Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27518
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方煒(Wei Fang)
dc.contributor.authorHsiang-Han Chenen
dc.contributor.author陳翔瀚zh_TW
dc.date.accessioned2021-06-12T18:08:04Z-
dc.date.available2013-08-23
dc.date.copyright2011-08-23
dc.date.issued2011
dc.date.submitted2011-08-21
dc.identifier.citation1. 王奕程。2008。自製無隔膜電解水應用於抑制蝴蝶蘭主要病原菌。碩士論文臺北:國立臺灣大學生物產業機電工程學研究所。
2. 方煒,陳林祈,張明毅,康世緯,莊啟佑。2009。電解水技術應用於動植物抑菌消毒之回顧與展望。生機論文研討會。
3. 徐菁輿。2005。製備電解強酸水及電解次氯酸水與其殺菌效果之探討。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
4. 康世緯。2010。多用途電解滅菌自動化系統之研發與應用。碩士論文。臺北:國立臺灣大學生物產業機電工程學研究所。
5. 康世緯,陳翔瀚,方煒。2010。電流式自由氯濃度感測器之開發。生機論文研討會。
6. 鍾佩如。2010。低鹽無隔膜電解水設備之研製。碩士論文。臺北:國立台灣大學生物產業機電工程學研究所。
7. Austin-Harrison, D. S. and D. C. Johnson. 1989. Pulsed amperometric detection based on direct and indirect anodic reactions: a review. Electroanalysis 1: 189-197
8. Al-Haq, M.I., J. Sugiyama, and S. Isobe. 2005. Applications of electrolyzed water in agriculture & food industries. Food Science and Technology Research 11(2): 135-150.
9. Barrette, W. C. J., D. M. Hannum, W. D. Wheeler, and J. K. Hurst. 1989. General mechanism for the bacterial toxicityT of hypochilorous acid abolition of ATP production. Biochemistry 28 (23): 9172-9178.
10. Bard A.J., and L. R. Faulkner. 2001. Electrochemical methods. Fundamentals and applications 2rd ed., P. 226. New York: Wiley.
11. Campo, F. J. D., O. Ordeig, and F. J. Muňoz. 2005. Improved free chlorine amperometric sensor chip for drinking water applications. Analytica Chimica Acta 554 (1-2): 98-104.
12. Carter, M. T., and R. A. Osteryoung. 2006. Pulse Voltammetry. Wiley.
13. Cofan, C., and Radovan, C. 2008. Simultaneous Chronoamperometric Sensing of Ascorbic Acid and Acetaminophen at a Boron-Doped Diamond Electrode. Sensors. 8: 3952-3969.
14. Cao, W. 2009. Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. International Journal of Food Microbiology 130 (2): 88-93.
15. Cui, X., Y. Shang, Z. Shi, H. Xin and W. Cao. 2009. Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. Journal of Food Engineering 91 (4): 582-586.
16. Clark, D., M. Fleischmann., and D. Pletcher. 1972. The partial anodic oxidation of propylene in acetonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 36 (1): 137-146.
17. Eggins, B. R. 2002. Chemical sensors and biosensors. Wiley.
18. Fabrizio, K. A. and C. N. Cutter 2004. Comparison of electrolyzed oxidizing water with other antimicrobial interventions to reduce pathogens on fresh pork. Meat Science 68 (3): 463-468.
19. Fabrizio, K. and C. Cutter. 2005. Application of electrolyzed oxidizing water to reduce Listeria monocytogenes on ready-to-eat meats. Meat Science 71 (2): 327-333.
20. Gómez-López, V. M., P. Ragaert, J. Ryckeboer, V. Jeyachchandran, J. Debevere, and F. Devlieghere. 2007. Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere. International Journal of Food Microbiology. 117 (1): 91-98.
21. Guentzel, J., K. Liang Lam, M. A. Callan, S. A. Emmons and V. L. Dunham. 2008. Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiology 25 (1): 36-41.
22. Hernandez, P., I. Sanchez, F. Paton and L. Hernandez. 1998. Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode. Talanta 46 : 985-991.
23. Harp, D. L. 2002. Current Technology of Chlorine Analysis for Water and Wastewater, Hach Company, USA.
24. Huang, Y. R., H. S. Hsieh, S. Y. Lin, S. J. Lin, Y. C. Hung and D. F. Hwang. 2006. Application of electrolyzed oxidizing water on the reduction of bacterial contamination for seafood. Food control 17 (12): 987-993.
25. Huang, Y., Y. Hung, S. Hsu, Y. Huang, and D. Hwang. 2008. Application of electrolyzed water in the food industry. Food Control 19 (4): 329-345.
26. Izumi, H. 1999. Electrolyzed water as a disinfectant for fresh-cut vegetables. Journal of Food Science 64 (3): 536-539.
27. Johnson, D. C., D. Dobberpuhl, R. Roberts, and P. Vandeberg. 1993. Pulsed amperometric detection of carbohydrates, amines and sulfur species in ion chromatography - the current state of research. Journal of Chromatography A 640 (1-2): 79-96.
28. Jin, J., Y. Suzuki, N. Ishikawa, and T. Takeuchi. 2004. A miniaturized FIA system for the determination of residual chlorine in environmental water samples. Analytical Sciences 20 (1): 205-207.
29. Kumar, K., R. A. Day, and D. W. Margerum. 1986. Atom-transfer redox kinetics: general-acid-assisted oxidation of iodide by chloramines and hypochlorite. Inorganic Chemistry 25 (24), 4344–4350.
30. Kim, C., Y. C. Hung, R. E. Brackett and C. S. Lin. 2003. Efficacy of electrolyzed oxidizing water in inactivating Salmonella on alfalfa seeds and sprouts. J Food Prot 66 (2): 208-214.
31. Koseki, S., K. Yoshida, K. Yoshinori, I. Seiichiro and I. Kazuhiko. 2004. Effect of mild heat pre-treatment with alkaline electrolyzed water on the efficacy of acidic electrolyzed water against Escherichia coli O157:H7 and Salmonella on Lettuce. Food Microbiology 21 (5): 559-566.
32. Kodera, F., S. Kishioka, M. Umeda, and A. Yamada. 2004. Electrochemical Detection of Free Chlorine Using Anodic Current. Japanese Journal of Applied Physics 43 (7A): L913-L914.
33. Kodera, F., M. Umeda, and A. Yamada, 2005. Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes. Anal. Chim. Acta. 547 (1-2): 293-298.
34. Koide, S., J. Takeda, J. Shi, H. Shono, and G. G. Atoungulu. 2009. Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control. 20 (3): 294-297.
35. Kissinger, P. T., and W. R. Heineman. 1983. Cyclic Voltammetry. Journal of Chemical Education 60 (9): 702−706.
36. Lilley, M. D., J. B. Story, and R. W. Raible. 1969. The chronoamperometric determination of dissolved oxygen using membrane electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 23 (3): 425-429.
37. Lane, R. F., and A. T. Hubbard. 1976. Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines. Analytical Chemistry 48 (9): 1287-1293.
38. Lacourse, W. R., and D. C. Johnson. 1993. Optimization of waveforms for pulsed amperometric detection of carbohydrates based on pulsed voltammetry. Analytical Chemistry 65: 50-55.
39. Len, S. V., Y. C. Hung, M. Erickson, and C. Kim. 2000. Ultraviolet spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH. Journal of Food Protection 63 (4): 1534–1537.
40. Morris, J. C. 1966. The acid ionization constant of HOCl from 5 to 35°. Journal of Physical Chemistry 70 (12): 3798-3805.
41. Matsunaga, T., and Y. Namba. 1984. Detection of microbial cells by cyclic voltammetry. Analytical Chemistry 56 (4): 798-801.
42. McPherson, L.L. 1993. Understanding ORP’s role in the disinfection process. Water Engineering & Management. 140 (11): 29–31.
43. Murata, M., T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima and Y. Einaga. 2008. Electrochemical detection of free chlorine at highly boron-doped dimond electrodes. Journal of Electroanalytical Chemistry 612: 29–36.
44. Neuburger, G. G., and D. C. Johnson 1987. Pulsed amperometric detection of carbohydrates at gold electrodes with a two-step potential waveform. Analytical Chemistry 59 (1): 150-154.
45. Nakajima, N., T. Nakano, F. Harada, H. Taniguchi, I. Yokoyama, J. Hirose, E. Daikoku and K. Sano. 2004. Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis. Journal of microbiological methods 57 (2): 163-173.
46. Osteryoung, J. 1993. Voltammetry for the future. Accounts of Chemical Research 26 (3): 77-83.
47. Okumura, A., A. Hirabayashi, Y. Sasaki, and R. Miyake. 2001. Simple miniaturized amperometric flow cell for monitoring residual chlorine in tap water. Analytical sciences. 17 (9): 1113-1115.
48. Park, H., Y. C. Hung and R. E. Brackett. 2002. Antimicrobial effect of electrolyzed water for inactivating campylobacter jejuni during poultry washing. International Journal of Food Microbiology 72 (1-2): 77-83.
49. Park, G. W., D. M. Boston, J. A. Kase, M. N. Sampson and M. D. Sobsey. 2007. Evaluation of liquid- and fog-based application of sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73 (14): 4463-4468.
50. Reinmuth, W. H. 1960. Three-dimensional representation of voltammetric processes. Analytical Chemistry. 32 (11): 1509-1512.
51. Saputro, S., K. Takehara, K. Yoshimura, S. Matsuoka, Narsito. 2010. Differential pulse voltammetric determination of free chlorine for water disinfection process. Electroanalysis. 22 (23): 2765-2768.
52. Tsaousis, A. N., and C. O. Huber. 1985. Flow-injection amperometric determination of chlorine as a gold electrode. Analytica Chimica Acta. 178: 319-323.
53. Wilde, E. W. 1991. Comparison of three methods for measuring residual chlorine. Water Research. 25 (10): 1303-1305.
54. Yang, H., B. Swem, and Y. Li. 2003. The effect of pH on inactivation of pathogenic bacteria on fresh-cut lettuce by dipping treatment with electrolyzed water. Food Microbiology and Safety. 68 (3): 1013-1017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27518-
dc.description.abstract本研究使用未經修飾之白金電極搭配最佳化的兩段式脈衝安培法,成功的開發一套適用於非流動系統中的自由氯濃度感測方法。透過參數最佳化的過程找出最佳的量測電位為1.05 V、還原電位為 -8.5 V、電位施加時間則為350 ms而訊號之積分時間則為50 ms。
兩段式脈衝安培法應用於自由氯感測相較於定電位量測法有較高的量測再現性,其相對標準差多小於1%(n = 6)。在以0.1 M NaCl溶液為背景之次氯酸溶液中,其感測之積分電量與自由氯濃度於25 ~ 1100 ppm間有良好的線性關係(R2 = 0.9908)。
在本研究中亦以此方法開發一台自由氯感測器,為對其準確度進行測試,分別以此感測器與市售自由氯量測儀量測(HI9734, Hanna)對以0.15 M氯化鈉電解製成的多種不同自由氯濃度之待測樣本進行量測,其結果顯示此感測器之量測結果與HI9734自由氯量測儀量測之結果有不錯的一致性(R2 = 0.9976),且每筆量測僅需3.5秒即可完成。此感測器適用於電解固定濃度氯化鈉溶液之無隔膜電解水機,可讓使用者即時了解電解水之產製情形。
zh_TW
dc.description.abstractUsing unmodified / unpolished / no-pretreatment platinum as electrode, the two-step pulsed amperometric method was used for the quantitative determination of the concentration of free available chlorine (FAC) in a non-flow condition. Subject to the related experimental setup, the optimum operating conditions were determined. They are: detection potential (Edet) at 1.05 V, reduction potential (Ered) at -0.85 V, detection and reduction time both at 350 ms and the integrated duration is 50 ms before the switch of the period applying detection potential to the period applying reduction potential.
Comparing with the traditional single step amperometic detection method, the method developed shows much better reproducibility, demonstrated by the R.S.D. at 1 % (n = 6). A linear relationship (R2 = 0.9908) between Integrated signals of electrons and FAC concentration was found within the range of 25 - 1100 ppm FAC concentration in 0.1 M NaCl solution with NaOCl as additive.
An FAC sensing system was developed based on this study, then was compared with a commercially available FAC sensing equipment (HI9734, Hanna) which based on DPD colorimetric method. The results first show that both systems have good consistency (R2 = 0.9976). In addition, the system developed shows several advance features, such as much less measuring time required (3.5 seconds), easy to operate, wider FAC measuring range and operational risk-free sue to no chemical needed. One major drawback of the current system developed was that the calibration is needed for different salt concentration. This is the work still need to be done to make the system more flexible to use.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:08:04Z (GMT). No. of bitstreams: 1
ntu-100-R98631036-1.pdf: 3822635 bytes, checksum: d8ac13f5622f4e0dd10f219870331da7 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 xiii
第一章 前言與研究目的 1
第二章文獻探討 3
2.1 電解水製程原理 3
2.1.1 有隔膜電解水 3
2.1.2 無隔膜電解水 4
2.2 電解水抑菌機制 6
2.2.1 氧化還原電位 6
2.2.2 酸鹼值 6
2.2.3 自由氯濃度 6
2.3 電解水之抑菌應用 8
2.3.1 電解水於食品工業之應用 8
2.3.2 電解水於醫療衛生之應用 9
2.3.3 電解水於農牧產業之應用 11
2.4 常見的氯化合物感測技術 13
2.4.1 碘滴定法 13
2.4.2 DPD比色法 13
2.4.3 DPD滴定法 15
2.5 電化學感測技術 17
2.5.1電位掃描法 17
2.5.2 安培分析法 21
2.6 電化學自由氯感測技術 25
2.6.1 自由氯之電化學反應機制 26
2.6.2以電化學原理為基礎的自由氯感測相關研究 27
2.6.3 市售電化學自由氯感測器 34
2.7 電極系統 37
2.7.1 三極式電極系統 37
2.7.2 電極的活化 37
第三章 材料與方法 41
3.1 藥品與試劑 41
3.2電解設備與電解水製備 41
3.3 電解水之參數量測 42
3.4 電化學分析量測儀 43
3.5 三極式電極系統 44
3.6 兩段式脈衝安培法自由氯感測器之開發 46
3.6.1 感測電路之開發 47
3.6.2 可程式控制器與其AD輸入模組 48
3.7 循環伏安法 50
3.7.1自製電解水與次氯酸鈉水溶液之循環伏安掃描 51
3.7.2 不同氯離子濃度水溶液之循環伏安掃描 51
3.7.3 不同自由氯濃度電解水之循環伏安掃描 51
3.8 安培分析法 52
3.8.1 安培分析法對不同自由氯濃度水溶液之掃描 53
3.8.2 安培分析法對於白金工作電極活性之影響 53
3.9 計時安培分析法 54
3.9.1 以高低雙電位刺激白金工作電極活性 55
3.9.2 以高低雙電位進行自由氯之感測 55
3.10 兩段式脈衝安培法最佳參數之探討 56
3.11 以參數最佳化後之兩段式脈衝安培法進行自由氯感測 57
3.11.1 以電化學分析儀對次氯酸鈉水溶液中自由氯濃度進行量測 57
3.11.2 以自製自由氯感測器對自製電解水進行量測 57
3.12氯離子濃度對自由氯感測之影響 58
第四章 結果與討論 59
4.1 利用循環伏安法掃描進行之各項探討 59
4.1.1 電解水、次氯酸鈉溶液及不同背景溶液之循環伏安掃描分析 59
4.1.2 不同氯離子濃度水溶液之循環伏安掃描與分析 61
4.1.2 不同自由氯濃度電解水之循環伏安掃描與分析 62
4.2 以安培分析法量測水溶液之自由氯濃度 64
4.3 電極活性之探討 69
4.4 以高低兩段式方波訊號為策略製作自由氯感測器 71
4.6 兩段式脈衝安培法之參數最佳化 74
4.6.1 感測電位之最佳化 74
4.6.2 還原電位之最佳化 77
4.6.3 電位施加時間之最佳化 79
4.6.4 積分時間之最佳化 80
4.6.5 兩段式脈衝安培法之最佳參數 82
4.7 以參數最佳化後之兩段式脈衝安培法進行自由氯感測 83
4.7.1 以電化學分析儀對次氯酸鈉水溶液中自由氯濃度之量測 83
4.7.2 以自製自由氯感測器對自製電解水進行量測 87
4.8 氯離子濃度對自由氯感測之影響 89
第五章 結論與建議 91
參考文獻 92
dc.language.isozh-TW
dc.subject白金電極zh_TW
dc.subject無隔膜電解水zh_TW
dc.subject自由氯zh_TW
dc.subject兩段式脈衝安培法zh_TW
dc.subjecttwo-step pulsed amperometricen
dc.subjectelectrolyzed wateren
dc.subjectfree available chlorineen
dc.subjectplatinum electrodeen
dc.title兩段式脈衝安培法應用於自由氯感測zh_TW
dc.titleApplying Two-step Pulsed Amperometric Detection Method in FAC Sensingen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張振平,陳林祈
dc.subject.keyword無隔膜電解水,自由氯,兩段式脈衝安培法,白金電極,zh_TW
dc.subject.keywordelectrolyzed water,free available chlorine,two-step pulsed amperometric,platinum electrode,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2011-08-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved