Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27524
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹(Gen-Shuh Wang)
dc.contributor.authorTai-I Lien
dc.contributor.author李泰毅zh_TW
dc.date.accessioned2021-06-12T18:08:18Z-
dc.date.available2009-02-19
dc.date.copyright2008-02-19
dc.date.issued2007
dc.date.submitted2007-12-12
dc.identifier.citation1. J.J. Rook, Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 1974. 23: p. 234-243.
2. A.D. Nikolaou, M.N. Kostopoulou, and T.D. Lekkas, Organic by-products of drinking water chlorination: a review. Global Nest: the International Journal 1999. 1(3): p. 143-156.
3. 金門地區高級淨水處理工程委託技術服務報告書. 2004, 台灣.
4. G.A. McFeters, Drinking water microbiology. 1990.
5. M.W. LeChevallier, Coliform Regrowth in Drinking Water: A Review. Journal of American Water Works Association, 1990. 82: p. 74-86.
6. M.N.B. Momba, et al., An Overview of Biofilm Formation in Distribution Systems and Its Impact on the Deterioration of Water Quality. Water SA, 2000. 26(1): p. 59-66.
7. S.L. Percival, Review of potable water biofilm in engineered systems. Journal of British Corrosion, 1998. 33(2): p. 130-137.
8. K.K. Jefferson, Why Drives Bacteria to Produce a Biofilm? FEMS Microbiology Letters 2004. 236: p. 163-173.
9. H. Baribeau, et al., Impact of Biomass on the Stability of HAAs and THMs in a Simulated Distribution System. Journal of American Water Works Association, 2005. 97(2): p. 69-81.
10. 郭奐儀, 實驗室模擬配水系統生物膜形成之探討. 2001, 台灣: 逢甲大學土木及水利工程研究所89級碩士論文.
11. C. Lu and C. Chu, Effects of Acetic Acid on the Regrowth of Heterotrophic Bacteria in the Drinking Water Distribution System. World Journal of Microbiology & Biotechnology., 2005. 21: p. 989-998.
12. World Health Association (WHO), Guidelines for drinking water quality, recommendations, 2nd ed. 1993, Geneva.
13. E.E. Geldreish, Microbial quality of water supply in distribution system. 1996, USA: Lewis Publisher.
14. F.Y. Bois, et al., Dynamic modeling of bacteria in a pilot drinking water distribution system. Water Research, 1997. 31: p. 3146-3156.
15. G.S. Wang and H.W. Chen, Water Quality Deterioration after the Roof-top Storages: Implications on Their Maintenance and Management. Water Science & Technology: Water Supply, 2006. 6(2): p. 39-45.
16. R.H.J. Sarbatly and D. Krishnaiah, Free chlorine residual content within the drinking water distribution system. International Journal of Physical Sciences, 2007. 2(8): p. 196-201.
17. M.J. Lehtola, I.T. Miettinen, and P.J. Martikainen, Biofilm formation in drinking water affected by low concentrations of phosphorus. Canadian Journal of Microbiology, 2002. 48: p. 494-499.
18. M.J. Lehtola, et al., Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. Journal of Industrial Microbiology & Biotechnology 2004. 31: p. 489-494.
19. M.W. LeChevallier, et al., Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. Journal of American Water Works Association, 1993. 85: p. 111-123.
20. P. Niquette, P. Servais, and R. Savoir, Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Research, 2000. 34: p. 1952-1956.
21. P.A. Rusin, J.B. Rose, and C.P. Gerba, Health Significance of Pigmented Bacteria in Drinking Water. Water Science & Technology, 1997. 35(11-12): p. 21-27.
22. J.C. Block, et al., Biofilm Accumulation in Drinking Water Distribution Systems. Biofouling, 1993. 6: p. 333-343.
23. 李丁來, 配水系統中水質劣化問題之探討. 自來水會刊, 1995. 56: p. 11-16.
24. A.O. Al-Jasser, Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect. Water Research, 2007. 41(2): p. 387-396.
25. I. Sibille, et al., Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems. Applied and Environmental Microbiology, 1998. 64(1): p. 197-202.
26. S.W. Krasner, et al., Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 2006. 40(23): p. 7175-7185.
27. V.Y. Yang, et al., Chloronation of Drinking Water and Cancer Mortality in Taiwan. Environmental Research, 1998. 78(1): p. 1-6.
28. R.J. Bull, et al., Water chlorination: Essential process or cancer hazard? Fundamental and Applied Toxicology, 1995. 28(2): p. 155-166.
29. E.T. Urbansky, Techniques and methods for the determination of haloacetic acids in potable water. Journal of Environmental Monitoring, 2000. 2: p. 285-291.
30. 張慧嫺, Analysis and Distribution of Haloacetic Acids in Drinking Water of Taiwan. 2004, 台灣: 國立臺灣大學公共衛生學院環境衛生研究所碩士論文.
31. V.L. Speight and P.C. Singer, Association between residual chlorine loss and HAA reduction in distribution systems. Journal of American Water Works Association, 2005. 97(2): p. 82-91.
32. W.J. Chen and C.P. Weisel, Halogenated DBP concentrations in a distribution system. . Journal of American Water Works Association, 1998. 90(4): p. 151-163.
33. A.G.I. Dalvi, R. Al-Rasheed, and M.A. Javeed, Haloacetic acids (HAAs) formation in desalination processes from disinfectants. Desalination, 2000. 129: p. 261-271.
34. D.A. Reckhow, P.C. Singer, and R.L. Malcolm, Chlorination of humic materials: byproduct formation and chemical interpretations. Environmental Science & Technology, 1990. 24(11): p. 1655-1664.
35. D.T. Williams, G.L. LeBel, and F.M. Benoit, Disinfection by-products in Canadian drinking water. . Chemosphere, 1997. 34(2): p. 299-316.
36. C.M. Villanueva, M. Kogevinas, and J.O. Grimalt, Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 2003. 37: p. 953-958.
37. J. Dojlido, E. Zbiec, and R. Swietlik, Formation of the haloacetic acids during ozonation and chlorination of water in Warsaw waterworks (Poland). Water Research, 1999. 33(14): p. 3111-3118.
38. J.Y. Hu, et al., Disinfection by-products in water produced by ozonation and chlorination. Environmental Monitoring and Assessment, 1999. 59: p. 81-93.
39. A.D. Nikolaou, S.K. Golfinopoulos, and T.D. Lekkas, Formation of organic by-products during chlorination of natural waters. Journal of Environmental Monitoring, 2002. 4: p. 910-916.
40. A.A. Stevens, L.A. Moore, and R.J. Miltner, Formation and control of non-trihalomethane disinfection by-products. Journal of American Water Works Association, 1989. 81(8): p. 54-60.
41. 蔣本基, 行政院環保署委託計畫水源鹽化對加氯消毒副產物生成之影響與改善對策之研究. 2000, 台灣.
42. E.E. Chang, Y.P. Lin, and P.C. Chiang, Effects of bromide on the formation of THMs and HAAs. . Chemosphere, 2001. 43: p. 1029-1034.
43. P.C. Singer, Control of disinfection by-products in drinking water. Journal of Environmental Engineering 1994. 120(4): p. 727-744.
44. S.W. Krasner, et al., The occurrence of disinfection by-products in US drinking water. Journal of American Water Works Association, 1989. 81: p. 41-53.
45. H. Arora, M.W. LeChevallier, and K.L. Dixon, DBP occurrence survey. Journal of American Water Works Association, 1997. 89(6): p. 60-68.
46. H. Pourmoghaddas and A.A. Stevens, Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlorination. Water Research, 1995. 29(9): p. 2059-2062.
47. A.D. Nikolaou, et al., Decomposition of dihaloacetonitriles in water solutions and fortified drinking water samples. Chemosphere, 2000. 41(8): p. 1149-1154
48. M. Wainwright, et al., Oligotrophic microorganisms in industry, medicine and the environment. Science Progress, 1991. 75: p. 313-322.
49. D.J. Reasoner and E.E. Geldreich A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 1985. 49(1): p. 1-7.
50. P. Westerhoff, P. Chao, and H. Mash, Reactivity of Natural Organic Matter with Aqueous Chlorine and Bromide. Water Research, 2004. 38: p. 1502-1513.
51. 樓基中, 淨水系統單元操作對三鹵甲烷之去除機質與生成模式之研究. 1987, 台灣.
52. 鄧雅謓, 飲用水中三鹵甲烷生成及其致癌風險評估 2002, 台灣: 國立臺灣大學公共衛生學院環境衛生研究所碩士論文.
53. S. Hashimoto, T. Azuma, and A. Otsuki, Distribution, sources, and stability of haloacetic acids in Tokyo Bay, Japan. Environmental Toxicology and Chemistry, 1998. 17(5): p. 798-805.
54. H. Zhou and Y.F. Xie, Using BAC for HAA removal - Part 1: Batch study. Journal American Water Works Association. Journal of American Water Works Association, 2002. 94(4): p. 194-200.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27524-
dc.description.abstract目前台灣地區之自來水廠,大多添加氯氣或次氯酸鹽等含氯消毒劑,來維護飲用水水質安全;因為加氯消毒具有成本低廉、使用技術成熟和殺菌力強等優點,同時適當的餘氯可以維持配水系統之消毒效果,故加氯消毒為台灣淨水場之主要消毒方式。但是含氯消毒劑會與水中之天然有機物發生反應形成消毒副產物(Disinfection By-Products, DBPs),如三鹵甲烷(Trihalomethanes, THMs)、含鹵乙酸(Haloacetic Acids, HAAs)等,對人體健康具有致癌、生殖危害之風險。
由配水管線將自來水運送至家戶的過程中,由於配水管線冗長導致滯留時間過長,使得配水管線中之餘氯常會被消耗殆盡,而無法消除或抑制水中微生物,造成管線內微生物再生長,甚至在配水管線管壁上形成生物膜,引發水質惡化的問題。本研究之目的為透過金門地區太湖淨水場和榮湖淨水場及其配水系統之實場採樣以及實驗室批次實驗,觀察飲用水經後加氯之後滯留於配水管線的過程中,其水質參數變化對於微生物再生長之影響;並探討消毒劑、微生物、消毒副產物三者之關聯性及其消長情形。
研究結果顯示,隨著配水管線中飲用水滯留時間的增加,造成自由餘氯逐漸被消耗殆盡;在缺乏自由餘氯的情形下進而導致微生物再生長的現象。消毒副產物三鹵甲烷則是隨著滯留時間的增加,水中三鹵甲烷前質和氯之接觸時間增長而持續形成三鹵甲烷;其中以氯仿濃度增加趨勢最為明顯,次之為一溴二氯甲烷和二溴一氯甲烷,而溴仿則是維持平穩的狀態。微生物降解作用為造成含鹵乙酸濃度下降之主要因素,且降解速率鹵乙酸之與含鹵素多寡有關,含鹵素越多者越不易被微生物所降解。根據批次實驗結果,當微生物總菌落數約達5×105 CFU/ml時,微生物可於短時間內迅速降解濃度為100 ppb之單鹵乙酸及雙鹵乙酸,而三鹵乙酸則不易被降解;其實驗分析結果與實場調查一致,微生物在未經馴養時難以利用多鹵素之含鹵乙酸。
zh_TW
dc.description.abstractDue to the requirement of 0.2 mg/L residual chlorine in the distribution systems, chlorination is the main disinfection method for waterworks in Taiwan. It has the advantages of low cost, effectiveness for inactivation of a wide range of pathogens, and a matured technology with extensive successful records. However, chlorination also produces disinfection by-products (DBPs) such as Trihalomethanes (THMs) and Haloacetic acids (HAAs), these DBPs could cause adverse health effects.
After treatment, the tap water was transported to the households through the drinking water distribution system. Due to the complex pipe lines and the long residence time in the distribution systems, the residual chlorine in finished water may degraded. Meanwhile, the microorganisms will regrowth and the biofilms will accrue on the pipe walls, this may cause further deterioration of finished water quality.
The objective of this research is to investigate the relationship among the concentrations of residual chlorine, the microorganisms and the disinfection by-product in distribution systems. The results will be helpful to elucidate the influence of residual chlorine on the microorganism regrowth and DBPs degradations in distribution systems.
The results indicated the residual chlorine was decreased gradually after its residence in the distribution system. In the meanwhile the microorganism grew again, the THMs concentration were increase and the HAAs were degraded due to the biodegradation. Besides, the biodegradation rates of HAAs decreased as the number of halogen atoms increased. In warmer water and in the absence of enough residual chlorine, a large portion of dihalogenated HAA species degraded due to biodegradation. However, the rates of biodegradation are lower for trihalogenated HAAs.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:08:18Z (GMT). No. of bitstreams: 1
ntu-96-R94844012-1.pdf: 1026198 bytes, checksum: 692fd0a4be8c0189d95ea7e9b9ec2e58 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
附錄 VII
第一章 序論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究目的 6
第二章 文獻回顧 8
2.1 配水系統中微生物再生長與生物膜之形成 8
2.2 影響微生物再生長與生物膜形成之因素 9
2.3 配水系統中生物膜形成後之影響 16
2.4 消毒副產物的種類 18
2.5 含鹵乙酸於配水系統之變化情形 20
2.5.1 含鹵乙酸的分類 20
2.5.2 含鹵乙酸的物化特性 21
2.5.3 配水系統中含鹵乙酸之特性 22
2.5.4 影響配水系統中含鹵乙酸生成之因素 23
第三章 材料與方法 28
3.1 實驗規劃 28
3.2 樣本採集 28
3.2.1 金門地區實場採樣 28
3.2.2 實驗室批次模擬含鹵乙酸降解情形 29
3.2.3 水樣分析項目 30
3.3 水質分析 32
3.3.1 總菌落數(Heterotrophic plate counts, HPC)-塗抹法 32
3.3.2 含鹵乙酸(Haloacetic Acids, HAAs) 32
3.3.3 三鹵甲烷(Trihalomethanes, THMs) 36
3.3.4 非揮發性溶解有機碳(NPDOC) 37
3.3.5 氨氮(NH4+-N) 38
第四章 結果 39
4.1 微生物再生長與自由餘氯消耗之關聯性 43
4.1.1 太湖地區 43
4.1.2 榮湖地區 47
4.2 自由餘氯對於總三鹵甲烷生成之影響 50
4.2.1 太湖地區 50
4.2.2 榮湖地區 55
4.3 微生物再生長與總含鹵乙酸降解之關聯性 58
4.3.1 太湖地區 58
4.3.2 榮湖地區 64
4.4 榮湖地區家戶使用水塔與否對於水質參數變化之影響 67
4.4.1 自由餘氯 67
4.4.2 總菌落數 69
4.4.3 總三鹵甲烷 71
4.4.4 總含鹵乙酸 73
4.5 批次實驗相同濃度含鹵乙酸不同濃度菌液之降解情形 75
第五章 討論 78
第六章 結論與建議 83
6.1 結論 83
6.2 建議 84
參考文獻 85
附錄 89
dc.language.isozh-TW
dc.title金門地區配水管網水質參數與微生物再生長之研究zh_TW
dc.titleRelationships between the water quality parameters and microorganism regrowth in Kinmen drinking water distribution systemen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張靜文(Ching-Wen Chang),蔡詩偉(Shih-Wei Tsai)
dc.subject.keyword微生物再生長,配水系統,消毒副產物,三鹵甲烷,含鹵乙酸,zh_TW
dc.subject.keywordMicroorganism regrowth,Drinking water distribution system,Disinfection by-product,Trihalomethanes,Haloacetic acids,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2007-12-13
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved