Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27544
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王維新
dc.contributor.authorCheng-Chih Laien
dc.contributor.author賴政志zh_TW
dc.date.accessioned2021-06-12T18:09:08Z-
dc.date.available2008-12-03
dc.date.copyright2007-12-03
dc.date.issued2007
dc.date.submitted2007-11-27
dc.identifier.citation[1]R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed., Springer, 2002.
[2]C. Y. Chang, C. C. Lai, and W. S. Wang, “Variable TE-TM mode splitter using nickel diffusion and annealed proton-exchange lithium niobate waveguide,” revised by Japan J. Appl. Phys.
[3]A. Holmes-Siedle, “Radiation effects in space, nuclear power and accelerators : impact on optics and light sensor,” SPIE Critical Review of Science and Technology on Advancement of Photonics for Space, vol. CR66, pp. 37-57, 1997.
[4]E. W. Taylor, “Radiation effects in LiNbO3,” in Properties in Lithium Niobate, IEE EMIS DATAREVIEWS Series no. 28, K. K. Wong, Ed. United Kingdom: INSPEC, pp. 359-371,2002.
[5]E. Voges and A. Neyer, “Integrated-optic devices on LiNbO3 for optical communication,” J. Lightwave Tech., vol. 5, pp. 1129-1238, 1987.
[6]G. J. Griffiths and R. J. Esdaile, “Analysis of titanium diffused planar optical waveguides in lithium niobate,” IEEE J. Quantum Electron., vol. 20, pp. 149-159, 1984.
[7]P. K. Wei and W. S. Wang, “Fabrication of lithium niobate optical channel waveguides by nickel indiffusion,” Microwave and Opt. Tech. Lett., vol. 7, pp. 219-221, 1994.
[8]Y. P. Liao, D. J. Chen, R.C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Tech. Lett., vol. 8, pp. 548-550, 1996.
[9]S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electrooptic modulator with ridge structure in X-cut LiNbO3,” J. Lightwave Tech., vol. 17, pp. 843-847, 1999.
[10]R. S. Cheng, T. J. Wang, and W. S. Wang, “Wet-etched ridge waveguides in y-cut lithium niobate,” J. Lightwave Tech., vol. 15, pp. 1880-1887, 1997.
[11]W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 271-277 Jan./Feb. 2005.
[12]K. Nassau, H. J. Levinstein, and G. M. Loiacono, “The domain structure and etching of ferroelectric lithium niobate,” Appl. Phys. Lett., vol. 6, pp. 228-229, 1965
[13]C. L. Lee and C. L. Lu, “CF4 plasma etching on LiNbO3,” Appl. Phys. Lett., vol. 35, pp. 756-758, 1979.
[14]Y. Ohmachi and J. Noda, “Electro-optic light modulator with branched ridge waveguide,” Appl. Phys. Lett., vol. 27, pp. 544-546, 1975.
[15]I. P. Kaminow and V. Ramaswamy, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 24, pp. 622-624, 1974.
[16]F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Tech., vol. 10, pp. 1606-1609, 1992.
[17]Y. Shi, W. Wang, J. H. Bechtel, A. Chen, S. Garner, S. Kalluri, W. H. Steier, D. Chen, H. R. Fetterman, L. R. Dalton, and L. Yu, “Fabrication and characterization of high-speed polyurethane-disperse red 19 integrated electrooptic modulators for analog system applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, pp. 289-299, 1996.
[18]F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Anderson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science, vol. 273, pp. 1833-1836, 1996.
[19]R. Moosburger and K. Petermann, “4×4 digital optical matrix switch using polymeric oversized rib waveguides,” IEEE Photon. Technol. Lett., vol. 10, pp. 684-686, 1998.
[20]O. Watanabe, M. Tsuchimori, A. Okada, and H. Ito, “Mode selective polymer channel waveguide defined by the photoinduced change in birefringence,” Appl. Phys. Lett., vol. 71, pp. 750-752, 1997.
[21]L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett., vol. 10, pp. 1416-1418, 1998.
[22]Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett., vol. 77, pp. 2961-2963, 2000.
[23]C. F. Kane and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett., vol. 7, pp. 535-537, 1995.
[24]L. Eldada, C. Xu, K. Stengel, L. Shacklette, and J. T. Yardley, “Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers,” J. Lightwave Technol., vol. 14, pp. 1704-1713, 1996.
[25]M. Kagami, H. Ito, T. Ichikawa, S. Kato, M. Matsuda, and N. Takahashi, “Fabrication of large-core, high-delta optical waveguides in polymers,” Applied Optics, vol. 34, pp. 1041- 1046, 1995.
[26]B. T. Lee, M. S. Kwon, J. B. Yoon, and S. Y Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using a rubber molding process,” IEEE Photon. Technol. Lett., vol. 12, pp. 62-64, 2000.
[27]M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proceedings, vol. 135, pp. 85-91, 1988.
[28]M. Case, P. MacDonald, M. Matloubian, M. Chen, L. Larson, and D. Rensch, “High performance microwave elements for SiGe MMICs,” in Proc. High Speed Semiconductor Devices and Circuits, pp. 85-92, 1995.
[29]J. H. Lan and J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin-film transistors for AM-LCDs,” in Proc. Device Research Conf., pp. 130-131, 1998.
[30]A. Okubora, T. Ogawa, T. Hirabayashi, T. Kosemura, T. Ogino, H. Nakayama, Y. Oya, Y. Nishitani, and Y. Asami, “A novel integrated passive substrate fabricated directly on an organic laminate for RF applications,” in Proc. Electronic Components and Technology Conf., pp. 672-675, 2002.
[31]L. A. Keser, R. Bajaj, and T. Fang, “Redistribution and bumping of a high I/O device for flip chip assembly,” IEEE Trans. Advanced Packaging, vol. 23, pp. 3-8, 2000.
[32]S. Imamura, R. Yoshimura, and T. Izawa, “Polymer channel waveguides with low loss at 1.3 um,” Electron. Lett., vol. 27, pp. 1342-1343, 1991.
[33]C. C. Lai, C. Y. Chang, and W. S. Wang, “Study of gamma-irradiation damage in LiNbO3 waveguides,” IEEE Photon. Tech. Lett., vol. 19, pp. 1002-1004, 2007.
[34]T.-J. Wang, C.-F. Huang, W.-S. Wang, and P.-K. Wei, “A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3,” J. Lightwave Tech., vol. 22, pp. 1764-1771, 2004.
[35]T.-L. Ting, L.-Y. Chen, and W.-S. Wang, “A novel wet-etching method using joint proton source in LiNbO3,” IEEE Photon. Tech. Lett., vol. 18, pp. 568-570, 2006.
[36]L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, pp. 615-627, 1995.
[37]M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N X N multi-mode interference couplers including phase relations,” Appl. Opt., vol. 33, pp. 3905-3911, 1994.
[38]M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt., vol. 34, pp. 6898-6910, 1995.
[39]R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “Waveguide beam splitters and recombiners based on multimode propagation phenomena,” Opt. Lett., vol. 17, pp. 991-993, 1992.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27544-
dc.description.abstract本論文主要探討伽瑪射線對光學材料特性的影響與應用,並有系統進行深入研究與分析。就光學材料部分,本論文選取高分子材料苯並環丁烯和鐵電材料鈮酸鋰作為主要研究的課題。
就鈮酸鋰而言,我們首先製作鈦擴散、鎳擴散、鋅鎳擴散、質子交換和退火形質子交換等五種不同的光波導,並使用633nm、1300nm和1550nm等三種不同的波長來研究伽瑪射線對鈮酸鋰導波特性之影響。就應用部分,我們也發現藉由伽瑪射線的照射,使得鈮酸鋰溼式蝕刻的深度較傳統溼式蝕刻的深度增加二至三倍,且脊形側壁所增加的光場橫向侷限性較傳統平面通道式波導大,元件之傳輸率因此明顯上升,在積體光學元件上有實用價值。
對高分子材料BCB而言,從研究過程中發現隨著伽瑪射線照射量的增加,其模態折射率也會隨之改變,同時我們也發現當高分子材料BCB覆蓋一層金屬薄膜,其模態折射率之改變量與有無覆蓋金屬不同,針對此一特性本研究製作一高分子波導,並量測其光學特性。此種新製造出之高分子光波導侷限性比用電子束直接寫方式佳,在未來積體光學元件的研究與製作上提供了另一種選擇。伽瑪射線對其他光學材料特性的影響及其應用也將成為未來有趣的研究題材。
zh_TW
dc.description.abstractIn this dissertation, the characteristics and application of gamma-ray irradiated optical material are studied. In particular, polymer material benzocyclobutene (BCB) and the ferroelectric material lithium niobate (LiNbO3) are chosen for interest.
For LiNbO3, five waveguides fabricated by Ti-diffusion, Ni-diffusion, Zn and Ni co-diffusion, proton-exchange, and annealed proton-exchange are chosen. And lasers of wavelengths 633nm, 1300nm, and 1550nm are employed for the characterization of the waveguides. Experimental results show the height of wet etched ridge structure on the LiNbO3 substrate is 2-3 times higher with than without gamma-irradiation. As the lateral optical confinement provided by sidewalls of ridge structures is enhanced, the optical power transmission is increased, which is certainly useful for the improvement of integrated optical devices
For BCB samples, experimental results show that the modal refractive index change is increasing with the dosage of gamma irradiation before it is seriously damaged. Moreover, the modal refractive index changes with and without a metal mask are found slightly different. With the small difference in refractive indices, novel BCB waveguides and devices are successfully fabricated. The optical fields are better confined in the proposed BCB waveguides than those in e-beam direct written ones. That provides an alternative method of waveguide fabrication for integrated optical devices. Details of the characteristics and application of the proposed gamma irradiation on other optical materials will be of great interest for future study.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:09:08Z (GMT). No. of bitstreams: 1
ntu-96-D88941006-1.pdf: 1933241 bytes, checksum: aae8ffeffa2e4e13ef10cab6a5dac34c (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 III
英文摘要 IV
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究方向簡述 3
1-4 內容簡介 6
第二章 研究方向與材料簡述 7
2-1研究目標與架構 7
2-2簡介鐵電材料鈮酸鋰 8
2-3簡介高分子材料BCB 13
2-4簡介伽瑪射線儀器 15
2-5簡介光波導特性量測設備 17
第三章 伽瑪射線對鈮酸鋰光波導之影響 19
3-1伽瑪射線單位簡介 19
3-2直波導元件之製作 20
3-3多種波導條件與伽瑪照射之結果 27

第四章 伽瑪射線對脊形結構製程的應用 34
4-1脊形結構簡介 34
4-2質子交換溼式蝕刻法製程 35
4-3脊形結構於Z切晶片 37
4-4多種質子交換溼式蝕刻法比較 40
4-5波導的製作 41
第五章 伽瑪射線製作之高分子BCB波導 43
5-1伽瑪射線對BCB所產生之變化 43
5-2單模高分子BCB光波導 47
5-3高分子BCB多模干涉分光器 51

第六章 結論與未來展望 63
參考文獻 66
中英文對照表 71
dc.language.isozh-TW
dc.subject伽瑪射線zh_TW
dc.subject鈮酸鋰zh_TW
dc.subject苯並環丁烯zh_TW
dc.subject溼式蝕刻zh_TW
dc.subject脊形結構zh_TW
dc.subject高分子波導zh_TW
dc.subjectlithium niobate (LiNbO3)en
dc.subjectgamma-rayen
dc.subjectpolymer waveguideen
dc.subjectbenzocyclobutene (BCB)en
dc.subjectridge structureen
dc.subjectwet etcheden
dc.title伽瑪射線對光波導特性之研究zh_TW
dc.titleCharacterization of Gamma-Ray Irradiated Optical Waveguidesen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee李清庭,胡振國,張宏鈞,王子建,彭隆瀚
dc.subject.keyword伽瑪射線,苯並環丁烯,鈮酸鋰,溼式蝕刻,脊形結構,高分子波導,zh_TW
dc.subject.keywordgamma-ray,benzocyclobutene (BCB),lithium niobate (LiNbO3),wet etched,ridge structure,polymer waveguide,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2007-11-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved