Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑美(Seu-Mei Wang)
dc.contributor.authorPei Wangen
dc.contributor.author王霈zh_TW
dc.date.accessioned2021-06-12T18:06:06Z-
dc.date.available2008-02-19
dc.date.copyright2008-02-19
dc.date.issued2008
dc.date.submitted2008-01-03
dc.identifier.citationAkama KT, McEwen BS. 2003. Estrogen stimulates postsynaptic density-95 rapid protein synthesis via the Akt/protein kinase B pathway. J Neurosci 23(6):2333-2339.
Aloyo VJ, Zwiers H, Gispen WH. 1983. Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase. J Neurochem 41:649-653.
Andræ J, Bongcam-Rudloff E, Hansson I, Lendahl U, Westermark B, Nister M A. 2001. 1.8kb GFAP-promoter fragment is active in specific regions of the embryonic CNS. Mech Dev 107:181-185.
Andreescu CE, Milojkovic BA, Haasdijk ED, Kramer P, De Jong FH, Krust A, De Zeeuw CI, De Jeu MT. 2007. Estradiol improves cerebellar memory formation by activating estrogen receptor beta. J Neurosci 27:10832-10839.
Athlan ES, Sacher MG, Mushynski WE. 1997. Associations between intermediate filament proteins expressed in cultured dorsal root ganglion neurons. J Neurosci Res 47:300-310.
Audesirk T, Cabell L, Kern M, Audesirk G. 2003. beta-estradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process. Neuroscience 121:927-934.
Azcoitia I, Moreno A, Carrero P, Palacios S, Garcia-Segura LM. 2006. Neuroprotective effects of soy phytoestrogens in the rat brain. Gynecol Endocrinol 22:63-69.
Beaudet L, Charron G, Houle D, Tretjakoff I, Peterson A, Julien JP. 1992. Intragenic regulatory elements contribute to transcriptional control of the neurofilament light gene. Gene 116:205-214.
Belecky-Adams T, Wight DC, Kopchick JJ, Parysek LM. 1993. Intragenic sequences are required for cell type-specific and injury-induced expression of the rat peripherin gene. J Neurosci 13:5056-5065.
Benowitz LI, Routtenberg A. 1997. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84-91.
Beyer C, Karolczak M. 2000. Estrogenic stimulation of neurite growth in midbrain dopaminergic neurons depends on cAMP/protein kinase A signalling. J Neurosci Res 59:107-116.
Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A. 1994. GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 14:1030-1037.
Brinton RD. 2001. Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer's disease: recent insights and remaining challenges. Learn Mem 8:121-133.
Brown DM, Kelly GE, Husband AJ. 2005. Flavonoid compounds in maintenance of prostate health and prevention and treatment of cancer. Mol Biotechnol 30:253-270.
Bu L, Lephart ED. 2005. Soy isoflavones modulate the expression of BAD and neuron-specific beta III tubulin in male rat brain. Neurosci Lett 385(2):153-157.
Budhram-Mahadeo V, Morris PJ, Lakin ND, Dawson SJ, Latchman DS. 1996. The different activities of the two activation domains of the Brn-3a transcription factor are dependent on the context of the binding site. J Biol Chem 271:9108-9113.
Budhram-Mahadeo V, Morris PJ, Lakin ND, Theil T, Ching GY, Lillycrop KA, Moroy T, Liem RK, Latchman DS. 1995. Activation of the alpha-internexin promoter by the Brn-3a transcription factor is dependent on the N-terminal region of the protein. J Biol Chem 270:2853-2858.
Carrer HF, Cambiasso MJ, Gorosito S. 2005. Effects of estrogen on neuronal growth and differentiation.J Steroid Biochem Mol Biol 93:319-323.
Chan SO, Chiu FC. 1995. Cloning and developmental expression of human 66 kD neurofilament protein. Brain Res Mol Brain Res 29:177-184.
Charron G, Guy LG, Bazinet M, Julien JP. 1995. Multiple neuron-specific enhancers in the gene coding for the human neurofilament light chain. J Biol Chem 270:30604-30610.
Chen Y, Cantrell AR, Messing RO, Scheuer T, Catterall WA. 2005. Specific modulation of Na+ channels in hippocampal neurons by protein kinase C epsilon. J Neurosci 25:507-513.
Chien CL, Lee TH, Lu KS. 1998. Distribution of neuronal intermediate filament proteins in the developing mouse olfactory system. J Neurosci Res 54:353-363.
Chien CL, Liem RK. 1994. Characterization of the mouse gene encoding the neuronal intermediate filament protein alpha-internexin. Gene 149:289-292.
Chien CL, Mason CA, Liem RK. 1996. alpha-Internexin is the only neuronal intermediate filament expressed in developing cerebellar granule neurons. J Neurobiol 29:304-318.
Ching GY, Chien CL, Flores R, Liem RK. 1999. Overexpression of alpha-internexin causes abnormal neurofilamentous accumulations and motor coordination deficits in transgenic mice. J Neurosci 19:2974-2986.
Ching GY, Liem RK. 1991. Structure of the gene for the neuronal intermediate filament protein alpha-internexin and functional analysis of its promoter. J Biol Chem 266:19459-19468.
Chu MS, Chang CF, Yang CC, Bau YC, Ho LL, Hung SC. 2006. Signalling pathway in the induction of neurite outgrowth in human mesenchymal stem cells. Cell Signal 18:519-530.
Ciana P, Scarlatti F, Biserni A, Ottobrini L, Brena A, Lana A, Zagari F, Lucignani G, Maggi A. 2006. The dynamics of estrogen receptor activity.Maturitas 54(4):315-320.
Cinato E, Mirotsou M, Sablitzky F. 2001. Cre-mediated transgene activation in the developing and adult mouse brain. Genesis 31:118-125.
Clarke CH, Norfleet AM, Clarke MS, Watson CS, Cunningham KA, Thomas ML. 2000. Perimembrane localization of the estrogen receptor alpha protein in neuronal processes of cultured hippocampal neurons. Neuroendocrinology 71:34-42.
Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. 2003. Phytoestrogens: recent developments. Planta Med 69:589-599.
Craske ML, Fivaz M, Batada NN, Meyer T. 2005. Spines and neurite branches function as geometric attractors that enhance protein kinase C action. J Cell Biol 170:1147-1158.
Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N. 1997. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17(3):346-349.
Davies SP, Reddy H, Caivano M, Cohen P. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95-105.
de Wilde A, Heberden C, Chaumaz G, Bordat C, Lieberherr M. 2006. Signaling networks from Gbeta1 subunit to transcription factors and actin remodeling via a membrane-located ERbeta-related protein in the rapid action of daidzein in osteoblasts. J Cell Physiol 209:786-801.
de Wilde A, Heberden C, Chaumaz G, Bordat C, Lieberherr M. 2006. Signaling networks from Gbeta1 subunit to transcription factors and actin remodeling via a membrane-located ERbeta-related protein in the rapid action of daidzein in osteoblasts. J Cell Physiol 209:786-801.
Dent EW, Meiri KF. 1998. Distribution of phosphorylated GAP-43 (neuromodulin) in growth cones directly reflects growth cone behavior. J Neurobiol 35:287-299.
Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363-9367.
Dominguez R, Jalali C, de Lacalle S. 2004. Morphological effects of estrogen on cholinergic neurons in vitro involves activation of extracellular signal-regulated kinases. J Neurosci 24:982-990.
Dotti CG, Sullivan CA, Banker GA. 1988. The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454-1468.
Eom DS, Choi WS, Oh YJ. 2004. Bcl-2 enhances neurite extension via activation of c-Jun N-terminal kinase. Biochem Biophys Res Commun 314:377-381.
Farrell FX, Sax CM, Zehner ZE. 1990. A negative element involved in vimentin gene expression. Mol Cell Biol 10:2349-2358.
Faussone-Pellegrini MS, Matini P, DeFelici M. 1999. The cytoskeleton of the myenteric neurons during murine embryonic life. Anat Embryol (Berl) 199:459-469.
Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. 1997. CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031-1047.
Fliegner KH, Ching GY, Liem RK. 1990. The predicted amino acid sequence of alpha-internexin is that of a novel neuronal intermediate filament protein. EMBO J 9:749-755.
Fliegner KH, Kaplan MP, Wood TL, Pintar JE, Liem RK. 1994. Expression of the gene for the neuronal intermediate filament protein alpha-internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J Comp Neurol 342:161-173.
Fukata Y, Kimura T, Kaibuchi K. 2002. Axon specification in hippocampal neurons. Neurosci Res 43:305-315.
Gerecke KM, Wyss JM, Carroll SL. 2004. Neuregulin-1beta induces neurite extension and arborization in cultured hippocampal neurons. Mol Cell Neurosci 27:379-393.
Gollapudi L, Oblinger MM. 2001. Estrogen effects on neurite outgrowth and cytoskeletal gene expression in ERalpha-transfected PC12 cell lines. Exp Neurol 171:308-316.
Golstein ME, Grant P, House SB, Henken DB, Gainer H. 1996. Developmental regulation of two distinct neuronal phenotypes in rat dorsal root ganglia. Neuroscience 71:243–258.
Goslin K, Banker G. 1990. Rapid changes in the distribution of GAP-43 correlate with the expression of neuronal polarity during normal development and under experimental conditions. J Cell Biol 110:1319-1331.
Greene LA. 1989. A new neuronal intermediate filament protein. Trends Neurosci 12:228-230.
Greenwood AL, Turner EE, Anderson DJ. 1999. Identification of dividing, determined sensory neuron precursors in the mammalian neural crest. Development 126:3545-3559.
Gschwendt M, Dieterich S, Rennecke J, Kittstein W, Mueller HJ, Johannes FJ. 1996. Inhibition of protein kinase C mu by various inhibitors. Differentiation from protein kinase c isoenzymes. FEBS Lett 392:77-80.
Ha H, Lee YS, Lee JH, Choi H, Kim C. 2006. High performance liquid chromatographic analysis of isoflavones in medicinal herbs. Arch Pharm Res 29:96-101.
Halabalaki M, Alexi X, Aligiannis N, Lambrinidis G, Pratsinis H, Florentin I, Mitakou S, Mikros E, Skaltsounis AL, Alexis MN. 2006. Estrogenic activity of isoflavonoids from Onobrychis ebenoides. Planta Med 72:488-493.
Hawkins MB, Thomas P. 2004. The unusual binding properties of the third distinct teleost estrogen receptor subtype ERbeta are accompanied by highly conserved amino acid changes in the ligand binding domain. Endocrinology 145:2968-2977.
Hirasawa M, Cho A, Sreenath T, Sauer B, Julien JP, Kulkarni AB. 2001. Neuron-specific expression of Cre recombinase during the late phase of brain development. Neurosci Res 40:125-132.
Ho CL, Liem RK. 1996. Intermediate filaments in the nervous system: implications in cancer. Cancer Metastasis Rev 15:483-497.
Holgado A, Ferreira A. 2000. Synapse formation proceeds independently of dendritic elongation in cultured hippocampal neurons. J Neurobiol 43:121-131.
Honig MG, Kueter J. 1995. The expression of cell adhesion molecules on the growth cones of chick cutaneous and muscle sensory neurons. Dev Biol 167:563-583.
Hortsch M. 2003. Neural cell adhesion molecules--brain glue and much more! Front Biosci 8:d357-d359.
Hsu C, Janicki S, Monteiro MJ. 1995. The first intron of the mouse neurofilament light gene (NF-L) increases gene expression. Brain Res Mol Brain Res 32:241-251.
Jessen U, Novitskaya V, Pedersen N, Serup P, Berezin V, Bock E. 2001. The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cells. J Neurochem 79:1149-1160.
Jin Y, Wu H, Cohen EM, Wei J, Jin H, Prentice H, Wu JY. 2007. Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures. J Biomed Sci (online published)
Johnson JA, Gray MO, Chen CH, Mochly-Rosen D. 1996. A protein kinase C translocation inhibitor as an isozyme-selective antagonist of cardiac function. J Biol Chem 271:24962–24966.
Julien JP, Beaudet L, Tretjakoff I, Peterson A. 1990. Neurofilament gene expression in transgenic mice. J Physiol (Paris) 84:50-52.
Julien JP, Grosveld F, Yazdanbaksh K, Flavell D, Meijer D, Mushynski W. 1987. The structure of a human neurofilament gene (NF-L): a unique exon-intron organization in the intermediate filament gene family. Biochim Biophys Acta 6:10-20.
Kalita K, Szymczak S, Kaczmarek L. 2005. Non-nuclear estrogen receptor beta and alpha in the hippocampus of male and female rats. Hippocampus 15:404-412.
Kamata Y, Shiraga H, Tai A, Kawamoto Y, Gohda E. 2007. Induction of neurite outgrowth in PC12 cells by the medium-chain fatty acid octanoic acid. Neuroscience 146:1073-1081.
Kamei Y, Tsang CK. 2003. Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinases-mediated signaling pathways in PC12D cells. Int J Dev Neurosci 21:255-262.
Kapfhammer JP. 2004. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem 39:131-182.
Kaplan MP, Chin SS, Fliegner KH, Liem RK. 1990. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci 10:2735-2748.
Karpov V, Landon F, Djabali K, Gros F, Portier MM. 1992. Structure of the mouse gene encoding peripherin: a neuronal intermediate filament protein. Biol Cell 76:43-48. Erratum in: Biol Cell 53:427.
Kawaguchi J, Wilson V, Mee PJ. 2002. Visualization of whole-mount skeletal expression patterns of LacZ reporters using a tissue clearing protocol. Biotechniques 32:66-73.
Kelly MJ, Levin ER. 2001. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 12:152–156
Kelly MJ, Wagner EJ. 1999. Estrogen modulation of G-protein-coupled receptors. Trends Endocrinol Metab 10:369–374.
Kim H, Xia H, Li L, Gewin J. 2000. Attenuation of neurodegeneration-relevant modifications of brain proteins by dietary soy. Biofactors 12:243-250.
Kishi Y, Takahashi J, Koyanagi M, Morizane A, Okamoto Y, Horiguchi S, Tashiro K, Honjo T, Fujii S, Hashimoto N. 2005. Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells. J Neurosci Res 79:279-286.
Korshunova I, Novitskaya V, Kiryushko D, Pedersen N, Kolkova K, Kropotova E, Mosevitsky M, Rayko M, Morrow JS, Ginzburg I, Berezin V, Bock E. 2007. GAP-43 regulates NCAM-180-mediated neurite outgrowth. J Neurochem 100:1599-1612.
Kostelac D, Rechkemmer G, Briviba K. 2003. Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632-7635.
Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S. 1997. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863–870.
Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252-4263.
Kuppers E, Ivanova T, Karolczak M, Lazarov N, Fohr K, Beyer C.2001. Classical and nonclassical estrogen action in the developing midbrain. Horm Behav 40:196-202.
Kwan KM. 2002. Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32:49-62.
Lariviere RC, Julien JP. 2004. Functions of intermediate filaments in neuronal development and disease. J Neurobiol 58:131-148.
Latchman DS. 1999. POU family transcription factors in the nervous system. J Cell Physiol 179:126-133.
Lecomte MJ, Basseville M, Fauquet M. 1999. Involvement of intronic sequences in cell-specific expression of the peripherin gene. J Neurochem 73:1806-1815.
Leconte L, Semonin O, Zvara A, Boisseau S, Poujeol C, Julien JP, Simonneau M. 1994-95. Both upstream and intragenic sequences of the human neurofilament light gene direct expression of LacZ in neurons of transgenic mouse embryos. J Mol Neurosci 5:273-295.
Lee SJ, Campomanes CR, Sikat PT, Greenfield AT, Allen PB, McEwen BS. 2004. Estrogen induces phosphorylation of cyclic AMP response element binding (pCREB) in primary hippocampal cells in a time-dependent manner. Neuroscience 124:549-560.
Lee SJ, Campomanes CR, Sikat PT, Greenfield AT, Allen PB, McEwen BS. 2004. Estrogen induces phosphorylation of cyclic AMP response element binding (pCREB) in primary hippocampal cells in a time-dependent manner. Neuroscience 124:549-560.
Lee YB, Lee HJ, Sohn HS. 2005. Soy isoflavones and cognitive function. J Nutr Biochem 16:641-649.
Lendahl U, Zimmerman LB, McKay RD. 1990. CNS stem cells express a new class of intermediate filament protein. Cell 60:585-595.
Liem RK. 1990. Neuronal intermediate filaments. Curr Opin Cell Biol 2:86-90.
Loers G, Chen S, Grumet M, Schachner M. 2005. Signal transduction pathways implicated in neural recognition molecule L1 triggered neuroprotection and neuritogenesis. J Neurochem 92(6):1463-1476.
Lothian C, Prakash N, Lendahl U, Wahlstrom GM. 1999. Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter. Exp Cell Res 248:509-519.
Lu YP, Zeng M, Swaab DF, Ravid R, Zhou JN. 2004. Colocalization and alteration of estrogen receptor-alpha and -beta in the hippocampus in Alzheimer's disease. Hum Pathol 35(3):275-280.
Ma L, Lei L, Eng SR, Turner E, Parada LF. 2003. Brn3a regulation of TrkA/NGF receptor expression in developing sensory neurons. Development 130:3525-3534.
MacDonald RS, Guo J, Copeland J, Browning JD Jr, Sleper D, Rottinghaus GE, Berhow MA. 2005. Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J Nutr 135:1239-1242.
Martin JA, Brown TD, Heiner AD, Buckwalter JA. 2004. Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res (427 Suppl):S96-103.
Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Marme D, Schachtele C. 1993. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö6976. J Biol Chem 268:9194-9197.
McEwen BS, Akrama K, Alves S, Brake WG, Bulloch K, Lee S, Yuen G, Milner TA. 2001. Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proc Natl Acad Sci USA 98:7093–7100.
Messina M, Ho S, Alekel DL. 2004. Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 7:649-658.
Mhyre AJ, Dorsa DM. 2006. Estrogen activates rapid signaling in the brain: role of estrogen receptor alpha and estrogen receptor beta in neurons and glia. Neuroscience 138:851-858.
Mikkelsen SE, Novitskaya V, Kriajevska M, Berezin V, Bock E, Norrild B, Lukanidin E. 2001. S100A12 protein is a strong inducer of neurite outgrowth from primary hippocampal neurons. J Neurochem 79:767-776.
Milner TA, McEwen BS, Hayashi S. 2001. Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol 429:355-371.
Monroe DG, Spelsberg TC. 2003. A case for estrogen receptors on cell membranes and nongenomic actions of estrogen. Calcif Tissue Int 72:183-184.
Moriarty K, Kim KH, Bender JR. 2006. Minireview: estrogen receptor-mediated rapid signaling. Endocrinology 147:5557-5563.
Murdoch FE, Gorski J. 1991. The role of ligand in estrogen receptor regulation of gene expression. Mol Cell Endocrinol 78(3):C103-C108.
Murphy DD, Segal M. 1997. Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci U S A 94:1482-1487.
Nagy A. 2000. Cre recombinase: the universal reagent for genome tailoring. Genesis 26:99-109.
Nemere I, Pietras RJ, Blackmore PF. 2003. Membrane receptors for steroid hormones: signal transduction and physiological significance. J Cell Biochem 88(3):438-445.
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. 1997. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 53:627-686.
Omoni AO, Aluko RE. 2005. Soybean foods and their benefits: potential mechanisms of action. Nutr Rev 63:272-283.
Osterlund M., Kupier GG, Gustaffson JA, Hurd YL. 1998. Differential distribution and regulation of estrogen receptor α and β mRNA within the female brain. Mol Brain Res 54:175–180.
Pachter JS, Liem RK. 1985. alpha-Internexin, a 66-kD intermediate filament-binding protein from mammalian central nervous tissues. J Cell Biol 101:1316-1322.
Park D, Huang T, Frishman WH. 2005. Phytoestrogens as cardioprotective agents. Cardiol Rev 13:13-17.
Phipps WR, Duncan AM, Kurzer MS. 2002. Isoflavones and postmenopausal women: a critical review. Treat Endocrinol 1:293-311.
Purves-Tyson TD, Keast JR. 2004. Rapid actions of estradiol on cyclic amp response-element binding protein phosphorylation in dorsal root ganglion neurons. Neuroscience 129:629-637.
Qi AQ, Qiu J, Xiao L, Chen YZ. 2005. Rapid activation of JNK and p38 by glucocorticoids in primary cultured hippocampal cells. J Neurosci Res 80:510-517.
Qian J, Wang HY, Fischer I, Friedman E, Levitt P. 1994. Involvement of protein kinase C in the axonal growth-promoting effect on spinal cord neurons by target-derived astrocytes. J Neurobiol 25:1593-1612.
Ramakers GJ, De Graan PN, Oestreicher AB, Boer GJ, Corner MA, Gispen WH. 1991. Developmental changes in B-50 (GAP-43) in primary cultures of cerebral cortex: content and phosphorylation of B-50. Int J Dev Neurosci 9:231-241.
Rao MV, Campbell J, Yuan A, Kumar A, Gotow T, Uchiyama Y, Nixon RA. 2003. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol 163(5):1021-1031.
Reeben M, Halmekyto M, Alhonen L, Sinervirta R, Saarma M, Janne J. 1993. Tissue-specific expression of rat light neurofilament promoter-driven reporter gene in transgenic mice. Biochem Biophys Res Commun 192:465-470.
Rekart JL, Meiri K, Routtenberg A. 2005. Hippocampal-dependent memory is impaired in heterozygous GAP-43 knockout mice. Hippocampus 15:1-7.
Riese U, Ziegler E, Hamburger M. 2004. Militarinone A induces differentiation in PC12 cells via MAP and Akt kinase signal transduction pathways. FEBS Lett 577:455-459.
Rio C, Dikkes P, Liberman MC, Corfas G. 2002. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol 442:156-162.
Rizzuto R. 2001. Intracellular Ca(2+) pools in neuronal signalling. Curr Opin Neurobiol 11:306-311.
Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. 2005. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34-42.
Routtenberg A, Cantallops I, Zaffuto S, Serrano P, Namgung U 2000. Enhanced learning after genetic overexpression of a brain growth protein. Proc Natl Acad Sci U S A 97:7657-7662.
Sasahara K, Shikimi H, Haraguchi S, Sakamoto H, Honda S, Harada N, Tsutsui K. 2007. Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J Neurosci 27:7408-7417.
Sauer B. 1998. Inducible gene targeting in mice using the Cre/lox system. Methods 14:381-392.
Sawada H, Shimohama S. 2003. Estrogens and Parkinson disease: novel approach for neuroprotection. Endocrine 21:77-79.
Sax CM, Farrell FX, Tobian JA, Zehner ZE. 1988. Multiple elements are required for expression of an intermediate filament gene. Nucleic Acids Res 25:8057-8076.
Schreihofer DA, Do KD, Schreihofer AM. 2005. High-soy diet decreases infarct size after permanent middle cerebral artery occlusion in female rats. Am J Physiol Regulatory Integrative Comp Physiol 289:R103-R108.
Schreihofer DA. 2005. Transcriptional regulation by phytoestrogens in neuronal cell lines. Mol Cell Endocrinol 231:13-22.
Schwartz ML, Hua Y, Canete-Soler R, Schlaepfer WW. 1998. Characterization of the mouse neurofilament light (NF-L) gene promoter by in vitro transcription. Brain Res Mol Brain Res 57:21-30.
Schwartz ML, Katagi C, Bruce J, Schlaepfer WW. 1994. Brain-specific enhancement of the mouse neurofilament heavy gene promoter in vitro. J Biol Chem 269:13444-13450.
Setchell KDR, Brown NM, Lydeking-Olsen E. 2002. The clinical importance of the metabolite equol - a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577-3584.
Sharma K, Mehra RD, Dhar P, Vij U. 2007. Chronic exposure to estrogen and tamoxifen regulates synaptophysin and phosphorylated cAMP response element-binding (CREB) protein expression in CA1 of ovariectomized rat hippocampus. Brain Res 1132:10-9.
Shen Y, Mani S, Donovan SL, Schwob JE, Meiri KF. 2002. Growth-associated protein-43 is required for commissural axon guidance in the developing vertebrate nervous system. J Neurosci 22:239-247.
Shughrue PJ, Lane MV, Merchenthaler I. 1997. Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J Comp Neurol 388:507– 525.
Singh M, Setalo G Jr, Guan X, Warren M, Toran-Allerand CD. 1999. Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J Neurosci 19:1179-1188.
Smith MD, Dawson SJ, Latchman DS. 1997b. Inhibition of neuronal process outgrowth and neuronal specific gene activation by the Brn-3b transcription factor. J Biol Chem 272:1382-1388.
Smith MD, Morris PJ, Dawson SJ, Schwartz ML, Schlaepfer WW, Latchman DS. 1997a. Coordinate induction of the three neurofilament genes by the Brn-3a transcription factor. J Biol Chem 272:21325-21333.
Soriano P. 1999. Generalized LacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70-71.
Spencer SA, Schuh SM, Liu WS, Willard MB. 1992. GAP-43, a protein associated with axon growth, is phosphorylated at three sites in cultured neurons and rat brain. J Biol Chem 267:9059-9064.
Steinert PM, Liem RK. 1990. Intermediate filament dynamics. Cell 60:521-523.
Strelkov SV, Herrmann H, Aebi U. 2003. Molecular architecture of intermediate filaments. Bioessays 25:243-251.
Su JD, Qiu J, Zhong YP. 2001. Expression of estrogen receptor (ER)-alpha and -beta immunoreactivity in hippocampal cell cultures with special attention to GABAergic neurons. J Neurosci Res 65:396-402.
Sweatt JD. 2004. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 14:311-317.
Tejero-Diez P, Rodriguez-Sanchez P, Martin-Cofreces NB, Diez-Guerra FJ. 2000. bFGF stimulates GAP-43 phosphorylation at ser41 and modifies its intracellular localization in cultured hippocampal neurons. Mol Cell Neurosci 16:766-780.
Thompson MA, Ziff EB. 1989. Structure of the gene encoding peripherin, an NGF-regulated neuronal-specific type III intermediate filament protein. Neuron 2:1043-1053.
Tojima T, Kobayashi S, Ito E. 2003. Dual role of cyclic AMP-dependent protein kinase in neuritogenesis and synaptogenesis during neuronal differentiation. J Neurosci Res 74:829-837.
Tonks ID, Nurcombe V, Paterson C, Zournazi A, Prather C, Mould AW, Kay GF. 2003. Tyrosinase-Cre mice for tissue-specific gene ablation in neural crest and neuroepithelial-derived tissues. Genesis 37:131-138.
Toran-Allerand CD, Singh M, Setalo G Jr. 1999. Novel mechanisms of estrogen action in the brain: new players in an old story. Front Neuroendocrinol 20:97-121.
Toran-Allerand CD. 2004. Estrogen and the brain: beyond ER-alpha and ER-beta. Exp Gerontol 39:1579-1586.
Tseng KW, Lu KS, Chien CL. 2006. A possible cellular mechanism of neuronal loss in the dorsal root ganglia of dystonia musculorum (dt) mice. J Neuropathol Exp Neurol 65:336-347.
Uveges TE, Shan Y, Kramer BE, Wight DC, Parysek LM. 2002. Intron 1 is required for cell type-specific, but not injury-responsive, peripherin gene expression. J Neurosci 15:7959-7967.
Vasudevan N, Kow LM, Pfaff D. 2005. Integration of steroid hormone initiated membrane action to genomic function in the brain. Steroids 70:388-396.
Vickers JC, Chiu FC, Costa M. 1992. Selective distribution of the 66-kDa neuronal intermediate filament protein in the sensory and autonomic nervous system of the guinea-pig. Brain Res 585:205-211.
Voiculescu O, Charnay P, Schneider-Maunoury S. 2000. Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis 26:123-126.
von Schassen C, Fester L, Prange-Kiel J, Lohse C, Huber C, Bottner M, Rune GM. 2006. Oestrogen synthesis in the hippocampus: role in axon outgrowth. J Neuroendocrinol 18:847-56.
Waetzig V, Herdegen T. 2005. MEKK1 controls neurite regrowth after experimental injury by balancing ERK1/2 and JNK2 signaling. Mol Cell Neurosci 30:67-78.
Wang L, Andersson S, Warner M, Gustafsson JA. 2001. Morphological abnormalities in the brains of estrogen receptor beta knockout mice. Proc Natl Acad Sci 98:2792-2796.
Wang L, Andersson S, Warner M, Gustafsson JA. 2003. Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain. Proc Natl Acad Sci 100:703-708.
Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, Wersto RP, Boheler KR, Wobus AM. 2004. Nestin expression--a property of multi-lineage progenitor cells? Cell Mol Life Sci 61:2510-2522.
Xiao J, Liu Y. 2003. Differential roles of ERK and JNK in early and late stages of neuritogenesis: a study in a novel PC12 model system. J Neurochem 86:1516-1523.
Yaworsky PJ, Gardner DP, Kappen C. 1997. Transgenic analyses reveal developmentally regulated neuron- and muscle-specific elements in the murine neurofilament light chain gene promoter. J Biol Chem 272:25112-25120.
Young E, Cesena T, Meiri KF, Perrone-Bizzozero NI. 2002. Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus 12:457-464.
Zeidman R, Troller U, Raghunath A, Pahlman S, Larsson C. 2002. Protein kinase Cepsilon actin-binding site is important for neurite outgrowth during neuronal differentiation. Mol Biol Cell 13:12-24.
Zhai H, Nakade K, Oda M, Mitsumoto Y, Akagi M, Sakurai J, Fukuyama Y. 2005. Honokiol-induced neurite outgrowth promotion depends on activation of extracellular signal-regulated kinases (ERK1/2). Eur J Pharmacol 516:112-117.
Zhang D, Trudeau VL. 2006. Integration of membrane and nuclear estrogen receptor signaling. Comp Biochem Physiol A Mol Integr Physiol. 144:306-315.
Zhao L, Chen Q, Brinton RD. 2002. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp Biol Med 227:509-519.
Zhao L, Chen S, Wang JM, Brinton RD. 2005. 17beta-estradiol induces Ca2+ influx, dendritic and nuclear Ca2+ rise and subsequent cyclic AMP response element-binding protein activation in hippocampal neurons: a potential initiation mechanism for estrogen neurotrophism. Neuroscience 132 :299-311.
Zheng MH, Papadimitriou JM, Nicholson GC. 1991. A quantitative cytochemical investigation of osteoclasts and multinucleate giant cells. Histochem J 23(4):180-188.
Zhou L, Nepote V, Rowley DL, Levacher B, Zvara A, Santha M, Mi QS, Simonneau M, Donovan DM. 2002. Murine peripherin gene sequences direct Cre recombinase expression to peripheral neurons in transgenic mice. FEBS Lett 523:68-72.
Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A. 2001. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31:85-94.
Zopf D, Dineva B, Betz H, Gundelfinger ED. 1990. Isolation of the chicken middle-molecular weight neurofilament (NF-M) gene and characterization of its promoter. Nucleic Acids Res 18:521-529.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27468-
dc.description.abstract第一部分 探討α-internexin啟動子在離體與活體系統中的表現
α-Internexin是一種分子量為66 kDa的神經中間絲蛋白,其會大量表現在發育早期的神經系統中。為了進一步了解小鼠α-internexin基因啟動子的功能,我們分別設計以0.7 kb和1.3 kb不同長度的小鼠α-internexin基因5端序列來驅動綠色螢光蛋白 (EGFP,enhanced green fluorescence protein) 基因之DNA質體 (分別為p0.7intfs-EGFP和p1.3intfs-EGFP),並觀察螢光蛋白在細胞株中專一性表現的情形。將DNA質體以lipofectamine轉染至非神經性纖維母細胞株3T3及神經細胞株Neuro2A後,我們觀察到1.3 kb α-internexin基因啟動子驅動綠色螢光蛋白基因會顯著地選擇表現在Neuro2A細胞內。為了確定1.3 kb α-internexin基因啟動子的神經專一性,我們設計一由1.3 kb α-internexin啟動子驅動DNA重組酶Cre蛋白基因的DNA質體 (p1.3intfs-Cre),並進一步以此質體架構建立基因轉殖鼠品系。先把p1.3intfs-Cre與ploxpLacZ質體共同轉染至Neuro2A細胞株確定Cre DNA重組酶蛋白在神經性細胞株內的表現活性後,我們將p1.3intfs-Cre基因轉殖鼠與具有ROSA26 reporter (R26R) 的小鼠交配,透過X-gal染色法標示β-galactosidase在新生鼠體內的表現,即可以檢視Cre DNA重組酶的表現活性與位置。在具有p1.3intfs-Cre基因與R26R基因表現的1天齡新生鼠體內,我們可以在周邊神經系統中偵測到β-galactosidase的活性,例如在支配舌及顏面的腦神經分支及分布到軀幹的脊神經分支內。更進一步地,我們證實在背根神經節內具有被X-gal染色標定的神經元,其細胞體具有內生性α-Internexin免疫染色活性;然而脊髓腹角內具有α-Internexin免疫染色活性的運動神經元則並沒有表現任何β-galactosidase的活性。因此,本研究所建立之α-internexin啟動子驅動DNA重組酶Cre蛋白表現的轉殖鼠品系可提供作為一動物模式,用以操控其他特定神經元基因的表現,研究這些基因在神經系統發育過程中所扮演的角色。
第二部份 大豆甙元對鼠胚海馬回神經元的神經滋養作用及其機制
大豆甙元 (Daidzein, Dz) 具有與動物雌激素 (estrogen or β-estradiol, E2) 相似的神經活性。在本研究中,我們以初級培養大鼠海馬回神經元 (hippocampal neuron) 為材料,探討大豆甙元的神經滋養效果 (neurotrophic effect) 及可能之機制。實驗結果發現,大豆甙元可增進軸突生長 (axonal outgrowth) 及促進生長錐 (growth cone) 的形成,大豆甙元亦可使在軸突生長早期生長錐內的生長相關蛋白43 (growth-associated protein 43, GAP-43) 免疫染色增加。更進一步地,我們發現大豆甙元會增加磷酸化GAP-43的含量而對GAP-43總含量沒有影響。這些大豆甙元促進軸突生長及GAP-43磷酸化的作用會被蛋白激酶C (protein kinase C, PKC) α/βI的抑制劑Gö6976所阻斷,但卻不受PKCε的抑制劑εV1-2或MEK/ERK的抑制劑PD89059影響。此外,大豆甙元可誘導PKCα的磷酸化和細胞膜轉位,而非PKCβ。我們亦發現在大豆甙元處理後,雌激素受器 (estrogen receptor, ER) β的免疫染色會集中在神經細胞體及生長中軸突的細胞膜上,而在細胞核的ERα免疫染色分布則不受影響。當投予ER的拮抗劑ICI182,780時,由大豆甙元引發的軸突生長以及PKCα和GAP-43的活化作用均會被抑制。綜合上述的研究結果,我們認為在軸突生長的早期,大豆甙元會引發ERβ的細胞膜轉位,接著造成PKCα的活化,因而使GAP-43被磷酸化,透過此一可能的機制,大豆甙元可以促進海馬回神經元的軸突生長。接著,我們進一步探討大豆甙元對樹突生長 (dendritic outgrowth) 與突觸形成 (synapse formation) 的神經滋養效果及可能之機制。我們發現,大豆甙元可增加神經元樹突的總長度、樹突末端總數、樹突分岔次數及二級以上樹突的數目,也會提高樹突微小管相關蛋白MAP2 (microtubule-asociated protein 2) 和神經中間絲蛋白NFL (neurofilament light) 的表現量;此外我們亦發現在海馬神經元生長後期,大豆甙元會增加GAP-43、突觸蛋白I (synapsin I)、突觸後緻密蛋白95 ( post-synaptic density protein 95, PSD95) 和嗜棘蛋白 (spinophilin) 的免疫染色。經由FM1-43染劑攝入測定法,我們觀察到大豆甙元會增加活化態突觸前末端的數量。這些結果證實大豆甙元具有促進樹突生長與突觸形成的效果。這些大豆甙元所促進的樹突生長和增加細胞骨架蛋白的表現主要會被ER的拮抗劑ICI182,780、MEK/ERK抑制劑PD98059、PKA抑制劑PKI和CaMKII抑制劑KN93所阻斷,但較不受JNK抑制劑SP600125所影響。進一步發現大豆甙元促進CaMKII和ERK1/2的活化 (磷酸化作用) 會被ICI182,780所抑制,這顯示CaMKII和ERK1/2是在ER的下游。我們亦發現大豆甙元會使CREB磷酸化而且轉位至細胞核內。綜合上述的研究結果,我們認為大豆甙元可能會透過ER引發CaMKII和ERK1/2磷酸化,並且使CREB活化,進而促進海馬回神經元的樹突生長並影響細胞間突觸的形成。由於大豆甙元的神經滋養作用,未來有可能運用作為修復受傷海馬神經元的藥物之ㄧ。
zh_TW
dc.description.abstractPart I Neural Expression of mouse α-Internexin Promoter In Vitro and In Vivo
α-Internexin is a 66 kDa neuronal intermediate filament protein found most abundantly in the neurons of the nervous systems during early development. To characterize the function of mouse α-internexin promoter, we designed two different expression constructs driven by 0.7 kb or 1.3 kb of mouse α-internexin 5'-flanking sequences; one was the enhanced green fluorescent protein (EGFP) reporter for monitoring specific expression in vitro (p0.7intfs-EGFP and p1.3intfs-EGFP respectively), and the other was the cre for studying the functional DNA recombinase in transgenic mice. After introducing DNA constructs into non-neuronal 3T3 fibroblasts and a neuronal Neuro2A cell line by lipofectamine transfection, we observed that the expression of p1.3intfs-EGFP was in a neuron-dominant manner. To establish a tissue-specific pattern in the nervous system, we generated a transgenic mouse line expressing Cre DNA recombinase under the control of 1.3 kb α-Internexin promoter (p1.3intfs-Cre). The activity of the Cre recombinase was examined by mating the cre transgenic mice to ROSA26 reporter (R26R) mice with knock-in Cre-mediated recombination. Analyses of postnatal day 1 (P1) newborns showed that β-galactosidase activity was detected in the peripheral nervous system (PNS), such as cranial nerves innervating the tongue and the skin as well as spinal nerves to the body trunk. Furthermore, X-gal-labeled dorsal root ganglionic (DRG) neurons showed positive for α-Internexin in cell bodies but negative in their spinal nerves. The motor neurons in the spinal cord did not exhibit any β-galactosidase activity. Therefore, the cre transgene driven by mouse α-internexin promoter described here provides a useful animal model to specifically manipulate genes in the developing nervous system.
Part II Signaling Mechanisms of Daidzein-induced Neurotrophic Efficacy in Rat Cultured Embryonic Hippocampal Neurons
Daidzein (Dz) has an estrogen-like neuroactive effect. In this study, we aim to study the mechanisms underlying the neurotrophic effect of Dz in hippocampal neurons. First, we found that Dz enhanced axonal outgrowths and increased immunostaining intensity of growth-associated protein 43 (GAP-43) in growth cones of neurons at day in vitro (div) 1. Consistent with this, Dz increased GAP-43 phosphorylation and its membrane translocation without affecting total GAP-43 levels. In the presence of Dz, significant increase in the immunoreactivity for estrogen receptor (ER) β, but not ERα, was observed on the membrane of cell bodies and growing axons. Dz also induced the activation of protein kinase C α (PKCα), which was inhibited by the ICI182,780 pretreatment. Similarly, Dz-promoted axonal elongation was blocked by ICI182,780 and Gö6976. Moreover, Dz-stimulated activation of GAP-43 was specifically abolished by Gö6976, suggesting PKCα being the upstream effector of GAP-43. Therefore, Dz triggers an ERβ/PKCα/GAP-43 signaling cascade to promote axonal outgrowths in cultured hippocampal neurons. We further examined the neurotrophic effect of Dz on dendritic outgrowth and synapse formation of hippocampal neurons, and the possible underlying mechanisms. Dz increased total dendritic length by increasing dendritic branch order, and upregulated protein levels of microtubule-associated protein 2 (MAP2) and neurofilament light (NFL) in neurons at div 3. This promoted neurite outgrowth was completely inhibited by the ICI182,780 pretreatment. The immunostaining intensities for several synaptic proteins, GAP-43, synapsin I, PSD95, and spinophilin, were increased on the cell bodies and processes of neurons at div 5 after Dz treatment. Additionally, Dz-increased dendritic growth and MAP2 expression were effectively blocked by the MEK/ERK inhibitor PD98059, the PKA inhibitor PKI, and the CaMKII inhibitor KN93, but not by the JNK inhibitor SP600125. In agree with this, Dz increased CaMKII and ERK phosphorylation, which was abolished by ICI182,780 pretreatment. Dz also enhanced CREB phosphorylation and its nuclear translocation. These data suggest that Dz induced ER-dependent activation of CaMKII and MEK/ERK, which led to the activation and nuclear translocation of CREB and mediated dendritic outgrowth and synaptogenesis. Taken collectively, these results suggest that Dz triggers diverse neurotrophic effects on cultured rat hippocampal neurons via multiple signaling cascades.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:06:06Z (GMT). No. of bitstreams: 1
ntu-97-D89446004-1.pdf: 4597033 bytes, checksum: aa65e565878f93614017fd9c880b3fb2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書…i
誌謝… ii
中文摘要… iii
英文摘要… vii
英文縮寫與全名對照表… xi
第一章 文獻回顧… 1
第二章 探討α-internexin啟動子在離體與活體系統中的表現… 9
第一節 序論… 9
第二節 實驗材料及方法… 11
第三節 結果… 16
第四節 討論… 20
第三章 大豆甙元對離體培養鼠胚海馬回神經元軸突生長的作用… 41
第一節 序論… 41
第二節 實驗材料及方法… 44
第三節 結果… 52
第四節 討論… 59
第四章 大豆甙元對離體培養鼠胚海馬回神經元樹突生長及突觸形成的作用… 81
第一節 序論… 81
第二節 實驗材料及方法… 84
第三節 結果… 89
第四節 討論… 93
第五章 結論與未來展望… 115
參考文獻… 119
附錄一 大豆甙元引發離體培養鼠胚海馬回神經元軸突生長的作用機制… 134
附錄二 大豆甙元引發離體培養鼠胚海馬回神經元樹突生長可能的作用機制… 135
dc.language.isozh-TW
dc.subject啟動子zh_TW
dc.subjectCre/LoxP重組作用系統zh_TW
dc.subject訊息傳遞zh_TW
dc.subject神經滋養作用zh_TW
dc.subject神經生長相關蛋白GAP-43zh_TW
dc.subject植物雌激素zh_TW
dc.subjectα-Internexinzh_TW
dc.title探討α-internexin啟動子在離體與活體系統中的表現以及大豆甙元對鼠胚海馬回神經元的神經滋養作用及其機制zh_TW
dc.titleNeural Expression of Mouse α-Internexin Promoter In Vitro and In Vivo, and Signaling Mechanisms of Daidzein-induced Neurotrophic Efficacy in Rat Cultured Embryonic Hippocampal Neuronsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.coadvisor錢宗良(Chung-Liang Chien)
dc.contributor.oralexamcommittee謝松蒼,鄭瓊娟(Chung-Jiuan Jeng),王懷詩(Hwai-Shi Wang)
dc.subject.keywordα-Internexin,啟動子,Cre/LoxP重組作用系統,植物雌激素,神經生長相關蛋白GAP-43,神經滋養作用,訊息傳遞,zh_TW
dc.subject.keywordα-internexin,promoter,Cre/LoxP recombination system,phytoestrogen,growth-associated protein 43,neurotrophism,signal transduction,en
dc.relation.page135
dc.rights.note有償授權
dc.date.accepted2008-01-04
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨生物細胞學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved