C. Horvath, ” Capillary Columns with In Situ Formed Porous Monolithic Packing for Micro High-Performance Liquid Chromatography and Capillary Electrochromatography”, J. Chromatogr., A, 1999, 855, 273–290.
131 D. Nilsson, S. Balslev and A. Kristensen, ”A Microfluidic Dye Laser Fabricated by Nanoimprint Lithography in a Highly Transparent and Chemically Resistant Cyclo-Olefin Copolymer (COC)”, J. Micromech. Microeng., 2005, 15, 296–300.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27582-
dc.description.abstract一種新式的以塑膠基底之高效能液相層積法(HPLC)技術元件,應用在蛋白質及縮氨酸之分離在這篇論文中被提出。這個以環烯烴聚合物(COC)為基底之元件包含兩個注入不同濃度洗滌液以產生梯度變化之流道,兩個為了注入蛋白質或是縮氨酸混合測試計與排放其廢液之微流道,在這四個流道之交接處並以一個”雙T字”結構之定量注入裝置連接一個分離用之迴旋流道。
這個元件結合了四個埋入在四個注入流道末端之不鏽鋼針型之介面裝置,以連接程式控制化之注射幫浦以及高阻抗壓力之閥門去控制待測樣品之注入以及洗滌分離。流道之成型是利用熱壓印之方式製造出元件內各部分之幾何結構設定,並利用環己烷在室溫下利用溶劑接合之方式達到接合之目的,這種接合方式有別於需要犧牲層或是其他複雜之製造步驟,可以避免產生污染或是降低元件製造之良率。
針型介面裝置是埋入在預先設定之適當大小儲水區域之中,再經由退火之步驟以消除其殘留應力與剪應力。針型介面裝置可以連接商業化之連接元件,進而達到簡單地與玻璃毛細管、幫浦與閥門相連接之功能。在承受壓力測試中得知,此針型介面裝置可以承受到達24.8Mpa之壓力,也就是相當於244.76大氣壓之壓力,而沒有任何裂痕產生破壞此元件。
製造元件完成之後,經由紫外光激發化學試劑反應在微流道表面,接著用光聚合的方式生成多孔之聚甲基丙烯酸丁酯-交鏈劑二甲基丙烯酸酯之多孔性整體式聚合物,隨著梯度洗滌之方式而達到蛋白質與縮氨酸分離之目的。
梯度洗滌是由同時注入低與高濃度之有機溶劑,在控制不同注入速度下經由在兩種溶劑交會處之奈升等級之溝槽結構微混合器混合所達成。
初步的分離測試展示在三十分鐘內,元件便可以將蛋白質與縮氨酸之混合劑達到良好之分離結果。這個聚合物基底之元件可以連續操作五天並且沒有任何分層或是裂痕等毀壞之現象產生。
zh_TW
dc.description.abstractA novel technique of polymer-based monolithic high performance liquid chromatography (HPLC) is proposed for peptides and proteins separation on chip. The cyclic olefin copolymer (COC) chip consists of the two injection channels for gradient elution delivery, two injection channels for sample injection and waste, and one spiral separation channel regulated with “double-T” cross-injector. This device is integrated with 4 embedded needles at reservoirs which are located at the end of injection channel for connecting programmable syringe pumps and shut-off valves to control sample injection and elution. After hot-embossed process to imprint channel geometric pattern, the chip is bonded by cyclohexane at room temperature without sacrificial material or other complicated processes which may cause contaminate or decrease yield production. The needles are inserted in suitable size reservoirs followed with annealing to eliminate residual stress and shear stress. The needle interface could connect with union which is easy to integrate with capillary, pump and valve. It could withstand of pressure as high as 24.8Mpa (244.76 atm) without crack observed on the chip. The UV-initiated grafting COC microfluidic chips followed by polymerization of porous poly(butyl methacrylate-co-ethylene dimethacrylate) monolith has achieved protein and