請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27448完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高純琇 | |
| dc.contributor.author | Yu-Ting Hung | en |
| dc.contributor.author | 洪妤婷 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:05:21Z | - |
| dc.date.available | 2008-02-19 | |
| dc.date.copyright | 2008-02-19 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-09 | |
| dc.identifier.citation | 1. Allen, T.M. & Cullis, P.R. Drug delivery systems: Entering the mainstream. Science 303, 1818-1822 (2004).
2. Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods 44, 235-249 (2000). 3. Fernandez, A.M. et al. N-succinyl-(beta-alanyl-L-leucyl-L-alanyl-L-leucyl)doxorubicin: An extracellularly tumor-activated prodrug devoid of intravenous acute toxicity. Journal of Medicinal Chemistry 44, 3750-3753 (2001). 4. Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research 24, 1-16 (2007). 5. Torchilin, V.P. Polymer-coated long-circulating microparticulate pharmaceuticals. Journal of Microencapsulation 15, 1-19 (1998). 6. Harris, J.M. & Chess, R.B. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery 2, 214-221 (2003). 7. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 65, 271-284 (2000). 8. Iyer, A.K., Khaled, G., Fang, J. & Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today 11, 812-818 (2006). 9. Leamon, C.P. & Low, P.S. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today 6, 44-51 (2001). 10. Vonarbourg, A., Passirani, C., Saulnier, P. & Benoit, J.P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27, 4356-4373 (2006). 11. Frank, M.M. & Fries, L.F. The Role of Complement in Inflammation and Phagocytosis. Immunology Today 12, 322-326 (1991). 12. Owens, D.E. & Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 307, 93-102 (2006). 13. Harashima, H., Sakata, K., Funato, K. & Kiwada, H. Enhanced Hepatic-Uptake of Liposomes through Complement Activation Depending on the Size of Liposomes. Pharmaceutical Research 11, 402-406 (1994). 14. Rudt, S. & Muller, R.H. In-Vitro Phagocytosis Assay of Nanoparticles and Microparticles by Chemiluminescence .3. Uptake of Differently Sized Surface-Modified Particles, and Its Correlation to Particle Properties and in-Vivo Distribution. European Journal of Pharmaceutical Sciences 1, 31-39 (1993). 15. Macritch.F Adsorption of Proteins at Solid/Liquid Interface. Journal of Colloid and Interface Science 38, 484-& (1972). 16. Jeon, S.I., Lee, J.H., Andrade, J.D. & Degennes, P.G. Protein Surface Interactions in the Presence of Polyethylene Oxide .1. Simplified Theory. Journal of Colloid and Interface Science 142, 149-158 (1991). 17. Devine, D.V., Wong, K., Serrano, K., Chonn, A. & Cullis, P.R. Liposome-Complement Interactions in Rat Serum - Implications for Liposome Survival Studies. Biochimica Et Biophysica Acta-Biomembranes 1191, 43-51 (1994). 18. Hsu, M.J. & Juliano, R.L. Interactions of Liposomes with the Reticuloendothelial System .2. Nonspecific and Receptor-Mediated Uptake of Liposomes by Mouse Peritoneal-Macrophages. Biochimica Et Biophysica Acta 720, 411-419 (1982). 19. Dijkstra, J., Vangalen, M. & Scherphof, G. Influence of Liposome Charge on the Association of Liposomes with Kupffer Cells-Invitro - Effects of Divalent-Cations and Competition with Latex-Particles. Biochimica Et Biophysica Acta 813, 287-297 (1985). 20. Jeon, S.I. & Andrade, J.D. Protein Surface Interactions in the Presence of Polyethylene Oxide .2. Effect of Protein Size. Journal of Colloid and Interface Science 142, 159-166 (1991). 21. Gref, R. et al. The Controlled Intravenous Delivery of Drugs Using Peg-Coated Sterically Stabilized Nanospheres. Advanced Drug Delivery Reviews 16, 215-233 (1995). 22. Oh, K.S. et al. Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system. Biomacromolecules 6, 1062-1067 (2005). 23. Handbook of Pharmaceutical Excipients 5th ed edited by Raymond C. Rowe, Paul J. Sheskey, Siân C. Owen (2006). 24. Tomii, Y. Lipid formulation as a drug carrier for drug delivery. Current Pharmaceutical Design 8, 467-474 (2002). 25. [Anon] Final report on the safety assessment of lecithin and hydrogenated lecithin. International Journal of Toxicology 20, 21-45 (2001). 26. Kabanov, A.V., Batrakova, E.V. & Alakhov, V.Y. Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of Controlled Release 82, 189-212 (2002). 27. Stolnik, S., Illum, L. & Davis, S.S. Long Circulating Microparticulate Drug Carriers. Advanced Drug Delivery Reviews 16, 195-214 (1995). 28. Moghimi, S.M. & Hunter, A.C. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends in Biotechnology 18, 412-420 (2000). 29. Anderson, B.C., Pandit, N.K. & Mallapragada, S.K. Understanding drug release from poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) gels. Journal of Controlled Release 70, 157-167 (2001). 30. Kozlov, M.Y., Melik-Nubarov, N.S., Batrakova, E.V. & Kabanov, A.V. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33, 3305-3313 (2000). 31. Hunter, R., Strickland, F. & Kezdy, F. The Adjuvant Activity of Non-Ionic Block Polymer Surfactants .1. The Role of Hydrophile-Lipophile Balance. Journal of Immunology 127, 1244-1250 (1981). 32. Hunter, R., Olsen, M. & Buynitzky, S. Adjuvant Activity of Nonionic Block Copolymers .4. Effect of Molecular-Weight and Formulation on Titer and Isotype of Antibody. Vaccine 9, 250-256 (1991). 33. Hunter, R.L., Mcnicholl, J. & Lal, A.A. Mechanisms of Action of Nonionic Block-Copolymer Adjuvants. Aids Research and Human Retroviruses 10, S95-S98 (1994). 34. Batrakova, E.V., Li, S., Miller, D.W. & Kabanov, A.V. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharmaceutical Research 16, 1366-1372 (1999). 35. Batrakova, E.V. et al. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: Contributions of energy depletion and membrane fluidization. Journal of Pharmacology and Experimental Therapeutics 299, 483-493 (2001). 36. Batrakova, E.V., Li, S., Alakhov, V.Y., Miller, D.W. & Kabanov, A.V. Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. Journal of Pharmacology and Experimental Therapeutics 304, 845-854 (2003). 37. Grindel, J.M., Jaworski, T., Piraner, O., Emanuele, R.M. & Balasubramanian, M. Distribution, metabolism, and excretion of a novel surface-active agent, purified poloxamer 188, in rats, dogs, and humans. Journal of Pharmaceutical Sciences 91, 1936-1947 (2002). 38. Batrakova, E.V. et al. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. Journal of Controlled Release 100, 389-397 (2004). 39. Schaer, G.L. et al. Beneficial effects of RheothRx injection in patients receiving thrombolytic therapy for acute myocardial infarction - Results of a randomized, double-blind, placebo-controlled trial. Circulation 94, 298-307 (1996). 40. Palmer, W.K., Emeson, E.E. & Johnston, T.P. Poloxamer 407-induced atherogenesis in the C57BL/6 mouse. Atherosclerosis 136, 115-123 (1998). 41. Blonder, J.M., Baird, L., Fulfs, J.C. & Rosenthal, G.J. Dose-dependent hyperlipidemia in rabbits following administration of poloxamer 407 gel. Life Sciences 65, Pl261-Pl266 (1999). 42. Dutcher JD, G.W., Pagano JF, Vandepatte J Amphotericin B, its production and its salts. US patent 2,908,611 (1959). 43. Brajtburg, J., Powderly, W.G., Kobayashi, G.S. & Medoff, G. Amphotericin-B - Current Understanding of Mechanisms of Action. Antimicrobial Agents and Chemotherapy 34, 183-188 (1990). 44. Dignani, M.C. & Anaissie, E. Human fusariosis. Clinical Microbiology and Infection 10, 67-75 (2004). 45. Lopez-Velez, R. et al. Amphotericin B lipid complex versus no treatment in the secondary prophylaxis of visceral leishmaniasis in HIV-infected patients. Journal of Antimicrobial Chemotherapy 53, 540-543 (2004). 46. Zager, R.A. Polyene antibiotics: Relative degrees of in vitro cytotoxicity and potential effects on tubule phospholipid and ceramide content. American Journal of Kidney Diseases 36, 238-249 (2000). 47. Rogers, P.D. et al. Amphotericin B activation of human genes encoding for cytokines. Journal of Infectious Diseases 178, 1726-1733 (1998). 48. Rogers, P.D., Kramer, R.E., Chapman, S.W. & Cleary, J.D. Amphotericin B-induced interleukin-1 beta expression in human monocytic cells is calcium and calmodulin dependent. Journal of Infectious Diseases 180, 1259-1266 (1999). 49. The Merck index. 12th ed. Whitehouse Station, NJ, USA : Chapman & Hall Electronic Publishing Division. 50. Lemke, A., Kiderlen, A. & Kayser, O. Amphotericin B. Applied Microbiology and Biotechnology 68, 151-162 (2005). 51. Kayser, O., Olbrich, C., Yardley, V., Kiderlen, A.F. & Croft, S.L. Formulation of amphotericin B as nanosuspension for oral administration. International Journal of Pharmaceutics 254, 73-75 (2003). 52. Santangelo, R. et al. Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrobial Agents and Chemotherapy 44, 2356-2360 (2000). 53. Hertenstein, B. et al. Low Incidence of Invasive Fungal-Infections after Bone-Marrow Transplantation in Patients Receiving Amphotericin-B Inhalations during Neutropenia. Annals of Hematology 68, 21-26 (1994). 54. Erjavec, Z. et al. Tolerance and efficacy of amphotericin B inhalations for prevention of invasive pulmonary aspergillosis in haematological patients. European Journal of Clinical Microbiology & Infectious Diseases 16, 364-368 (1997). 55. Lambros, M.P., Bourne, D.W.A., Abbas, S.A. & Johnson, D.L. Disposition of aerosolized liposomal amphotericin B. Journal of Pharmaceutical Sciences 86, 1066-1069 (1997). 56. Brajtburg, J. et al. Interaction of Plasma-Proteins and Lipoproteins with Amphotericin-B. Journal of Infectious Diseases 149, 986-997 (1984). 57. Wasan, K.M., Brazeau, G.A., Keyhani, A., Hayman, A.C. & Lopezberestein, G. Roles of Liposome Composition and Temperature in Distribution of Amphotericin-B in Serum-Lipoproteins. Antimicrobial Agents and Chemotherapy 37, 246-250 (1993). 58. Micromedex. 59. Atkinson, A.J. & Bennett, J.E. Amphotericin-B Pharmacokinetics in Humans. Antimicrobial Agents and Chemotherapy 13, 271-276 (1978). 60. Daneshmend, T.K. & Warnock, D.W. Clinical Pharmacokinetics of Systemic Anti-Fungal Drugs. Clinical Pharmacokinetics 8, 17-42 (1983). 61. Bolard, J., Cheron, M. & Mazerski, J. Effect of Surface Curvature on the Interaction of Single Lamellar Phospholipid-Vesicles with Aromatic and Nonaromatic Heptaene Antibiotics (Vacidin-a and Amphotericin-B). Biochemical Pharmacology 33, 3675-3680 (1984). 62. Kirby, C., Clarke, J. & Gregoriadis, G. Effect of the Cholesterol Content of Small Unilamellar Liposomes on Their Stability Invivo and Invitro. Biochemical Journal 186, 591-598 (1980). 63. Boswell, G.W., Buell, D. & Bekersky, I. AmBisome (Liposomal amphotericin B): A comparative review. Journal of Clinical Pharmacology 38, 583-592 (1998). 64. Blau, I.W. & Fauser, A.A. Review of comparative studies between conventional and liposomal amphotericin B (Ambisome (R)) in neutropenic patients with fever of unknown origin and patients with systemic mycosis. Mycoses 43, 325-332 (2000). 65. Clark, J.M. et al. Amphotericin-B Lipid Complex Therapy of Experimental Fungal-Infections in Mice. Antimicrobial Agents and Chemotherapy 35, 615-621 (1991). 66. Fielding, R.M., Singer, A.W., Wang, L.H., Babbar, S. & Guo, L.S.S. Relationship of Pharmacokinetics and Drug Distribution in Tissue to Increased Safety of Amphotericin-B Colloidal Dispersion in Dogs. Antimicrobial Agents and Chemotherapy 36, 299-307 (1992). 67. Seki, J. et al. Lipid Nano-Sphere (Lns), a Protein-Free Analog of Lipoproteins, as a Novel Drug Carrier for Parenteral Administration .4. Journal of Controlled Release 28, 352-353 (1994). 68. Ranchere, J.Y., Latour, J.F., Fuhrmann, C., Lagallarde, C. & Loreuil, F. Amphotericin B intralipid formulation: Stability and particle. Journal of Antimicrobial Chemotherapy 37, 1165-1169 (1996). 69. Muller-Goymann, C.C. Physicochernical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. European Journal of Pharmaceutics and Biopharmaceutics 58, 343-356 (2004). 70. Dunn, S.E. et al. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. Journal of Controlled Release 44, 65-76 (1997). 71. Moghimi, S.M. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres: the effect of the ethylene oxide chain configuration. Febs Letters 540, 241-244 (2003). 72. Kostarelos, K., Tadros, T.F. & Luckham, P.F. Physical conjugation of (tri-) block copolymers to liposomes toward the construction of sterically stabilized vesicle systems. Langmuir 15, 369-376 (1999). 73. Wang, A.F., Jiang, L.P., Mao, G.Z. & Liu, Y.H. Direct force measurement of silicone- and hydrocarbon-based ABA triblock surfactants in alcoholic media by atomic force microscopy. Journal of Colloid and Interface Science 256, 331-340 (2002). 74. Kayes, J.B. & Rawlins, D.A. Adsorption Characteristics of Certain Polyoxyethylene-Polyoxypropylene Block Co-Polymers on Polystyrene Latex. Colloid and Polymer Science 257, 622-629 (1979). 75. Illum, L., Hunneyball, I.M. & Davis, S.S. The Effect of Hydrophilic Coatings on the Uptake of Colloidal Particles by the Liver and by Peritoneal-Macrophages. International Journal of Pharmaceutics 29, 53-65 (1986). 76. Malmsten, M., Linse, P. & Cosgrove, T. Adsorption of Peo Ppo Peo Block Copolymers at Silica. Macromolecules 25, 2474-2481 (1992). 77. Jamshaid, M., Farr, S.J., Kearney, P. & Kellaway, I.W. Poloxamer Sorption on Liposomes - Comparison with Polystyrene Latex and Influence on Solute Efflux. International Journal of Pharmaceutics 48, 125-131 (1988). 78. Moghimi, S.M. et al. Surface Engineered Nanospheres with Enhanced Drainage into Lymphatics and Uptake by Macrophages of the Regional Lymph-Nodes. Febs Letters 344, 25-30 (1994). 79. Moghimi, S.M., Porter, C.J.H., Muir, I.S., Illum, L. & Davis, S.S. Non-Phagocytic Uptake of Intravenously Injected Microspheres in Rat Spleen - Influence of Particle-Size and Hydrophilic Coating. Biochemical and Biophysical Research Communications 177, 861-866 (1991). 80. Allen, C., Maysinger, D. & Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B-Biointerfaces 16, 3-27 (1999). 81. Espuelas, M.S. et al. Interaction of amphotericin B with polymeric colloids: 2. Effect of poloxamer on the adsorption of amphotericin B onto poly(epsilon-caprolactone) nanospheres. Colloids and Surfaces B-Biointerfaces 11, 203-212 (1998). 82. Johnsson, M., Bergstrand, N., Edwards, K. & Stalgren, J.J.R. Adsorption of a PEO-PPO-PEO triblock copolymer on small unilamellar vesicles: Equilibrium and kinetic properties and correlation with membrane permeability. Langmuir 17, 3902-3911 (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27448 | - |
| dc.description.abstract | 近年來,藥物載體的發展尤其是膠體藥物載體(colloidal drug delivery systems, CDDS)受到相當大的重視,脂質藥物載體是由生物體中本身具有的脂質所構成,具有毒性很低等優點,被認為是相當安全的一種藥物載體。然而,由單一脂相構成的脂質載體可能會有突釋效應及難以達到零級釋放等潛在問題,為了克服這些限制,曾有學者製備以含藥脂質為核、Pluronic嵌段共聚合物為殼的奈米粒。
本研究中,藉由加入Pluronic嵌段共聚合物於事先形成的卵磷脂脂質微粒中,使聚合物以物理性吸附方式塗佈於脂質微粒表面,並測量不同PEO/PPO比例之聚合物對於形成微粒之平均粒徑及表面電位的影響。研究結果顯示比較相同PPO嵌段的聚合物,含較長PEO鏈的聚合物比短PEO鏈的聚合物造成較多粒徑增加,而在PEO數相同的情況下,含較長PPO鏈的聚合物亦有較多粒徑增加。但本實驗中之脂質微粒系統的平均粒徑及分散性可能造成實驗結果判斷的誤差。表面電位的結果,則顯示加入聚合物濃度愈高,表面電位降低程度愈大,最終會到達一平原期。在PPO數相同的情況下,含較長PEO鏈的聚合物其降低表面電位的效果較大,另一方面,PEO數相同時,PPO段愈長的聚合物亦有較大的表面電位降低效果,表示PPO段亦可能影響切面自粒子表面位移。 在本研究的第二部分,將模式藥物節絲菌素B包覆至脂質微粒中,最終成品濃度1.19 mg/mL,包覆率為79.05%。從藥物釋放曲線可看出聚合物外殼可減緩藥物釋出,其中,PPO段對於藥物釋放的影響較大,顯示PPO嵌段與磷脂質之間或是PPO嵌段與amphotericin B之間的作用力為影響amphoteririn B釋放的主要因素,而PEO段對於藥物釋放的影響相較之下較PPO段不顯著。 | zh_TW |
| dc.description.abstract | Recent advances in nanoparticle systems in drug delivery display a great potential for the administration of active molecules. The lipid systems with physiological lipids have the advantages of low toxicity. However, lipid-based drug carriers composed of a single lipid phase have some inherent problems of burst effect and difficulty in a zero-order release. To overcome these limitations, researchers prepared nanoparticles with drug-loaded lipid as the core and Pluronic triblock copolymer as the shell.
In this study, Pluronic block copolymers were physically adsorbed to the surface of lipid-nanoparticles by adding the copolymer molecules to preformed lecithin-based lipid-nanoparticle suspension. The effect on the mean vesicle diameter and zeta-potential was monitored for Pluronic block copolymers with different PEO/PPO ratios. It was found that the polymers composed of the same PPO but longer PEO chains can cause more increase in vesicle diameter than those composed of shorter PEO chains, and so did polymers composed of the same PEO but longer PPO chains. However, the bigger size and polydispersity of the vesicles may result in experimental errors in this study. The zeta-potential values obtained showed reduction in the zeta-potential with increase in block copolymer concentration and eventually a plateau was reached. The reduction in zeta-potential is bigger for polymers with higher PEO chains when PPO blocks are the same. On the other hand, polymers with more PPO resulted in bigger reduction in zeta-potential, indicating that the PPO blocks may also have some effects on the shift of the shear plane. In the second part of this study, the model drug amphotericin B was incorporated into the lipid-nanoparticles, with encapsulation efficiency of 79.05% and concentration of 1.19 mg/mL. The release profiles showed that the polymer shell can reduce the release rate of amphotericin B. The higher the polymer concentration, the slower the release of amphotericin B from vesicles. Besides, longer PPO chain length demonstrated obvious effects on drug release, indicating that there existed interactions between the PPO block and phospholipids or interactions between the PPO block and amphotericin B molecules. On the other hand, the PEO chain length has very little effect on the release of amphotericin B. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:05:21Z (GMT). No. of bitstreams: 1 ntu-97-R94423010-1.pdf: 1222772 bytes, checksum: e19c11993bfd0a809ba3d84a2bd9a9c6 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 第一章 緒論……………………………………………………………1
1-1 膠體藥物遞送系統(colloidal drug delivery systems, CDDS)……...….............1 1-2 體內的調理作用(opsonization)及胞噬作用(phagocytosis)……………............1 1-3 PEG塗佈(coating)與血漿中蛋白質之作用……………………………………..2 1-4 聚合物塗佈於顆粒表面的方式……………..…………………………………...3 1-5 試劑介紹………………………………………………..………………………...7 1-5-1 卵磷脂(lecithin)………………………………………..……………………….7 1-5-2 Pluronic®嵌段共聚合物……………………………………………………...…8 1-5-3 節絲菌素B (amphotericin B)…………………………………………………13 1-6 研究膠體藥物遞送系統物化性質的方法……………………………...............18 1-6-1 雷射光散射技術(laser light scattering)測量粒徑……………………………19 1-6-2 表面電位測量(zeta potential)………………………………….......................20 第二章 實驗動機與目的……………………………………………..22 第三章 實驗材料與方法…………………………………………..…23 3-1 實驗試劑與儀器……………………………………………………...…………23 3-1-1 試劑…………………………………………………………………………...23 3-1-2 儀器………………………………………………………………………...…23 3-1-3 試液配製………………………………..………………………………….…24 3-2 實驗方法………………………………………...………………………………25 3-2-1 表面塗佈Pluronic®嵌段共聚合物之脂質微粒……...……………….......…25 3-2-2 製備含藥脂質微粒………....………………………………………………...26 3-2-3 藥物釋放試驗………………………………………………...………………30 第四章 結果與討論…………………………………………………. 32 4-1 製備表面吸附Pluronic®嵌段共聚合物之脂質微粒…………………........…32 4-1-1 製備脂質微粒………………………………………………………………...32 4-1-2 表面吸附Pluronic®嵌段共聚合物之脂質微粒的物化性質研究………...…32 4-2 包覆amphotericin B之脂質微粒…………………………………………...…40 4-2-1 製備含藥脂質微粒…………………………………………………………...40 4-2-2 含藥脂質微粒之藥物定量…………………………………………………...43 4-3 藥物釋放研究………………………………………………………………...…50 4-3-1 Amphotericin B定量精確度與準確度試驗…………………………………..50 4-3-2 藥物釋放試驗………………………………………………………………...53 4-3-3 影響藥物釋放的可能因素…………………………………………………...55 第五章 結論…………………………………………………………..60 第六章 參考文獻……………………………………………………..62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 節絲菌素B | zh_TW |
| dc.subject | 脂質 | zh_TW |
| dc.subject | 嵌段共聚合物 | zh_TW |
| dc.subject | 難溶性藥物 | zh_TW |
| dc.subject | 膠體藥物載體 | zh_TW |
| dc.subject | amphotericin B | en |
| dc.subject | hydrophobic drug | en |
| dc.subject | colloidal drug delivery system | en |
| dc.subject | lipid | en |
| dc.subject | Pluronic block copolymer | en |
| dc.title | Pluronic®嵌段共聚合物包覆脂質微粒作為節絲菌素B載體之研究 | zh_TW |
| dc.title | Lipid-nanoparticles Coated with Pluronic® Block Copolymer as a Carrier for Amphotericin B | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖嘉鴻,蔡瑞瑩 | |
| dc.subject.keyword | 嵌段共聚合物,節絲菌素B,脂質,膠體藥物載體,難溶性藥物, | zh_TW |
| dc.subject.keyword | Pluronic block copolymer,amphotericin B,lipid,colloidal drug delivery system,hydrophobic drug, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
