Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27460
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝松蒼
dc.contributor.authorYu-Lin Hsiehen
dc.contributor.author謝侑霖zh_TW
dc.date.accessioned2021-06-12T18:05:48Z-
dc.date.available2008-02-19
dc.date.copyright2008-02-19
dc.date.issued2008
dc.date.submitted2008-01-06
dc.identifier.citationAlmasi R, Petho G, Bolcskei K, Szolcsanyi J (2003) Effect of resiniferatoxin on the noxious heat threshold temperature in the rat: a novel heat allodynia model sensitive to analgesics. Br J Pharmacol 139:49-58.
Andrew D, Greenspan JD (1999) Mechanical and heat sensitization of cutaneous nociceptors after peripheral inflammation in the rat. J Neurophysiol 82:2649-2656.
Apfel SC, Schwartz S, Adornato BT, Freeman R, Biton V, Rendell M, Vinik A, Giuliani M, Stevens JC, Barbano R, Dyck PJ (2000) Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. rhNGF Clinical Investigator Group. JAMA 284:2215-2221.
Apostolidis A, Brady CM, Yiangou Y, Davis J, Fowler CJ, Anand P (2005) Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65:400-405.
Athanasiou A, Smith PA, Vakilpour S, Kumaran NM, Turner AE, Bagiokou D, Layfield R, Ray DE, Westwell AD, Alexander SP, Kendall DA, Lobo DN, Watson SA, Lophatanon A, Muir KA, Guo DA, Bates TE (2007) Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: how vanilloids cause non-vanilloid receptor mediated cell death. Biochem Biophys Res Commun 354:50-55.
Bloch J, Fine EG, Bouche N, Zurn AD, Aebischer P (2001) Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 172:425-432.
Bostock H, Campero M, Serra J, Ochoa JL (2005) Temperature-dependent double spikes in C-nociceptors of neuropathic pain patients. Brain 128:2154-2163.
Callizot N, Warter JM, Poindron P (2001) Pyridoxine-induced neuropathy in rats: a sensory neuropathy that responds to 4-methylcatechol. Neurobiol Dis 8:626-635.
Caudle RM, Karai L, Mena N, Cooper BY, Mannes AJ, Perez FM, Iadarola MJ, Olah Z (2003) Resiniferatoxin-induced loss of plasma membrane in vanilloid receptor expressing cells. Neurotoxicology 24:895-908.
Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55-63.
Chaudhry V, Rowinsky EK, Sartorius SE, Donehower RC, Cornblath DR (1994) Peripheral neuropathy from taxol and cisplatin combination chemotherapy: clinical and electrophysiological studies. Ann Neurol 35:304-311.
Chiang HY, Chen CT, Chien HF, Hsieh ST (2005a) Skin denervation, neuropathology, and neuropathic pain in a laser-induced focal neuropathy. Neurobiol Dis 18:40-53.
Chiang HY, Chien HF, Shen HH, Yang JD, Chen YH, Chen JH, Hsieh ST (2005b) Reinnervation of muscular targets by nerve regeneration through guidance conduits. J Neuropathol Exp Neurol 64:576-587.
Cliffer KD, Siuciak JA, Carson SR, Radley HE, Park JS, Lewis DR, Zlotchenko E, Nguyen T, Garcia K, Tonra JR, Stambler N, Cedarbaum JM, Bodine SC, Lindsay RM, DiStefano PS (1998) Physiological characterization of Taxol-induced large-fiber sensory neuropathy in the rat. Ann Neurol 43:46-55.
Craner MJ, Klein JP, Renganathan M, Black JA, Waxman SG (2002) Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann Neurol 52:786-792.
Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6:231-242.
George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15:6445-6452.
Hahn K, Triolo A, Hauer P, McArthur JC, Polydefkis M (2007) Impaired reinnervation in HIV infection following experimental denervation. Neurology 68:1251-1256.
Han P, McDonald HA, Bianchi BR, Kouhen RE, Vos MH, Jarvis MF, Faltynek CR, Moreland RB (2007) Capsaicin causes protein synthesis inhibition and microtubule disassembly through TRPV1 activities both on the plasma membrane and intracellular membranes. Biochem Pharmacol 73:1635-1645.
Helyes Z, Szabo A, Nemeth J, Jakab B, Pinter E, Banvolgyi A, Kereskai L, Keri G, Szolcsanyi J (2004) Antiinflammatory and analgesic effects of somatostatin released from capsaicin-sensitive sensory nerve terminals in a Freund's adjuvant-induced chronic arthritis model in the rat. Arthritis Rheum 50:1677-1685.
Holland NR, Crawford TO, Hauer P, Cornblath DR, Griffin JW, McArthur JC (1998) Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol 44:47-59.
Hsieh ST, Chiang HY, Lin WM (2000) Pathology of nerve terminal degeneration in the skin. J Neuropathol Exp Neurol 59:297-307.
Jeftinija S, Liu F, Jeftinija K, Urban L (1992) Effect of capsaicin and resiniferatoxin on peptidergic neurons in cultured dorsal root ganglion. Regul Pept 39:123-135.
Kaechi K, Ikegami R, Nakamura N, Nakajima M, Furukawa Y, Furukawa S (1995) 4-Methylcatechol, an inducer of nerve growth factor synthesis, enhances peripheral nerve regeneration across nerve gaps. J Pharmacol Exp Ther 272:1300-1304.
Karai L, Brown DC, Mannes AJ, Connelly ST, Brown J, Gandal M, Wellisch OM, Neubert JK, Olah Z, Iadarola MJ (2004) Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest 113:1344-1352.
Kennedy WR (2004) Opportunities afforded by the study of unmyelinated nerves in skin and other organs. Muscle Nerve 29:756-767.
Kennedy WR, Said G (1999) Sensory nerves in skin: answers about painful feet? Neurology 53:1614-1615.
Kim SR, Lee DY, Chung ES, Oh UT, Kim SU, Jin BK (2005) Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J Neurosci 25:662-671.
Kimura N, Nishizaki K, Orita Y, Masuda Y (1999) 4-methylcatechol, a potent inducer of nerve growth factor synthesis, protects spiral ganglion neurons from aminoglycoside ototoxicity--preliminary report. Acta Otolaryngol Suppl 540:12-15.
Ko MH, Chen WP, Hsieh ST (2002) Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis 11:155-165.
Koltzenburg M, Torebjork HE, Wahren LK (1994) Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain. Brain 117 ( Pt 3):579-591.
Lauria G, Lombardi R (2007) Skin biopsy: a new tool for diagnosing peripheral neuropathy. BMJ 334:1159-1162.
Lin B, Pirrung MC, Deng L, Li Z, Liu Y, Webster NJ (2007) Neuroprotection by small molecule activators of the nerve growth factor receptor. J Pharmacol Exp Ther 322:59-69.
Lin WM, Hsieh ST, Huang IT, Griffin JW, Chen WP (1997) Ultrastructural localization and regulation of protein gene product 9.5. Neuroreport 8:2999-3004.
Lindenlaub T, Sommer C (2002) Epidermal innervation density after partial sciatic nerve lesion and pain-related behavior in the rat. Acta Neuropathol (Berl) 104:137-143.
Lipton RB, Apfel SC, Dutcher JP, Rosenberg R, Kaplan J, Berger A, Einzig AI, Wiernik P, Schaumburg HH (1989) Taxol produces a predominantly sensory neuropathy. Neurology 39:368-373.
Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD (2007) A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron 54:739-754.
Mogil JS, Wilson SG, Bon K, Lee SE, Chung K, Raber P, Pieper JO, Hain HS, Belknap JK, Hubert L, Elmer GI, Chung JM, Devor M (1999) Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80:67-82.
Neubert JK, Karai L, Jun JH, Kim HS, Olah Z, Iadarola MJ (2003) Peripherally induced resiniferatoxin analgesia. Pain 104:219-228.
Nolano M, Simone DA, Wendelschafer-Crabb G, Johnson T, Hazen E, Kennedy WR (1999) Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain 81:135-145.
Olah Z, Szabo T, Karai L, Hough C, Fields RD, Caudle RM, Blumberg PM, Iadarola MJ (2001) Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J Biol Chem 276:11021-11030.
Pan HL, Khan GM, Alloway KD, Chen SR (2003) Resiniferatoxin induces paradoxical changes in thermal and mechanical sensitivities in rats: mechanism of action. J Neurosci 23:2911-2919.
Perez-Perez M, Garcia-Suarez O, Esteban I, Germana A, Farinas I, Naves FJ, Vega JA (2003) p75NTR in the spleen: age-dependent changes, effect of NGF and 4-methylcatechol treatment, and structural changes in p75NTR-deficient mice. Anat Rec A Discov Mol Cell Evol Biol 270:117-128.
Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507-538.
Pleasure DE (2007) Dwindling indications for sural nerve biopsy. Arch Neurol 64:935-936.
Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC (2004) The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain 127:1606-1615.
Raisinghani M, Pabbidi RM, Premkumar LS (2005) Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J Physiol 567:771-786.
Samuelsson M, Leffler AS, Hansson P (2005) Dynamic mechanical allodynia: on the relationship between temporo-spatial stimulus parameters and evoked pain in patients with peripheral neuropathy. Pain 115:264-272.
Shim B, Kim DW, Kim BH, Nam TS, Leem JW, Chung JM (2005) Mechanical and heat sensitization of cutaneous nociceptors in rats with experimental peripheral neuropathy. Neuroscience 132:193-201.
Shun CT, Chang YC, Wu HP, Hsieh SC, Lin WM, Lin YH, Tai TY, Hsieh ST (2004) Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain 127:1593-1605.
Simone DA, Nolano M, Johnson T, Wendelschafer-Crabb G, Kennedy WR (1998) Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 18:8947-8959.
Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627-638.
Sometani A, Nomoto H, Nitta A, Furukawa Y, Furukawa S (2002) 4-Methylcatechol stimulates phosphorylation of Trk family neurotrophin receptors and MAP kinases in cultured rat cortical neurons. J Neurosci Res 70:335-339.
Sommer C, Lauria G (2007) Skin biopsy in the management of peripheral neuropathy. Lancet Neurol 6:632-642.
Tseng TJ, Chen CC, Hsieh YL, Hsieh ST (2007) Effects of decompression on neuropathic pain behaviors and skin reinnervation in chronic constriction injury. Exp Neurol 204:574-582.
Verdu E, Vilches JJ, Rodriguez FJ, Ceballos D, Valero A, Navarro X (1999) Physiological and immunohistochemical characterization of cisplatin-induced neuropathy in mice. Muscle Nerve 22:329-340.
Weng HR, Cordella JV, Dougherty PM (2003) Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia. Pain 103:131-138.
Ziegler EA, Magerl W, Meyer RA, Treede RD (1999) Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. Brain 122 ( Pt 12):2245-2257.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27460-
dc.description.abstract在本實驗中,我們利用具有高專一性破壞小直徑感覺神經的神經毒素(resiniferatoxin, RTX)來引發小直徑感覺神經受到損傷的週邊神經性疼痛模式。單一劑量的RTX水溶液經由腹腔注射後(50μg/kg)七天,可以觀察到表皮上的小直徑感覺神經明顯的減少(p = 0.0067);相較於控制組(vehicle group),約略減少了66%。同時經由電子顯微鏡的超微結構的分析顯示,表皮小直徑感覺神經的減少是因為無髓鞘神經退化之故;其無髓鞘神經密度減少約53%。此外,表皮小直徑感覺神經減少也同時造成了該些實驗小鼠對於熱刺激反射時間明顯的增加以及機械性刺激的閾值降低。
免疫染色的結果顯示,具有calcitonin gene-relative peptide (CGRP) 與substance p (SP) 免疫反應的表皮小直徑感覺神經有不同程度的減少,此一現象可以由具有CGRP與SP免疫反應的背根神經結細胞本體也具有不同程度的減少得到一致性的驗證。此外,大直徑運動與感覺神經纖維則不受RTX的影響。
施打resiniferatoxin後第七天,開始每天經由腹腔注射4-methylcatechol (4MC, 10μg/kg)直至第三十五天的實驗小鼠顯示施打4MC的實驗小鼠其無髓鞘神經密度有明顯的增加(p = 0.014);此一現象則更進一步具體的表現在表皮小直徑感覺神經密度的增加(p = 0.0013)。熱刺激與機械性刺激的數據也顯示施打4MC的小鼠其熱刺激的反應時間明顯縮短以及機械性刺激的閾值較高。
長期施打4MC至注射RTX後第56天及第84天顯示protein gene product 9.5(PGP 9.5)(+)及CGRP(+)的表皮神經密度有顯著且較快速度的再生;惟對於SP(+)的表皮神經則沒有明顯效用。綜合以上結果可以得知,實驗小鼠經由RTX注射後,會造成無髓鞘神經退化以及表皮去神經支配;此一神經病理變化同時會伴隨著熱刺激感覺喪失以及降低機械性刺激的閾值。4MC注射後,可以明顯的促進無髓鞘神經再生以及表皮神經的再支配,並讓熱刺激以及機械性刺激的感覺回復。
zh_TW
dc.description.abstractTo generate an experimental neuropathy specifically affecting small-diameter sensory nerves, we treated mice with a capsaicin analogue, resiniferatoxin (RTX), through a single intraperitoneal injection (50 μg/kg). On day 7 (D7) after RTX treatment compared to the vehicle-treated group, unmyelinated nerves of the medial plantar nerves in the RTX group showed significant degeneration with skin denervation in the corresponding territory as evidenced by a 53% reduction in unmyelinated nerve density of medial plantar nerve (p = 0.0067) and a 66% reduction in epidermal nerve density of hindpaw skin (p = 0.0004). These changes were associated with functional deficits of prolonged withdrawal latencies to heat stimuli (p = 0.0007) on a hot plate test and reduced mechanical threshold (p = 0.0001).
Immunoreactive for calcitonin gene-relative peptide (CGRP) and substance P (SP) epidermal nerves were different degree depleted and those confirmed by the mild depletion of dorsal root ganglion neurons immunoreactive for CGRP (p = 0.005) and markedly depleted for SP (p = 0.0001). Large-diameter motor and sensory nerves were not affected as assayed by nerve conduction studies and sural morphometric study showed no affected on the large and small-diameter myelinated sensory nerves. We then investigated the potential therapeutic effect of 4-methylcatechol (4MC) through a daily intraperitoneal injection of 4MC (10 μg/kg) from D7 to D35 after RTX-induced neuropathy. On D35, 4MC significantly promoted regeneration of unmyelinated nerves as demonstrated by an increase in unmyelinated nerve density (p = 0.014) with an increase in the epidermal nerve density (p = 0.0013) and a reduction in the thermal withdrawal latency (p = 0.0091) compared to the RTX group.
Long-term of 4MC-treated only accelerated the reinnervation of PGP 9.5 and CGRP-immunreactive epidermal fibers, with SP-immunoreactive fibers remaining dereased. These findings indicate that 4MC promoted regeneration of unmyelinated nerves and accelerated the skin reinnervtion after RTX-induced neuropathy. Moreover, 4MC also reduced the duration of loss thermal responses and the reducing the mechanical thresholds.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:05:48Z (GMT). No. of bitstreams: 1
ntu-97-D91446002-1.pdf: 36518137 bytes, checksum: a802b49bdc4e4de41b105e5a9a2dade2 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄 ii
口試委員會審定書 v
誌謝 vi
中文摘要 vii
Abstract ix
Chapter 1. Introduction 1
Chapter 2. Materials and Methods 3
a. Systemic RTX and 4MC treatment 3
b. Immunohistochemistry of footpad skin 3
c. Quantification of epidermal innervation 4
d. Quantification of the DRG neurons by double-labeling immunofluorescence 4
e. Ultrastructural morphometric studies of unmyelinated nerves 5
f. Morphometric studies of myelinated nerves 6
g. Functional examination of RTX-induced neuropathy 6
h. Neurophysiological studies 7
i. Experimental design and statistical analysis 8
Chapter 3. Changes in the neuropathology, neurophysiology and functional deficits in the RTX-induced neuropathy 9
a. Acute response after systemic RTX injection 9
b. Patterns of skin denervation in RTX-induced neuropathy 9
c. Degeneration of unmyelinated nerves after RTX treatment 10
d. Depletion of SP(+) DRG neurons and mild reduction of CGRP(+) DRG neurons after RTX-treatment 11
e. Functional deficits in RTX-induced neuropathy 11
f. Effects of RTX on myelinated motor and sensory nerves 12
Chapter 4. Effect of 4MC on the skin reinnervation and reversal of function deficits 13
a. Therapeutic effect of 4MC on skin reinnervation of PGP 9.5(+) and CGRP(+) epidermal nerves 13
b. Enhancement of unmyelinated nerve regeneration by 4MC 13
c. Functional consequences of 4MC-promoted skin reinnervation 14
Chapter 5. Long-term effect of 4MC treatment on the skin reinnervation and reduced the duration of the thermal and mechanical deficits. 16
a. Long-term effect of 4MC treatment on the skin reinnervation and functional deficits 16
Chapter 6. Discussion 18
a. RTX-induced nerve degeneration and skin denervation 18
b. RTX-induced neuropathy as a model of chronic systemic painful neuropathy 20
c. Promotion of unmyelinated nerve regeneration by 4MC 21
References 23
Figures and Figure legends 32
Figure 1. Skin denervation in resiniferatoxin (RTX)-induced neuropathy 32
Figure 2. Changes in epidermal nerve density (END) after resiniferatoxin (RTX)-induced neuropathy 34
Figure 3. Ultrastructural changes in unmyelinated nerves after resiniferatoxin (RTX)-induced neuropathy 36
Figure 4. Effects of resiniferatoxin (RTX) on the ultrastructural morphometry of unmyelinated nerves 38
Figure 5. Effects of resiniferatoxin (RTX) on dorsal root ganglion (DRG) neurons of different phenotypes 40
Figure 6. Quantification of dorsal root ganglion (DRG) neurons after resiniferatoxin (RTX) treatment 42
Figure 7. Functional deficits to thermal and mechanical stimuli in RTX-induced neuropathy… 44
Figure 8. Effect of resiniferatoxin (RTX) on neurophysiological examinations of myelinated motor and sensory nerves 46
Figure 9. Effect of resiniferatoxin (RTX) on myelinated nerve fibers of sural nerves……… 48
Figure 10. Effect of 4-methylcatechol (4MC) on skin innervation after resiniferatoxin (RTX)-induced neuropathy 50
Figure 11. Quantitative changes in the skin innervation after 4-methylcatechol (4MC) treatment of resiniferatoxin (RTX)-induced neuropathy 52
Figure 12. Effect of 4-methylcatechol (4MC) on the unmyelinated nerve pathology of medial plantar nerves after resiniferatoxin (RTX)-induced neuropathy…… 54
Figure 13. Ultrastructural morphometric changes in unmyelinated nerves after 4-methylcatechol (4MC) treatment in resiniferatoxin (RTX)-induced neuropathy 56
Figure 14. Effect of 4-methylcatechol (4MC) on the thermal and mechanical response after resiniferatoxin (RTX)-induced neuropathy 58
Figure 15. Effect of 4-methylcatechol (4MC) on thermal and mechanical response are correlations with skin innervation after resiniferatoxin (RTX)-induced neuropathy…… 60
Figure 16. Long-term effect of 4-methylcatechol (4MC) on the reinnervation of protein gene product 9.5 (PGP 9.5)(+) epidermal nerves after resiniferatoxin (RTX)-induced neuropathy 62
Figure 17. Long-term effect of 4-methylcatechol (4MC) on the reinnervation of caltitonin gene-relative protein (CGRP)(+) epidermal nerves after resiniferatoxin (RTX)-induced neuropathy 64
Figure 18. Long-term effect of 4-methylcatechol (4MC) on the reinnervation of substance P (SP)(+) epidermal nerves after resiniferatoxin (RTX)-induced neuropathy…… 66
Figure 19. Quantitative changes in the skin innervation after long-term treatment of 4-methylcatechol (4MC) in the resiniferatoxin (RTX)-induced neuropathy…… 68
Figure 20. Quantitative changes in the skin innervation after long-term treatment of 4-methylcatechol (4MC) in the resiniferatoxin (RTX)-induced neuropathy…… 70
Figure 21. Long-term effect of 4-methylcatechol (4MC) on the recovery of thermal and mechanical responses deficits after resiniferatoxin (RTX)-induced neuropathy…… 72
dc.language.isoen
dc.subject神經性疼痛zh_TW
dc.subject物質Pzh_TW
dc.subject神經再生zh_TW
dc.subjectCalcitonin gene-related peptidezh_TW
dc.subject辣椒素zh_TW
dc.subject表皮神經退化zh_TW
dc.subjectResiniferatoxinzh_TW
dc.subject4-Methylcatecholzh_TW
dc.subjectNerve regenerationen
dc.subjectCalcitonin gene-related peptideen
dc.subjectNeuropathyen
dc.subjectResiniferatoxinen
dc.subjectCapsaicinen
dc.subject4-Methylcatecholen
dc.subjectSkin denervationen
dc.subjectSubstance Pen
dc.title神經毒素(resiniferatoxin)造成之週邊神經退化與4-methylcatechol促進表皮神經再生之研究zh_TW
dc.titleEnhancement of cutaneous nerve regeneration by 4-methylcatechol in resiniferatoxin-induced neuropathyen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳志成,嚴震東,閔明源,王嘉銓
dc.subject.keyword神經性疼痛,辣椒素,神經再生,表皮神經退化,Resiniferatoxin,4-Methylcatechol,物質P,Calcitonin gene-related peptide,zh_TW
dc.subject.keywordNeuropathy,Resiniferatoxin,Capsaicin,4-Methylcatechol,Skin denervation,Nerve regeneration,Substance P,Calcitonin gene-related peptide,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2008-01-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨生物細胞學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
35.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved