請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27577完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許文翰(Wen-Han Sheu) | |
| dc.contributor.author | Chin-Long Huang | en |
| dc.contributor.author | 黃金龍 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:10:30Z | - |
| dc.date.available | 2009-11-15 | |
| dc.date.copyright | 2007-11-15 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-10-22 | |
| dc.identifier.citation | 參 考 文 獻
英文部份: Andreev V.P., Dubrovsky S.G., Stepanov Y.V., “Mathematical Modeling of Capillary Electrophoresis in Rectangular Channels”, Journal Microcolumn Separations, pp.443-450, 1997. Andreev V.P., Lisin E.E., “On the Mathematical Model of Capillary Electrophoresis”, Chromatographia, Vol.37, 202-210, 1993. Bean L.P., “Expeimental evidence of a plant meridian system: v. acupunture effect on circumnutation movements of shoots of phaselus vulgaris”, American Journal of Chinese Medicine, Vol.XXV 3-4, pp.253-261, 1997. Beans L.P., Hou T.Z., and Li M.D., “Experimental evidence of a plant meridian system: IV. The effects of acupunture on growth and metabolism of phaselus vulgaris”, American Journal of Chinese Medicine, Vol.XXV 2, pp.135-142, 1997. Becker R.O., et al., “Electrophysiological correlates of acupuncture points and meridians”, Psycho-energytic system, Vol.1, pp.105-112, 1976. Berlin G., “Fluorescont berbering binding as a marker of secretory activity in mast cell”, Int Avergy APPL Immunol, Vol.71 (4), pp.332, 1983. Bharadwaj R., Santiago J.G., Mohammadi B., “Design and optimization of on-chip capillary electrophoresis”, Electrophoresis, Vol.23, pp.2729-2744, 2002. Bhattacharya J., Gropper M.A., and Staub N.C., “Interstitial fluid pressure gradient measured by micropuncture in excised dog lung”, Journal of Apply Physiology, Vol.56, pp.271-277, 1984. Burgreen D., Nakache F.R., “Electrokinetic Flow in Ultrafine Capillary Slits”, Journal Physical Chemistry, 68, pp.1084-1091, 1964. Campbell D.J. and Kernan J.A., “Mast cells in central nervous system”, Nature, Vol.210 (37), pp.756-757, 1966. Campion, D.S., “Resting membrane potential and ionic distribution in fats- and slow- twitch mammalian muscle”, The Journal of Clinical Investigation, Vol.54, pp.514-518, 1974. CFD Research Corp., CFDRC User Manual, 2003. Cohen D., Palti Y., Cuffin B.N., Schmid S.J., “Magnetic fields produced by steady currents in the body”, Proceedings-National Academy of Sciences USA, Vol.77, pp1447-1451, 1980. De Verneioul P. etal., “Acupuncture et anaesthesiereanimation”, Juin, Vol.9, 1984. Dumitrescu I.F. et al., “Contribution to the electrophysiology of the active points”, International Acupuncture Conference (Bucharest), pp.20, 1977. Dutta P., Beskok A., Warburton T.C., “Numerical Simulation of Mixed Electroosmotic/Pressure Driven Microflows”, Numerical Heat Transfer, Part A, Vol.41, pp.131-148, 2002. Enerback L., “Mast cells in rat gastrointestinal mucosa”, Acta Path Microbiol Scandinv, Vol.66, pp.303, 1996. Ermakov S.V., Jacobson S.C., Ramsey J.M., “Computer Simulation of Electrokinetic Injection Techniques in Microfluidic Devices”, Analytical Chemistry, Vol.72, pp.3512-3517, 2000. Fu L.M., Lin C.H., “Numerical analysis and Experimental Estimation of a Low-Leakage Injection Technique for Capillary Electrophoresis”, Analytical Chemistry, Vol.75, pp.5790-5796, 2003. Fu L.M., Yang R.J., Lee G.B., “Electrokinetic Focusing Injection Methods on Microfluidic Devices,” Analytical Chemistry, Vol.75, pp.1905-1910, 2003. Fu L.M., Yang R.J., Lee G.B., Pan Y.J., “Multiple Injection Techniques for Microfluidic Sample Handling”, Electrophoresis, Vol.24, pp.3026-3032, 2003. Fu L.M., Yang R.J., Lin C.H., Lee G.B., Pan Y.J., “Electro- kinetically-driven Micro Flow Cytometers with Integrated Optical Waveguides for On-line Cell/Particle Detection”, Analytical Chemical ACTA, Vol.507, pp.163-169, 2004. Fung Y.C., Biomechanics: circulation, New York: Springer, c1997. Galli S.J., “New concepts about the mast cell”, The New England Journal of Medicine, Vol.328, pp.257-265, 1993. Ghia U., Ghia K.N., Shin C.T., “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method”, Journal of Computational Physics, Vol.48, pp.387 -411, 1982. Gregor O., Mark M., et al., “Electrokinetic control of fluid flow in native poly capillary electrophoresis devices”, Electrophoresis, Vol.21, pp.107-115, 2000. Guyton A.C., Textbook of Medical Physiologh, 10th Edition, WB Saunders, Philaphia, 2000. Hou T. Z., Dawitof M., Wang J.Y., and Li M.D., “Expeimental evidence of a plant meridian system: I. Bioelctricity and acupuncture effects on electrical resistance of the soybean”, American Journal of Chinese Medicine, Vol.XXII 1, pp.1-9, 1994. Hou T.Z., Li M.D., Bean L.P., “Experimental evidence of a plant meridian system: V. Acupuncture effect on circumnutation movements of shoots of phaselus vulgaris”, American Journal of Chinese Medicine, Vol.XXV 3-4, pp.253-261, 1997. Hou T.Z., Luan J.Y., Wang J.Y., Li M.D., “Expeimental evidence of a plant meridian system: III. The sound characteristics of phylodendron (alocasia) and effects of acupunture on those properties”, American Journal of Chinese Medicine, Vol.XXII 3-4, pp.205-214, 1994. Hou T.Z., Re Z.W., Hu B., Li M.D., “Expeimental evidence of a plant meridian system: ii. the effects of needle acupunture on the temperature changes of soybean”, American Journal of Chinese Medicine, Vol.XXII 2, pp.103-109, 1994. Huang V.C., Sheu T.W. H., “On a dynamic view of microcirculation in human meridian system”, 13TH International Conference on Mechanics in Medicine and Biology, Tainan, Taiwan, 2003. Huang V.C., Sheu T.W.H., “Bio-fluid mechanism view on blood circulation and meridian system”, 13th International Conference on Mechanics in Medicine and Biology, Tainan, November 2003. Hunter R.J., “Zeta Potential in Colloid Science: Principles and Applications”, Academic Press, New York, 1981. Jacobson S.C., Ermakov S.V., Ramsey J.M., “Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices”, Analytical Chemistry, Vol.71, pp.3273-3276, 1999. Jorgenson J.M., Lukacs K.D., “Zone Electrophoresis in Open- Tubular Glass Capillaries”, Analytical Chemistry, Vol.53, pp.1298-1302, 1981. Kitamura Y., Yokoyama M., Matsuda H., et al. “Heterogeneity of mast cells and phenotypic change between subpopulations”, Annual Review Immunology, Vol.7, pp.59, 1989. Levi-Schaffer F. and Shalit M., “Proliferation and functional responses of bone-marrow derived mast cells after activation”, Cellular Immunology, Vol.148 (2), pp.435, 1993. Lin C.H, Yang R.J., Tai C.H., Lee J.Y., Fu L.M., “Double-L Injection Technique for High Performance CE Detection in Microfluidic Chips”, Journal of Micromechanics and Microengineering, Vol.14, pp.639-646, 2004. Mala G.M., Li D., Werner C., Jacobasch H.J., Ning Y.B., “Flow Characteristics of Water Through a Microchannel between Two Parallel Plates with Electrokinetic Effects”, International Journal of Heat and Fluid Flow, Vol.18, pp.489-496, 1997. Metcalfe D.D., Baran D., Mekori Y.A., “Mast cells”, Physiological Reviews, Vol.77 (4), pp.1033-1079, 1997. Mosher R.A., et al. “Computer Simulation and Experimental Validation of the Electrophoretic Behavior of Proteins”, Analytical Chemistry, Vol.61, pp.362-366, 1969. Mussat M., ”Le reseau d’acupuncture-Etude critique et experi mental”, Libraire le Francois, Paris, pp.227-238, 1974. Patankar N.A., Hu H.H., “Numerical Simulation of Electroosmotic Flow”, Analytical Chemistry, Vol.70, pp.1870-1881, 1998. Paulev P.E., Textbook in Medical Physiology and Pathophysiology. Essentials and clinical problems, Copenhagen Medical Publishers, 1999 – 2000. (http://www.mfi.ku.dk/ppaulev/ content.htm) Pohl P., Saparov S.M., Antonenko Y.N., “The size of the unstirred layer as a function of the solute diffusion coefficient”, Biophysical Journal, Vol. 75, No. 3, pp.1403-1409, 1998. Rice, C. L., Whitehead, R., “Electrokinetic Flow in a Narrow Cylindrical Capillary”, Journal Physical Chemistry, 69, pp.4017 -4024, 1965. Sheu T.W.H., and Wang M.M.T., “A comparison study on multivariant and univariant finite elements for three dimensional incompressible viscous flows”, International Journal Numerical Methods Fluids, Vol.21, pp.683-696, 1995. Sheu T.W.H., Tsai S.F., and Wang M.M.T., “A Petro-Galerkin formulation for incompressible flows at high Reynolds numbers”, Journal Computational Fluid Dynamic, Vol.5, pp.213-230, 1995. Sheu T.W.H., Wang M.M.T., Tsai S.F., “Element by element parallel computation of incompressible Navier-Stokes equations in three dimensions”, SIAM Journal on Scientific Computing, Vol.21, pp.1387-1400, 2000. Sheu T.W.H., Huang V.C., “Development of an electro osmotic flow model to study the dynamic behavior in human meridian”, International Journal for Numerical Methods in Fluids, in press, 2007. Sheu T.W.H. and Huang V.C., “Electro-osmosis flow model in human meridian system”, 15th International Conference on Mechanics in Medicine and Biology, Singapore, 6-8th December 2006. Sinton D., Ren L., Li D., “Visualization and numerical modeling of microfluidic on-chip injection processes”, Journal of Colloid and Interface Science, Vol.260, pp.431-439, 2003. Sinton D., Ren L., Xuan X., Li D., “Effect of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips”, Lab on a Chip, Vol.3, pp.173-179, 2003. Starling E.H., “On the adsorbtion of fluid from interstitial spaces”, The Journal of Physiology, Vol.19, pp.312-326, 1896. Tharp M.D., “IgE-mediated released of histamine from human cuta-neous mast cell”, The Journal of Immunology, Vol.130 (4), pp.1896, 1983. Tiselius A., “A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures”, Transactions of the Faraday Society, Vol.33, pp.524-531, 1937. Valtin H., Schafer J.A., Renal Function, 3th Edition, Little-Brown, Boston, 1995. Voll R., “The phenomenon of medicine testing in electroacupuncture according to Voll”, American Journal of Acupuncture, Vol.8, pp.97, 1980. Yang C., Li D., “Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels”, Journal of Colloid and Interface Science, Vol.194, pp.95-107, 1997. Yang R.J., Fu L.M., Lee G.B., “Variable Volume Injection Methods Using Electrokinetic Focusing on Microfluidic Chips”, Journal of Separation Science, Vol.25, pp.996-1010, 2002. Zhao J.F., Color Atlas of Medical Histology, Yi-Xuan Press, Taipei 1997. 中文部份: 丁光宏、楊靜、陳爾瑜等,”人體組織液定向流動與經絡”,自然科學進展,Vol.11 (8),pp.811-818,2001。 丁光宏、沈雪勇、姚偉等,”組織液定向流動的動力學機理與人體經絡現象”,自然科學進展,Vol.15 (1),pp.61-70,2005。 中谷義雄(賴逢甲譯),《良導絡理論的研究》,日新文化出版社,1973。 中國人民解放軍309醫院、中國科學院生物物理所等,”經絡敏感人經絡現象的初步研究”,針刺麻醉資料選編(二),北京人民出版社,pp.16,1973。 中醫研究院針灸研究所,”以描記體表電位的方法觀察古典經絡的循行路線”,全國針灸針麻學術討論會論文摘要(一),1979。 王冰(唐)注,黃帝內經二十四卷,臺灣商務書局,1948。 成令忠,組織學(第二版),北京:民眾衛生出版社,pp.232-235,1992。 何廣新等,”以紅外熱相圖顯示經絡現象的實驗觀察”,中國針灸,Vol.3 (4),pp. 23,1983。 吳景蘭,”大白鼠穴位皮下結締組織內肥大細胞的觀察”,解剖學報,Vol.11 (3),pp.308,1980。 呂証寶、勃朗克、安吉蘇克等,”針刺某些穴位後人體表面熱相圖的變化”,針刺研究,Vol.12 (3),pp.239,1987。 宋貴美等,”利用紅外線成像技術對經絡和陽性俞穴的研究”,第二屆全國針灸針麻學術討論會論文摘要,北京,pp.222,1984。 宋繼美,”肥大細胞與經絡現象”,遼寧中醫雜誌,Vol.1 (2),pp.59,1977。 李定忠、傅松濤、李秀章,”關於經絡實質的探討-關於經絡的理論與臨床應用研究之三”,中國針灸,Vol.25 (1),pp.53-59,2005。 李時珍,奇經八脈考,明朝隆慶六年,1572。 沈律,”幹細胞-神經-內分泌-免疫系統理論初探─人體經絡現象的本質及其生物作用機制”,科技導報,Vol.10,pp.22-24,2001。 沈德凱、陳向濤、許冠蓀,”手針足陽明胃經下肢區段對胃及其經絡線的血管通透性影響”,中國中醫基礎醫學雜誌,Vol.4 (1),pp.52,1998。 何俊娜,”針刺效應與經穴肥大細胞相關研究概況”,針刺研究,Vol.32 (3),pp.214-216,2007。 阮幼冰、官陽,”人體及動物不同組織中肥大細胞顆粒超微架構的比較研究”,電子顯微學報,Vol.20 (6),pp.763,2001。 孟競璧,”用同位素示蹤法顯示經絡循行的初步研究”,針刺研究,Vol.1,pp.77-81,1987。 孟競璧等,十四經脈像探秘,北京,中國科學技術出版社,1998。 宗安民、史學義、吳景蘭等,”電針刺激家兔足三里穴區對筋膜肥大細胞的影響”,河南醫科大學學報,Vol.27 (3), pp.226,1992。 林昭庚、鄢良,針灸醫學史,中國中醫藥出版社,1995。 林俊、黃紅、丁光宏等,”穴區肥大細胞功能與針刺緩解急性佐劑性關節炎大鼠疼痛效應的關係”,針刺研究,Vol.32 (1),pp.16-19,2007。 林繼海、任知春、閻愛華等,”人體皮膚經穴處結締組織中肥大細胞的形態學和免疫組化的現象”,河南中醫,Vol.9 (1),pp.2,1989。 胡繼明、馬文濤、童華等,”沿經脈循行線液晶物質的出現及其來源的生物學追蹤,見:經絡研究十年”,國家中醫藥管理局科技教育司編,pp.280-292,2001。 祝總驤、徐瑞民,”經脈循行線下肥大細胞的定量觀察”,針刺研究,Vol.15 (2),pp.157,1990。 祝總驤、郝金凱等,針灸經絡生物物理學-中國第一大發明的科學驗証,北京出版社,1989。 祝總驤等,”植物也有經絡”,中華氣功,Vol.6,pp.6,1988。 祝總驤等,”植物有無經絡? 哈蜜瓜和香蕉循經低阻和高音線的發現”,自然雜誌,Vol.11 (11),pp.880,1988。 袁考賓、孫琰,”肥大細胞的新概念”,國外醫學生理、病理科學與臨床分冊,Vol.14 (2),pp.93,1994。 高山,”電針對大白鼠局部穴位肥大細胞超微架構的影響”,遼寧中醫雜誌,Vol.5 (5),pp.40,1981。 黄金龍、許文翰,”經絡傳輸的動力觀”,中國針灸, 第24卷,第8期,2007。 黃金龍、許文翰,”經絡電滲流模型研究”, 第三届中醫藥工程國際學術會議,上海浦東,2006,12月。 張保真,”人皮膚內神經2肥大細胞聯接在經絡線上的發現”,神經解剖學雜誌,Vol.1 (1),pp.47,1985。 張建新,”經絡是幹細胞系-兼論物種起源與幹細胞進化”,中國中醫基礎醫學雜誌,Vol.4,2001。 張迪、丁光宏、沈雪勇等,”經絡穴位與肥大細胞相關性研究進展”,針刺研究,Vol.30 (2),pp.115-119,2005。 張迪、丁光宏、沈雪勇等,”肥大細胞功能對針刺大鼠足三里鎮痛效應的影響”,針刺研究,Vol.32 (3),pp.147-152,2007。 張高維,解剖經穴圖,智揚出版社,1999。 張棟、孟競璧、高惠合等,經絡溫度特性的客觀顯示-針灸後循經溫度變化的紅外熱相圖表現。自然雜誌,Vol.12 (11),1989。 張維波,”中醫經絡的科學探索”,啟業書局,台北,1999。 許文翰、黃金龍,”經絡傳輸動力系統的現代觀初論”, The 10th National Computational Fluid Dynamics Conference,Hua-Lien,August,2003。 陳良為、張保真,”小白鼠擬經絡線皮膚內神經纖維、肥大細胞及其兩者的形態學關係”,解剖學雜誌,Vol.9 (4),pp.371,1986。 陳國鎮,”論針灸效應的資訊觀”,中華針灸醫學會雜誌,2003。 曾一玲、鄒移海、湯建華等,”雷射照射足三里穴對清醒大鼠空腸系膜透明窗肥大細胞的影響”,廣州中醫學院學報,Vol.8 (2) : 210,1991。 無江季次,”肥大細胞-るの分化”,機能呼の循,Vol.32 (2),pp.106,1984。 費倫、承煥生、蔡德亨等,”經絡物質基礎及其功能性特徵的實驗探索和研究展望”,科學通報,Vol.43 (6),pp.658-672,2000。 楊友泌,”針刺對實驗性心肌梗塞影響的初步觀察”,針刺研究,Vol.9 (4),pp.298,1984。 滑壽,十四經發揮,元,1341。 董增軍,肥大細胞亞群,國外醫學免疫分冊,Vol.13 (4),pp.185,1990。 鄒移海、何智明、湯建華,”捻轉補瀉手法對大鼠小腸系膜透明窗肥大細胞的影響”,廣東解剖學通報,Vol.15 (2),pp.107,1993。 劉澄中、張永賢,經脈醫學與針灸科學,知音出版社,2005。 劉澄中、張永賢,經脈醫學-經絡密碼的破譯,大連出版社,2007。 劉煥森、閆玉禮,”高壓氧艙內靜電發生的分析及預防”,高壓氧醫學雜誌,Vol.4 (1),1995。 蔣來等,”循經感傳紅外線成像的初步觀察”,中醫雜誌,Vol.2,pp.46,1980。 鄧雲平、曾濤、周嚴等,”循經針刺對大鼠足陽明胃經穴區皮下筋膜內肥大細胞的影響”,針刺研究,Vol.21 (3),pp.68,1996。 龐心竹,”肥大細胞脫顆粒的環境條件及形態變化”,內蒙古醫學院學報,Vol.14 (1),pp.68,1992。 嚴智強等,”人體十二經脈穴位冷光規律的探討”,中國針灸,Vol.4 (2),pp.24,1984。 蘇紅星、高山、明彩榮,”電針足三里穴肥大細胞脫顆粒對垂體ACTH細胞影響的研究”,遼寧中醫雜誌,Vol.15 (10),pp.40,1991。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27577 | - |
| dc.description.abstract | 中 文 摘 要
經絡及針灸在中國傳統醫學一直扮演著理論核心的角色。二千年前,「黃帝內經」已詳述了一些客觀的事實,而在生理解剖及顯像科技發達的今日,卻無法清楚地敘述經絡的生理特性,使得經絡理論依舊蒙著一層神秘的面紗。本研究嘗試從力學的觀點將經絡生理與氣血運行的非線性交互作用作一具體的機制描繪。人體經絡線中,膽經與胃經是于小腿段處較深層骨間膜的腓側和脛側,它們沿著經絡線的微血管呈現節段性的分佈,由於微血管密集之處與穴位點的位置吻合,故將其作為研究的主題。本研究透過科學模式的建立並利用數值模擬的方式求解不具壓縮性的定常牛頓流體電滲流運動的方程組,此外亦將滲透係數列入考慮,藉以模擬微血管壁所扮演的角色及嘗試解釋複雜的經絡生理現象。此外,藉由引入合理的邊界條件與生理參數,由研究的結果得知于經絡線上的流速與文獻中所述的小分子循經遷移速度相符。當改變血管壁的滲透係數與動脈端的血壓時,于經絡線上活動的組織液,其速度將對應地發生改變,這符合針刺穴道時所引發的生理反應。若改變組織液(經絡線)的靜壓與入流的條件,可詮釋「氣滯血淤」與「氣行血亦行」的中醫理論。此外,經絡為一電滲流流場,電滲流可因動量方程式中電力項之存在,使得電滲流的邊界層比同物理參數的層流還薄,這有助於低雷諾數組織液的動量傳輸。透過本文所採用的電滲經絡物理模型,可清楚的解析氣血交換的現象,同時亦可解釋當針刺時,肥大細胞脫顆粒所引發穴位高電位與經絡電波與電流傳導的現象,這些結果有助于進一步了解針刺與電針治療的功能與物理機制。 | zh_TW |
| dc.description.abstract | Abstract:
A numerical study has been performed on the proposed bio-fluid dynamics model to explore some major human meridian characteristics in Chinese medicine. The proposed meridian model involves tissue fluids, which contain ions and nutrition, in the meridian passage. The tissue fluid under investigation can interact with the blood in the capillary vessel at the acupuncture points through a complex electro-osmosis transport process occurring in the meridian path. The investigated physical domain consists of a meridian path with three acupuncture points, namely, GB 37, 38, 39, which are connected with their associated small meridian bodies (SMBs). Based on the properly chosen physiological coefficients, the simulated mean tissue fluid velocity has been shown to have a magnitude of 3.37cm/min (3D model result). This magnitude is observed to be increased and decreased with the hydraulic pressure of the arteriole with the maximum and minimum values of 4.34 cm/min (3D model result) and 2.40 cm/min (3D model result), respectively. Our simulated results are in good agreement with the experimental findings reported in the literature. In the meridian, both blood and tissue fluid flows exhibited complex electro-osmosis nonlinear behaviour. The immediate response due to an externally applied acupuncture is analyzed to reveal the elliptic meridian nature, which is intrinsic in the body fluid. The interaction between the body fluid and blood flow as the master and mother, and the influence of the blood circulation on the meridian system and vice versa are also analyzed in detail. Furthermore, meridian is considered as a passage to proceed the electroosmosis transport. Due to the influence of electric term in the momentum equation, the boundary layer thickness is thinner than the common laminar flow under the same physical coefficients. Through this electroosmosis transport flow model, the phenomena of Chi-blood interaction can be revealed in detail. During acupuncture, how the mast cell degranulation can result in meridian high voltage and transport of electric wave and current has been properly translated by this model. The predicted results are useful for revealing the physical mechanism in acupuncture and electric-acupuncture treatments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:10:30Z (GMT). No. of bitstreams: 1 ntu-96-D89525001-1.pdf: 4532147 bytes, checksum: 875892ff8158df121c0fbfeac9463411 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
誌謝 I 中文摘要 II Abstract IV 目錄 ⅤI 符號說明 ⅩI 第一章 緒論-回顧經絡的研究 1 I.1 古籍的經絡理論 1 I.1.1 中醫經絡理論 1 I.1.2 古籍經絡理論之沿革 6 I.1.2.1 經絡學說的基礎-十一脈灸經 6 I.1.2.2 最早經絡學說的集結-黃帝內經 6 I.1.2.3 經絡學說的臨床發展-難經 7 I.1.2.4 經絡學說的演變與發展 8 I.2 近代的經絡研究 10 I.3 中國醫學所言的氣、血與津液 19 I.3.1 中醫理論所言的氣 20 I.3.1.1 氣的種類 24 I.3.1.2 氣的功能 27 I.3.1.3 本文所探討之氣 29 I.3.2 中醫理論所言的血 33 I.3.2.1 血液的基本特性 34 I.3.2.2 血漿成份 34 I.3.2.3 微血管的結構和通透性 35 I.3.3 中醫理論所言的津液 37 I.3.3.1 組織液的特性 39 I.3.3.2 組織液的生成 39 I.3.3.3 影響組織液生成的因素 42 I.4 淋巴系統 43 I.5 氣血交換 46 I.5.1 氣血交換的機制-微循環 48 I.5.2 血液和組織液之間的物質交換模式 49 I.6 肥大細胞之作用與研究 54 I.6.1 肥大細胞的形成及其分佈 54 I.6.2 穴位處肥大細胞的生理特徵 55 I.6.3 肥大細胞脫顆粒現象 57 I.6.4 針刺對肥大細胞的影響 58 I.6.5 針刺對穴位區肥大細胞介質釋放的影響 59 I.6.6 肥大細胞因子串聯反應 60 I.6.7 肥大細胞介質釋放與循經感傳機制研究 61 第二章 科學經絡的理論 64 II.1 理論架構-非線性電滲流理論 64 II.2 經絡內的電滲流表徵 69 II.2.1 微管道與帶電離子特性 69 II.2.2 壁電位-細胞之靜止膜電位 71 II.2.2.1 細胞膜的基本架構和跨膜傳輸功能 71 II.2.2.2 細胞膜的靜止膜電位 73 II.2.3 外加電位差-肥大細胞脫顆粒所引起穴位電位差 77 II.3 經絡電滲傳輸的動力模型 80 第三章 電滲經絡傳輸之理論模型 87 III.1 經絡中氣血交換的電滲經絡數學模型 87 III.2 描述外加電場之拉普拉斯方程 88 III.3 描述壁面電位之亥姆霍茲方程 90 III.4 動量守恒方程式 92 III.5 質量守恒方程式 93 III.6 離子傳輸方程式 94 III.7 無因次化的電滲經絡數值模型 95 III.8 血管壁之數值模型 97 第四章 數值模型 98 IV.1 有限元素模型 98 IV.1.1 葛樂金權重餘數法 98 IV.1.2 形狀函數 99 IV.1.3 SUPG流線上風法 101 IV.1.4 求解步驟 104 IV.2 有限體積模型 105 IV.2.1 有限體積法 105 IV.2.2 內插法 107 IV.2.3 CFDRC模式設定 108 IV.3 模式驗証 110 第五章 數值結果 115 V.1 網格獨立測試 117 V.2 二維SUPG上風法有限元素模型結果 121 V.2.1 網格製作 121 V.2.2 模式結果 123 V.2.2.1 一般狀態之模擬 123 V.2.2.2 電貼片狀態之模擬 127 V.2.2.3 針刺狀態之模擬 135 V.2.2.4 電針狀態之模擬 137 V.2.2.5 離子傳輸之模擬 139 V.3 三維有限體積模型結果 143 V.3.1 三維模型簡介 143 V.3.2 網格製作 143 V.3.3 三維模式之結果 144 V.4 電滲經絡數值模型結果與中醫理論匹配的內涵 155 結論 162 參考文獻 166 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電滲流 | zh_TW |
| dc.subject | 經絡 | zh_TW |
| dc.subject | 穴道 | zh_TW |
| dc.subject | 肥大細胞脫顆粒 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 氣血循環動力模型 | zh_TW |
| dc.subject | mast cell degranulation | en |
| dc.subject | electro-osmosis transport | en |
| dc.subject | meridian model | en |
| dc.subject | tissue fluids | en |
| dc.subject | acupuncture points | en |
| dc.title | 以電滲經絡理論模擬探討針刺的動力行為 | zh_TW |
| dc.title | On an electro-osmotic meridian theory for numerically exploring dynamical behavior of acupuncture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李嗣涔,張永賢,林昭庚,盧國賢,孔慶華,李佳翰 | |
| dc.subject.keyword | 經絡,穴道,電滲流,肥大細胞脫顆粒,數值模擬,氣血循環動力模型, | zh_TW |
| dc.subject.keyword | meridian model,tissue fluids,acupuncture points,mast cell degranulation,electro-osmosis transport, | en |
| dc.relation.page | 179 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-10-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