peptide separation with gradient eluting. The gradient is generated by simultaneously injecting low and high concentration organic solvents with different injection velocities through a nanoliter mixer with optimized grooved structures located at the converging of 2 injection channels. Preliminary separation tests show that peptide and protein mixtures were well separated in 30mins. The polymer-based chip could operate 5 days for continuous separation test without delamination or cracks.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:10:44Z (GMT). No. of bitstreams: 1
ntu-96-D91543012-1.pdf: 12360534 bytes, checksum: 7cad055ff9531fe48b9923af300bb6a2 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents致謝
中文摘要
Abstract
論文結構大綱
第一章 導論 1
1.1. 概論 1
1.2. 幾合結構製程技術 7
1.3. 熱塑性元件接合技術 10
1.4. 介面裝置 13
1.5. 微液體混合器 16
1.6. 微流道中之多孔性整體式聚合物 18
第二章 理論基礎 21
2.1. 層析 21
2.2. 解析度與效能在液相層析分離分析 27
2.3. 表面張力幫浦 29
2.4. 藉由不對稱交錯式溝槽結構增進波動動作以及混合效能 34
第三章 設計概念與元件設定 36
3.1. 基底材料選擇 36
3.2. 基底材料特性分析 37
3.3. 表面張力致動式微液體混合器設計 39
3.4. 塑膠化之液相層析蛋白質與縮氨酸分析元件設計 41
第四章 製程步驟與實驗設定 43
4.1. 表面張力致動式奈升級微液體混合器 43
4.2. 熱壓模微影技術 45
4.3. 溶劑接合 46
4.4. 針型介面裝置 48
4.5. 表面處理 49
4.6. 多孔性整體式聚合物 50
4.7. 元件可承受壓力測試 51
第五章 結果與討論 53
5.1. 表面張力致動式奈升級微液體混合器 53
5.1.1. 有無不對稱交錯式凹槽結構之影響 53
5.1.2. 不對稱交錯式凹槽結構對混合效率之控制參數 54
5.2. 熱壓模微影技術 57
5.2.1. 壓模溫度 58
5.2.2. 脫模溫度 59
5.3. 溶劑接合 61
5.3.1. 溶劑暴露接觸在欲接合表面之處理時間 62
5.3.2. 接合時所施加之正向壓力 63
5.3.3. 接合所需要等待聚合鍵在介面交互擴散穩定之時間 64
5.3.4. 附註製程訣竅 64
5.4. 針型介面裝置 66
5.5. 表面處理 70
5.6. 多孔性整體式聚合物 72
5.7. 元件可承受壓力測試 76
5.8. 蛋白質與縮氨酸混合試劑之分離結果 76
5.8.1. 蛋白質混合試劑之分離結果 78
5.8.2. 縮氨酸混合試劑之分離結果 79
第六章 結論與未來展望 81
6.1. 結論 81
6.2. 未來展望 83
參考文獻 86
dc.language.isozh-TW
dc.subject表面張力zh_TW
dc.subject微液體介面裝置zh_TW
dc.subject溶劑接合zh_TW
dc.subject微混合器zh_TW
dc.subject塑膠基底高效能液相層析zh_TW
dc.subject蛋白質與縮氨酸分離zh_TW
dc.subjectprotein and peptide separationen
dc.subjectsolvent bondingen
dc.subjectmicromixeren
dc.subjectworld-to-chip interfaceen
dc.subjectsurface tensionen
dc.subjectplastic-based HPLCen
dc.title塑膠化之液相層析蛋白質與縮氨酸分析元件zh_TW
dc.titlePlastic Monolithic Liquid Chromatography Device for Protein and Peptide Separation with On-Chip Gradient Deliveryen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.advisor-orcid,朱錦洲(chucc@iam.ntu.edu.tw)
dc.contributor.oralexamcommittee楊瑞珍,張家歐,苗君易,陳炯年,林榮信
dc.subject.keyword表面張力,微液體介面裝置,溶劑接合,微混合器,塑膠基底高效能液相層析,蛋白質與縮氨酸分離,zh_TW
dc.subject.keywordsurface tension,world-to-chip interface,solvent bonding,micromixer,plastic-based HPLC,protein and peptide separation,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2007-10-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
12.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved