Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬鴻文
dc.contributor.authorChi-Feng Chenen
dc.contributor.author陳起鳳zh_TW
dc.date.accessioned2021-06-12T18:06:02Z-
dc.date.available2008-03-20
dc.date.copyright2008-01-10
dc.date.issued2008
dc.date.submitted2008-01-04
dc.identifier.citationReference
Aalderink, R. H., A.Zoeteman, and R. Jovin. 1996. Effect of Input Uncertainties upon Scenario Predictions for the River Vecht. Water Science and Technology 33(2):107-118.
Arabi, M., R.S., Govindaraju, and M.M. Hantush. 2007. A Probabilistic Approach For Analysis of Uncertainty in the Evaluation of Watershed Management Practices. Journal of Hydrology, 333:459-471.
Azevedo, L. G. T., T. K. Gates, D. G. Fontane, J. W. Labadie, and R. L. Porto. 2000. Integration of Water Quantity and Quality in Strategic River Basin Planning. Journal of Water Resources Planning and Management 126(2):85-97.
Barnwell Jr., T.O., L.C. Brown, and R.C. Whittemore. 2004. Importance of Field Data in Stream Water Quality Modeling Using QUAL2E-UNCAS. Journal of Environmental Engineering, 130(6): 643-647.
Beck, M. B. and G. Straten, (Editors), 1983. Uncertainty and Forecasting of Water Quality. International Institute for Applied Systems Analysis, Laxenburg, Austria.
Benaman, J., and C.A. Shoemaker. 2004. Methodology for Analyzing Ranges of Uncertain Model Parameters and Their Impact on Total Maximum Daily Load Process. Journal of Environmental Engineering, 130(6):648-656.
Borsuk, M., C. Stow, and K. Reckhow. 2002. Predicting the Frequency of Water Quality Standard Violations: A Probabilistic Approach for TMDL Development. Environmental Science & Technology, 36(10): 2109-2115.
Borsuk, M., C. Stow, and K. Reckhow. 2003. Integrated Approach to Total Maximum Daily Load Development for Neuse River Estuary using Bayesian Probability Network Model (Neu-BERN). Journal of Water Resources Planning and Management, 129(4): 271-282.
Brafman, R. and M. Tennenholtz. 1996. On the Foundations of Qualitative Decision Theory. AAAI, 1291-1296.
Brown, L.C. and T.O. Barnwell. 1987. Computer Program Documentation for the Enhanced Stream Water Quality Model QUAL2E and QUAL2E-UNCAS. Report No. EPA-600/3-87/007. USEPA, Athens, Ga.
Burges, S. and D. Lettenmaier. 1975. Probabilistic Methods in Stream Quality Management. Water Resour Bull, 11(1):115-130
Burn, D. H. 1989. Water-Quality Management through Combined Simulation-Optimization Approach. Journal of Environmental Engineering 115(5):1011-1024.
Burn, D. H. and B. J. Lence. 1992. Comparison of Optimization Formulations For Waste-Load Allocations. Journal of Environmental Engineering 118(4):597-612.
Cardwell, H. and H. Ellis. 1993. Stochastic Dynamic Programming Models for Water Quality Management. Water Resources Research, 29(4):803-813.
Carrasc, I. J. and S. Y. Chang. 2005. Random Monte Carlo simulation analysis and risk assessment for ammonia concentrations in wastewater effluent disposal. Stochastic Environmental Research Risk Assessment, 19: 134–145.
Carson, Y. and A. Maria. 1997. Simulation Optimization: Methods and Applications. Proceedings of the 1997 Winter Simulation Conference, 118-126.
Castellarin, A., G. Galeati, L. Brandimarte, A. Montanari, and A. Brath. 2004a. Regional Flow-Duration Curves: Confidence for Ungauged Basins. Advances in Water Resources, 27, 953-965.
Castellarin, A., R.M. Vogel, and A. Barth. 2004b. A Stochastic Index Flow Model of Flow Duration Curves. Water Resources Research, 40(3), DOI:10.1029/2003WR002524.
Cerquides, J. and R. de Mantaras. 1998. Knowledge Discovery with Qualitative Influences and Synergies. Lect Notes Artif Int, 1510: 273-281.
Chaleeraktrakoon, C. 1999. Stochastic Procedure for Generating Seasonal Flows. Journal of Hydraulic Engineering, 4(4), 337-343.
Chang, C.K. 2005. Pollution Source Survey and Prevention Program Assess for the DaHanRiver Basin. Master Thesis, Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan. (In Chinese.)
Chang, N.B., H.W. Chen, and S.K. Ning. 2001. Identification of River Water Quality Using the Fuzzy Synthetic Evaluation Approach. Journal of Environmental Management, 63:293-305.
Chapra, S. C. and G. J. Pelletier. 2003. QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality: Documentation and Users Manual. Civil and Environmental Engineering Dept., Tufts University.
Cho, J. H., K. H. Ahn, W. J. Chung, and E. M. Gwon. 2003. Waste Load Allocation for Water Quality Management of a Heavily Polluted River Using Linear Programming. Water Science and Technology 48(10):185-190.
Cigizoglu, H.K., and M. Bayazit. 2000. A Generalized Seasonal Model for Flow Duration Curve. Hydrological Processes, 14:1053-1067.
Cobb, B. and P. Shenoy. 2003. A Comparison of Bayesian and Belief Function Reasoning. Inf Syst Front, 5(4): 345-358.
Culver, T. B., T. R. Naperala, A. L. Potts, H. X. Zhang, K. A. Neeley, and S. L. Yu. 2002. Case Study of Impact of Total Maximum Daily Load Allocations on Nitrate Leaching. Journal of Water Resources Planning and Management 128(4):262-269.
DePinto J. V., P.L. Freedman, D.M. Dilks, and W.M. Larson. 2004. Model Quantify the Total Maximum Daily Load Process. Journal of Environmental Engineering, 130(6):703-713.
Dilks, D.W., R.P. Canale, and P.G. Meier. 1992. Development of Bayesian Monte-Carlo techniques for water-qualtiy model uncertainty. Ecological Modelling, 62(1-3): 149-162.
Doyle, J. and R. Thomason. 1999. Background to Qualitative Decision Theory. AI Magazine 20(2): 55–68
Dubois, D. and H. Prade. 1988. Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York.
Dubois, D. and H. Prade. 1999. Qualitative Possibility Theory and Its Applications to Constraint Satisfaction and Decision Under Uncertainty. Int J Intell Syst, 14:45-61.
Dubois, D., H. Fargier, and R. Sabbadin. 2003. Qualitative Decision Rules under Uncertainty, Lect Notes Artif Int, Symbolic and Qauntitative Approaches to Reasoning with Uncertainty,7th European Conference 2003, ECSQARU,1-21.
Eheart, J. and T. Ng. 2004. Role of Effluent Permit Trading in Total Maximum Daily Load Programs: Overview and Uncertainty and Confidence Implications. J Environ Eng-ASCE, 130(6): 615-621
EPA of Republic of China. 1996. The Development of Water Quality and Study of TMDL Program II: The Study of Water Quality Management in River Basin and The Development of TMDL Assessment Model. EPA-85-E3G1-09-05. (in Chinese)
EPA of Republic of China. 2000. The Study of Enterprise Wastewater management—The Optimal Strategy of Pollution Reduction and Management System, EPA-89-U1G1-03-117. (in Chinese)
Fargier, H. and R. Sabbadin. 2005. Qualitative Decision Rules under Uncertainty: Back to Expected Utility. Artif Intell, 164:245–280.
Farid, S.S., J. Washbrook, and N.J Titchener-Hooker. 2005. Combing Multiple Quantitative and Qualitative Goals When Assessing Biomanufacturing Strategies under Uncertainty. Biotechnology Progress 21: 1183-1191.
Funtowicz, S. and J. Ravetz. 1990. Uncertainty and Quality in Science for Policy. Dordrecht: Kluwer, 244 pp.
Geldof, G. D. 1997. Coping with Uncertainties in Integrated Urban Water Management. Water Science and Technology, 36(8-9):265-269.
Gu, R. and M. Dong. 1998. Water Quality Modeling in the Watershed-Based Approach for Waste Load Allocations. Water Science and Technology 38(10):165-172.
Guyonnet, D., B. Come, P. Perrochet, and A. Parriaux. 1999. Comparing Two Methods for Addressing Uncertainty in Risk Assessments. Journal of Environmental Engineering, 125(7): 660-666.
Guyonnet, D., B. Bourgine, D. Dubois, H. Fargier, B. Come, and J. P. Chiles. 2003. Hybrid Approach for Addressing Uncertainty in Risk Assessments. Journal of Environmental Engineering, 129(1): 68-78.
Haith, D. A. 2003. Systems Analysis, TMDLs and Watershed Approach, Journal of Water Resources Planning and Management, 257-260, July/August.
Hakanson, L. 1996. A New, Simple General Technique to Predict Seasonal Variability of River Discharge and Lake Temperature for Lake Ecosystem Models. Ecological Modelling, 88:157-181.
Haung, T.I. 2005. QUAL2K Applied on the Dervation of The Optimal Sanitary Sewer Collection Rates in the Non-Tidal Influenced Section of Damshui River. 109 pp. Master Thesis, Department of Safety, Health and Environmental Engineering, National United University, Taiwan. (In Chinese.)
Hellstrom, D., U. Jeppsson, and E. Ka¨rrman. 2000. A Framework for Systems Analysis of Sustainable Urban Water Management. Environmental Impact Assessment Review, 20:311–321.
Helton, J.C. 1997. Uncertainty and Sensitivity Analysis in the Presence of Stochastic and Subjective Uncertainty. Journal of Statistical Computation and simulation, 57: 3-76.
Kao, J. J. and S. F. Bau. 1996. Risk Analysis for Flow Duration Curve Based Seasonal Discharge Management Programs. Water Resources 30(6):1369-1376.
Klir G. J. 1995. Principle of Uncertainty: What are they? Why do we need them?. Fuzzy Sets and Systems, 74:15-31.
LeBoutillier, D.W. and Waylen, P.R. 1993. A Stochastic Model of Flow Duration Curves. Water Resources Research, 29(10):3535-3541.
Lee, J. and M. Ramsey. 2001. Modelling Measurement Uncertainty as a Function of Concentration: An Example from a Contaminated Land Investigation. Analyst, 126:1784-1791.
Lence, B.J. and A.K. Takyi. 1992. Data Requirements for Seasonal Discharge Programs: An Application of A Regionalized Sensitivity Analysis. Water Resources Research, 28(7):1781-1789
Lence, B. J. and J. W. Eheart. 1990. Risk Equivalent Seasonal Discharge Programs for Multidischargers Streams. Journal of Water Resources Planning and Management 116: 170–186.
Li, S. and T. Morioka. 1999. Optimal Allocation of Waste Loads in a River with Probabilistic Tributary Flow under Transverse Mixing. Water Environment Research 71(2):156-162.
Lo, S. C., H. W. Ma, and S. L. Lo. 2005. Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method. Science of the Total Environment 340: 23– 33.
Mahajan, A. U., C. V. Chalapatiran, and S. K. Gadkari. 1999. Mathematical Modeling - A Tool for Coastal Water Quality Management. Water Science and Technology 40(2):151-157.
Malakoff, D. 1999. Bayes Offers a 'New' Way to Make Sense of Numbers. Science, 286(5444): 1460-1464
McCuen, R.H. and R.E. Beighley. 2003. Seasonal Flow Frequency Analysis. Journal of Hydrology, 279:43-56.
McIntyre, N. and H. Wherter. 2004. A Tool for Risk-Based Management of Surface Water Quality. Environ Modell Softw, 19:1131-1140.
Melching, C. S. and C. G. Yoon. 1996. Key Sources of Uncertainty in QUAL2E Model of Passaic River. Journal of Water Resources Planning and Management 122(2):105-113.
Melching, C. S. and W. Bauwens. 2001. Uncertainty in Coupled Nonpoint Source and Stream Water-Quality Models. Journal of Water Resources Planning and Management 127(6):403-413.
Morgan, M. and M. Henrion. 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press, 344 pp.
Moss, R.H. 2007. Improving Information for Managing An Uncertain Future Climate. Global Environmental Change 17: 4-7.
Mujumdar, P. P. and K. Sasikumar. 2002. A Fuzzy Risk Approach for Seasonal Water Quality Management of a River System. Water Resources Research 38(1):5-1-5-9.
Mujumdar, P. P. and V. R. S. Vemula. 2004. Fuzzy Waste Load Allocation Model: Simulation-Optimization Approach. Journal of Computing in Civil Engineering 18(2):120-131.
Mujumdar, P. P. and P. Saxena. 2004. A Stochastic Dynamic Programming Model for Stream Water Quality Management. Sādhanā 29(5): 477–497.
Neelakantan, T.R. and N.V. Pundarikanthan. 2000. Neural Network-Based Simulation-Optimization Model for Reservoir Operation. Journal of Water Resources Planning and Management, 126(2):57-64.
Neufeld, E. 1990. A Probabilistic Commonsense Reasoner. International Journal of Intelligent Systems, 5:565-594.
NRC (National Research Council). 2001. Assessing the TMDL Approach to Water Quality Management, National Academy Press, 122 pp.
Novotny, V. 1996. Integrated Water Quality Management. Water Sci Technol, 33( 4-5):1-7.
Osidele, O. O., W. Zeng, and M. B. Beck, 2003. Coping With Uncertainty: A Case Study in Sediment Transport and Nutrient Load Analysis. Journal of Water Resources Planning and Management 129(4):345-355.
Osei, E. 2002. Application of Economic Simulation Models to TMDL Analysis, TMDL Environmental Regulations: Proceedings of the March, 2002 Conference, ASAE Publication.
Papadopoulos, C. E. and H. Yeung. 2001. Uncertainty estimation and Monte Carlo simulation method. Flow Measurement and Instrumentation 12: 291–298.
Park, S.S. and Y.S. Lee. 2002. A Water Quality Modeling Study of the Nakdong River, Korea. Ecological Modelling, 153:65-75.
Parsons, S. 1995. Further Results in Qualitative Uncertainty. International Journal of Uncertainty Fuzziness Knowledge-Based System, 3(1):187-210.
Parsons, S. 2001. Qualitative Methods for Reasoning under Uncertainty, The MIT Press, Cambridge, 400 pp.
Parsons, S. and A. Saffiotti. 1996. A Case Study in the Qualitative Verification and Debugging of Numerical Uncertainty. International Journal of Approximate Reasoning, 14:187-216.
Qian, S. S., C. A. Stow, and M. E. Borsuk. 2003. On Monte Carlo methods for Bayesian inference. Ecological Modelling 159: 269-/277.
Poroseva, S. V., J. Letschert, and M. Yousuff Hussaini. 2007. Application of Evidence Theory to Quantify Uncertainty in Hurricane/Typhoon Track Forecasts. Meteorology and Atmospheric Physics, 97(1-4):149-169.
Raftery, A.E., D. Madigan, and C.T. Volinsky. 1996. Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance (with discussion), in Bayesian Statistics 5: Proceedings of the fifth Valencia International Meeting, Bernardo, J.M., J.O. Berger, A.P. Dawid, and A.F.M. Smith (eds.). Oxford University Press. Oxford, UK, pp. 323-349.
Reckhow, K. 1979. The Use of A Simple Model and Uncertainty Analysis in Lake Management. Water Resources Bulletin, 15(3): 601-611.
Reckhow, K. H..1994. A Decision Analytic Framework for Environmental Analysis and Simulation Modeling. Environmental Toxicology and Chemistry 13(12):1901-1906.
Reckhow, K. 2003. On the Need for Uncertainty Assessment in TMDL Modeling and Implementation. Journal of Water Resource Planning and Management-ASCE, 129(4):245-246.
Reckhow, K., G. Arhonditsis, M. Kenney, L. Hauser, J. Tribo, C. Wu, K. Elcock, L. Steinberg, C. Stow, and S. Mcbride. 2005. A Predictive Approach to Nutrient Criteria. Environmental Science and Technology, 39(9):2913-2919.
Rossman, L. A. 1989. Risk Equivalent Seasonal Waste Load Allocation. Water Resources Research, 25(10):2083-2090.
Said, A. 2006. The Implementation of a Bayesian Network for Watershed Management Decisions. Water Resources Management, 20: 591–605
Salas, J.D. and J.T.B. Obeysekera. 1992. Conceptual Basis of Seasonal Streamflow Time Series Models. Journal of Hydrologic Engineering, 118(8):1186-1194.
Sasikumar, K. and P. P. Mujumdar. 1998. Fuzzy Optimization Model for Water Quality Management of a River System. Journal of Water Resource Planning and Management 124(2):79-88.
Sasikumar, K. and P. P. Mujumdar. 2000. Application of Fuzzy Probability in Water Quality Management of a River System. International Journal of Systems Science 31(5):575-591.
Scavia, D., R. Canale, W. Powers, and J. Moody. 1981. Variance Estimates for a Dynamic Eutrophication Model of Saginaw Bay, Lake Huron. Water Resource Research, 17:1115-1124.
Schmitt, S.A. 1969. Measuring Uncertainty: An Elementary Introduction to Bayesian Statistcs. Addison-Wesley Publishing Company. 400p.
Shabman, L. and E. Smith. 2003. Implications of Applying Statistically Based Procedures for Water Quality Assessment. Journal of Water Resources Planning and Management, 129(4):330-336.
Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton University Press.
Sluijs, J., M. Craye, S. Funtowicz, P. Kloprogge, J. Ravetz, and J. Risbey. 2005. Combining Quantitative and Qualitative Measures of Uncertainty in Model-Based Environmental Assessment: The NUSPA system. Risk Anal, 25(2):481-492.
Smith, E.P., K. Ye, C. Hughes, and L. Shabman. 2001. Statistical Assessment of Violations of Water Quality Standards under Section 303(d) of the Clean Water Act. Environmental Science & Technology, 35(3):606-612.
Smakhtin, V.U. 2000. Estimating Daily Flow Duration Curves from Monthly Streamflow Data. Water SA, 26(1):13-18.
Smakhtin, V.U. 2001. Low Flow Hydrology: a Review. Journal of Hydrology, 240:147-186.
Sohn, M.D., M.J. Small, and M. Pantazidou. 2000. Reducing Uncertainty in Site Characterization Using Bayes Monte Carlo Methods. Journal of Environmental Engineering, 126(10): 893-902.
Somlyódy, L., M. Kularathna, and I. Masliev. 1994. Development of Least-Cost Water Quality Control Policies for the Nitra River Basin in Slovakia. Water Science and Technology 30(5):69-78.
Somlyódy, L. 1997. Use of Optimization Models in River Basin Water Quality Planning. Water Science and Technology 36(5):209-218.
Sohn, M.D., M.J. Small, and M. Pantazidou. 2000. Reducing Uncertainty in Site Characterization Using Bayes Monte Carlo Methods. Journal of Environmental Engineering, 126(10): 893-902.
Sohrabi, T. M., A. Shirmohammadi, and H. Montas. 2002. Uncertainty in Nonpoint Source Pollution Models and Associated Risks. Environmental Forensics 3:179-189.
Song, S.Q., K.H. Reckhow, and J. Zhai. 2005. Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach. Water Resources Research, 41, W07012, DOI:10.1029/2005WR003986,
Stewart, T. 2000. Uncertainty, Judgment, and Error in Prediction. In: Sarewitz D, Pielke R, Byerly R, editors. Prediction: Science, Decision Making, and the Future of Nature, Island Press, Washington D.C., pp.41-57.
Stow, C. A. and M. E. Borsuk. 2003. Assessing TMDL Effectiveness Using Flow-Adjusted Concentrations: A Case Study of the Neuse River, North Carolina. Environmental Science and Technology 37:2043-2050.
Stow, C. A., C. Roessler, M. E. Borsuk, J. D. Bowen, and K. H. Reckhow. 2003. Comparison of Estuarine Water Quality Models for Total Maximum Daily Load Development in Neuse River Estuary. Journal of Water Resources Planning and Management 129(4):307-314.
Suriyasilp, T., A. Graettinger, and S. Durrans. 2003. Quantitatively Directed Sampling for Main Channel and Hyporheic Zone Water-Quality Modeling. Adv Water Resour, 26:1029-1037.
USEPA. 1991. EPA's Technical Support Document for Water Quality-based Toxics Control, EPA/505/2-90-001.
USEPA. 2001. Protocol for Developing Pathogen TMDLs, EPA841-R-00-002.
USEPA. 1997a. Exposure Factors Handbook. National Center for Environment Assessment, Office of Research and Development National Center for Environmental Assessment, Washington, D.C.
USEPA. 1997b. Technical Guidance Manual for Developing Total Maximum DailyLoads, Book 2: Streams and Rivers, Part I: Biochemical Oxygen Demand / Dissolved Oxygen and Nutrients / Eutrophication, EPA 823-B-97-002, Washington DC.
USEPA. 1999a. Protocol for Developing Nutrient TMDLs, EPA841-B-99-007.
USEPA. 1999b. Protocol for Developing Sediment TMDLs, EPA841-R-99-004.
USEPA. 1999c. Total Maximum Daily Loads for Nutrients San Diego Creek and Newport Bay, California.
USEPA. 2002. Technical Support Document for Water Quality-based Toxics Control. The Twenty Needs Report: How Research Can Improve the TMDL Program, EPA 841-B-02-002, Washington DC.
USEPA. 2005. United States Environmental Protection Agency - Region III, Pennsylvania 19103-2029, 2005, Modeling Report for Total Maximum Daily Load for Skippack Creek, Montgomery County, Pennsylvania. http://www.epa.gov/reg3wapd/tmdl/pa_tmdl/SkippackCreek/final%20Skippack%20TMDL%20Modeling%20Report.pdf
Utah Department of Environmental Quality. 1998. TMDL Section:Beaver River Watershed TMDL.
van der Veeren, R. J. H. M. 1999. Least Cost Emission Reductions in Transboundary River Basins: The Case of Diffuse Emissions of Nutrients in the Rhine River Basin, Physics and Chemistry of the Earth Part B, 24(6):603-607.
van der Sluijs. J., M. Craye, S. Funtowicz, P. Kloprogge, J. Ravetz, and J. Risbey. 2005. Combining Quantitative and Qualitative Measures of Uncertainty in Model-Based Environmental Assessment: The NUSPA system. Risk Anal, 25(2):481-492.
van Griensven, A., T. Meixner, S. Grunwald, T. Bishop, M. Diluzio, and R. Srinivasan. 2006. A Global Sensitivity Analysis Tool for The Parameters of Multi-Variable Catchment Models. Journal of Hydrology 324: 10–23.
Vemula, V. R. S., P. P. Mujumdar, and S. Ghosh. 2004. Risk Evaluation in Water Quality Management of a River System, Journal of Water Resources Planning and Management, 130(5):411-423.
Vogel, R.M. and N.M. Fennessey. 1994. Flow-Duration Curves. I: New Interpretation and Confidence Intervals. Journal of Water Resources Planning and Management, 120(4):485-504.
Vogel, R.M. and N.M. Fennessey. 1995. Flow Duration Curves. II: A Review of Applications in Water Resources Planning. Water Resources Bulletin, 31(6): 1029-1039.
Washington State Department of Ecology. 2002. Guidance Document for Developing Total Maximum Daily Loads(TMDLs).
Washington State Department of Ecology (WSDE). 2006. Henderson Inlet Watershed Fecal Coliform Bacteria, Dissolved Oxygen, pH, and Temperature Total Maximum Daily Load Study. http://www.ecy.wa.gov/pubs/0603012.pdf
Walker, Jr. W. 2003. Consideration of Variability and Uncertainty in Phosphorus Total Maximum Daily Loads For Lakes. J Water Resour Plan Manage-ASCE, 129(4):337-344.
Warwick, J. J. and L. A. Roberts. 1992. Computing The Risks Associated With Wasteload Allocation Modeling. Water Resources Bulletin 28(5):903-914.
Wellman M. 1990. Fundamental Concepts of Qualitative Probabilistic Networks. Artif Intell, 44:257-303.
Wen, C. G. and S. Y. Fu. 1991. Waste Allocation Models for Risk Assessment of Water Quality Management in a River Basin. Water Science and Technology 23:75-83.
Wotton, C. L. and B. J. Lence. 1995. Risk-Equivalent Seasonal Discharge Programs for Ice-Covered Rivers. Journal of Water Resources Planning and Management 121: 275–282.
Young, R. 2001. Uncertainty and the Environment, Edward Elgar, Cheltenham, UK, 249 pp.
Yu, P.S., T.C. Yang, and Y.C. Wang. 2002. Uncertainty Analysis of Regional Flow Duration Curves. Journal of Water Resources Planning and Management, 128(6):424-430.
Yulianti J. S., B.J. Lence, G.V. Johnson, and A.K. Takyi. 1999. Non-Point Source Water Quality Management under Input Information Uncertainty. Journal of Environmental Management, 55:199-217.
Zarley, D. K., Y.T. Hsia, and G. Shafer. 1988. Evidential reasoning using DELIEF.
In: Proceedings of the Seventh National Conference on Artificial Intelligence, 1:205–209.
Zhang, H. X. and S. L. Yu. 2004. Applying the First-Order Error Analysis in Determining the Margin of Safety (MOS) Term for TMDL Computations. Journal of Environmental Engineering, 130(6): 664-673.
Zimmermann, H. J. 2000. An Application-Oriented View of Modeling Uncertainty. European Journal of Operational Research 122:190-198.
Zouaoui, F., and J.R. Wilson. 2003. Accounting for Parameter Uncertainty in Simulation Input Modeling. IIE Transactions, 35: 781-792.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27466-
dc.description.abstract本研究目的在評估集水區總量管制制度(Total Maximum Daily Loads, TMDL)中不確定性的影響,並建立一個整合性分析架構,包含定性與定量的不確定性分析。總量管制以水體涵容能力作為污染源管制基礎,其概念廣泛應用於全世界的集水區管理,其中,不確定性的影響是相當重要的議題並應包含在TMDL計畫規劃當中,本研究即針對此問題進行深入分析探討。
不確定性分析的重要性在各種領域中早已被注意,然而不確定性分析方法卻不如它的重要性一樣,也受到廣泛的應用。不確定性研究大多著重在可量化的不確定性(quantifiable uncertainty)上,不可量化的不確定性(non-quantifiable uncertainty)則受限於主觀特性以及分析方法而被忽略。現有的不確定性分析方法缺乏對於兩種不確定性分析的整合性架構,因此本研究建立一套不確定性分析方法,包括定性不確定性分析(qualitative uncertainty analysis, QLUA)與定量不確定性分析(quantitative uncertainty analysis, QTUA),並嘗試利用不確定性診斷圖(diagnose figure)以及不確定性價值函數(uncertainty value function, UV)將這兩種分析結果整合。QLUA用於檢視整體系統的不確定性程度,以信任度(confidence)表示,而QTUA則量化不確定性對於TMDL污染分配的影響,以變異度(variability)代表。在QLUA方法中,TMDL規劃所遭遇到的抽象且主觀的不確定性藉由定性檢視表(qualitative check list)、信任函數(belief function)以及專家評量( expert elicitation)方法得之,此信任程度代表該TMDL規劃的不確定性程度,易言之,即決策品質(decision quality)。QTUA特別針對模式使用參數的不確定性對於最佳規劃的影響進行分析,最後得到TMDL分佈曲線作為決策參考,其中模擬模式參數以及設計流量的不確定性分別以蒙地卡羅(Monte Carlo)法以及年流量延時法(Annual Flow Duration Curve)分析。最後建立不確定性診斷圖來判斷其決策品質,若需進一步降低不確定性,則以不確定性價值來量化不確定性降低對決策影響的價值。透過UV計算,決策者可初步了解不確定性降低所需的成本,以及不確定性分析對決策的實際價值,因此決定不確定性降低的程度。本研究以高屏溪以及大漢溪作為QLUA以及QTUA的案例說明。
決策過程中不可避免會遭遇到不確定性問題,透過對不確定性影響的了解以及掌握,有助於決策品質提升,減少決策失敗率。本研究提供一個整合性分析架構,從不確定性的來源定義、分析方法、分析結果以及不確定性降低的價值等,幫助集水區總量管制在未來執行上,可以適當處理不確定性以及其影響,改善TMDL規劃的決策品質。
zh_TW
dc.description.abstractThis dissertation is a management-oriented study, evaluating uncertainty effects on TMDL (Total Maximum Daily Loads) decisions. The TMDL program is a water quality management with regular standard process and is verified and applied widely, especially in the U.S. However, uncertainty problems are occurred inevitably in TMDL programs and decrease the successes of implementations. The main purpose of this study is to establish a complete analysis framework to aid in address, analyze, and assess impact of uncertainties on TMDL programs.
The importance of uncertainty analysis has been perceived but not completely applied. Uncertainty analysis approaches have been focus on quantifiable uncertainty effects, ignored the effects from non-quantifiable uncertainty elements. This leads to partial uncertainty analysis and might underestimate the results. Not only quantitative uncertainty but also qualitative (non-quantifiable) uncertainty should be considered in decision-making process. Due to the lack of a complete uncertainty analysis, especially for qualitative uncertainty, an integrated framework of uncertainty analysis with capable of evaluating both uncertainty effects is explored in this study. Qualitative uncertainty analysis (QLUA) with qualitative check list, belief function, and expert elicitation is developed to obtain the confidence level of target systems, which is TMDL program in this study. Quantitative uncertainty analysis (QTUA) is particularly designed for assessing the model parameter uncertainty on optimization programming of TMDL allocation. QTUA results in a distributed TMDL allocation and quantifies the uncertainty level (variability) of TMDL results. The both consequences are integrated into an uncertainty diagnose figure. The diagnose figure is able to manifest the uncertainty level of the system in terms of qualitative and quantitative uncertainty. If the uncertainty level is not complied with accepted level made by decision maker, the reliability of TMDL results might be questioned and uncertainty reduction is sought. As to uncertainty reduction, a new formulation, uncertainty value (UV), is created. The UV is used to represent the decision benefit obtained from every unit of uncertainty reduction, which is the confidence from QLUA and the variability from QTUA. Two case studies, KaoPing River and DaHan Creek, are used as applications of QLUA and QTUA, respectively.
Although uncertainty exists in any decision steps and subjective assumptions (from expert elicitations) are unavoidable while seeking objective solutions, the comprehensive understandings are believed to improve quality of decision-making. The integrated framework of uncertainty analysis incorporating with individual evaluation approaches, diagnose figure, and uncertainty value function provides a systematic way to estimate uncertainty level in target systems, such as TMDL programs, and eventually; to increase the quality of decisions.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:06:02Z (GMT). No. of bitstreams: 1
ntu-97-D91541006-1.pdf: 1593985 bytes, checksum: 75a3963035732afa1aea6200d902deca (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
中文摘要 xi
Abstract xiii
I. Introduction 1
1. Introduction 1
1.1 Study objectives 1
1.2 Study scopes 4
1.3 Study flow chart 5
1.4 Organization of this study 6
II. Literature Reviews 9
2. Water quality management (WQM) and Total Maximum Daily Loads (TMDL) programs 9
2.1 WQM and watershed management 9
2.2 Development of TMDL programs 11
2.2.1 Regulations 13
2.2.2 General steps of TMDL process 15
2.2.3 Examples 20
2.3 TMDL studies in Taiwan 24
2.3.1 General review 24
2.3.2 The limitations of TMDL implementation in Taiwan 27
2.4 Waste loads allocation (WLA) 32
3. Reasoning uncertainty effects in water quality management 35
3.1 Definition of uncertainty 35
3.1.1 Definition 35
3.1.2 Language 36
3.1.3 Importance 38
3.2 Types of uncertainty 43
3.3 Qualitative uncertainty 45
3.4 Uncertainty causes in WQM 49
3.5 Uncertainty effects of design flow 51
4. Uncertainty analysis 54
4.1 Quantitative methods 56
4.1.1 Basic statistics 56
4.1.2 First-order error analysis 58
4.1.3 Fuzzy theorem 60
4.1.4 Bayesian inference 63
4.2 Qualitative methods 64
4.2.1 Qualitative relationship 65
III Methodology and Materials 70
5. Methodology: Establish an integrated uncertainty analysis for TMDL programs 70
5.1 Screening: Qualitative uncertainty analysis (QLUA) 71
5.1.1 Belief function (evidence theory) 73
5.2 Quantifying: Quantitative uncertainty analysis (QTUA) 76
5.2.1 Optimization programming of WLAs 77
5.2.2 Water quality model: QUAL2K model 81
5.2.3 FDC and AFDC methods 86
5.2.4 Monte Carlo simulation 87
5.3 Integrating: diagnose figure of uncertainty 89
5.4 Evaluation of uncertainty value 92
6. Materials: description of case study 100
6.1 Case study for QLUA: Kao-Ping River 100
6.2 Case study for QTLA: Da-Han Creek 100
IV. Results and Discussions 104
7. Qualitative uncertainty analysis of TMDL programs 104
7.1 Uncertainty causes in TMDL programs 104
7.2 Establishment of a TMDL qualitative checklist 107
7.3 Results and discussions of the case study 117
8. Quantitative uncertainty analysis of TMDL allocations 120
8.1 Uncertainty effects of design flow and model parameters 120
8.1.1 The uncertainty effects of design flow on water quality 120
8.1.2 Sensitivity analysis of model parameters 122
8.1.3 Critical parameters for BOD simulation in QUAL2K 125
8.1.4 Brief conclusions 129
8.2 Generation of distributed TMDL allocations 131
8.2.1 Uncertainty effects of design flow and flow variability on TMDL allocation 131
8.2.2 Results of the distributed TMDLs 137
8.2.3 Comparisons of different WLA approaches and MOS decision 141
8.2.4 Brief conclusions 144
9. The application of uncertainty diagnose figure on TMDL programs 148
9.1 Uncertainty diagnose figure of the case study results 148
9.2 Integration of diagnose figure and TMDL program process 150
V. Conclusions and Comments 152
10. Conclusions and Comments 152
10.1 Conclusions 152
10.2 Comments for future work 155
List of Abbreviations 157
Reference 158
dc.language.isoen
dc.subject不確定性診斷圖zh_TW
dc.subject設計流量zh_TW
dc.subject污染最佳分配zh_TW
dc.subject集水區總量管制(TMDL)zh_TW
dc.subject不確定性分析zh_TW
dc.subject信任函數zh_TW
dc.subject模式參數不確定性zh_TW
dc.subject決策品質zh_TW
dc.subjectmodel parameter uncertaintyen
dc.subjectwaste load allocation (WLA)en
dc.subjectuncertainty diagnose figureen
dc.subjectdecision qualityen
dc.subjectdesign flowen
dc.subjectTotal Maximum Daily Loads (TMDL)en
dc.subjectuncertainty analysisen
dc.subjectbelief functionen
dc.title集水區總量管制之不確定性分析研究-定性與定量不確定性分析應用zh_TW
dc.titleEvaluation of Uncertainty Effects in TMDL Programs- Application of Qualitative and Quantitative Uncertainty Analysisen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee歐陽嶠暉,李公哲,溫清光,謝正倫,林鎮洋
dc.subject.keyword集水區總量管制(TMDL),不確定性分析,信任函數,模式參數不確定性,決策品質,不確定性診斷圖,污染最佳分配,設計流量,zh_TW
dc.subject.keywordTotal Maximum Daily Loads (TMDL),uncertainty analysis,belief function,model parameter uncertainty,decision quality,uncertainty diagnose figure,waste load allocation (WLA),design flow,en
dc.relation.page169
dc.rights.note有償授權
dc.date.accepted2008-01-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved