請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27442
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林仁混 | |
dc.contributor.author | Feng-Lan Chiu | en |
dc.contributor.author | 邱鳳蘭 | zh_TW |
dc.date.accessioned | 2021-06-12T18:05:08Z | - |
dc.date.available | 2013-12-31 | |
dc.date.copyright | 2008-02-19 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2008-01-10 | |
dc.identifier.citation | 1.Kallioniemi OP, Visakorpi T. Genetic basis and clonal evolution of human prostate cancer. Adv Cancer Res 1996;68:225-255.
2.Shand RL, Gelmann EP. Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol 2006;16:123-131. 3.Gonzalgo ML, Isaacs WB. Molecular pathways to prostate cancer. J Urol 2003;170:2444-2452. 4.Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-867. 5.ACS. Cancer Facts and FIGS 2005. American Cancer Society 2005:1-64. 6.Ames BN, Gold LS, Willett WC. The causes and prevention of cancer. Proc Natl Acad Sci USA 1995;92 5258-5265. 7.Sooriakumaran P, Langley SE, Laing RW, Coley HM. COX-2 inhibition: a possible role in the management of prostate cancer? J Chemother 2007;19:21-32. 8.Sugar LM. Inflammation and prostate cancer. Can J Urol 2006;13 Suppl 1:46-47. 9.Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol 2002;20:3001-3015. 10.O' Malley B. The steroid receptor superfamily: more excitement predicted for the future. Mol Endocrinol 1990;4:363-369. 11.Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005;23:8253-8261. 12.Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA 2005;13:238-244. 13.Salesi N, Carlini P, Ruggeri EM, Ferretti G, Bria E, Cognetti F. Prostate cancer: the role of hormonal therapy. J Exp Clin Cancer Res 2005;24:175-180. 14.Eder IE, Culig Z, Ramoner R, Thurnher M, Putz T, Nessler-Menardi C, Tiefenthaler M, Bartsch G, Klocker H. Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther 2000;7:997-1007. 15.Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res 2002;62:1008-1013. 16.Eder IE, Hoffmann J, Rogatsch H, Schafer G, Zopf D, Bartsch G, Klocker H. Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 2002;9:117-125. 17.Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:33-39. 18.Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860--867. 19.Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW. Aspirin use and risk of fatal cancer. Cancer Res 1993;53:1322-1327. 20.Ishii Y, Ogura T, Tatemichi M, Fujisawa H, Otsuka F, Esumi H. Induction of matrix metalloproteinase gene transcription by nitric oxide and mechanisms of MMP-1 gene induction in human melanoma cell lines. Int J Cancer 2003;103:161-168. 21.Kimura H, Ogura T, Kurashima Y, Weisz A, Esumi H. Effects of nitric oxide donors on vascular endothelial growth factor gene induction. Biochem Biophys Res Commun 2002;296:976-982. 22.Okada F, Tazawa H, Kobayashi T, Kobayashi M, Hosokawa M. Involvement of reactive nitrogen oxides for acquisition of metastatic properties of benign tumors in a model of inflammation-based tumor progression. Nitric Oxide 2006;14:122-129. 23.Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nature Rev Cancer 2003;3:276--285. 24.Cerutti PA, Trump BF. Inflammation and oxidative stress in carcinogenesis. Cancer Cell 1991;3:1-7. 25.De Marzo AM, Marchi VL, Epstein JI, Nelson W G. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999;155:1985-1992. 26.van Leenders GJ, Gage WR, Hicks JL, van Balken B, Aalders TW, Schalken JA, De Marzo AM. Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 2003;162:1529-1537. 27.Putzi MJ, De Marzo AM. Morphologic transitions between proliferative inflammatory atrophy and high-grade prostatic intraepithelial neoplasia. Urology 2000;56:828-832. 28.Abate-Shen C, Shen MM. Mouse models of prostate carcinogenesis. Trends Genet 2002;18:S1-S5. 29.Salvemini D, Billiar TR, Vodovotz Y. Nitric Oxide and inflammation. Parnham MJ, editor. Boston: Birkhauser; 2001. 105 p. 30.Hao XP, Pretlow TG, Rao JS, Pretlow TP. Inducible nitric oxide synthase (iNOS) is expressed similarly in multiple aberrant crypt foci and colorectal tumors from the same patients. Cancer Res 2001;61:419-422. 31.Cross RK, Wilson KT. Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis 2003;9:179-189. 32.Goodman JE, Hofseth LJ, Hussain SP, Harris CC. Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ Mol Mutagen 2004;44:3-9. 33.Schafter AI. Effects of nonsteroidal antiinflammatory drugs on platelet function and systemic hemostasis. J Clin Pharmacol 1995;35:209-219. 34.Huggins C. The effect of castration, of estrogen and of androgen injections on serum phosphatases in metastatic carcinoma of the prostate: studies on prostatic cancer. Cancer Res 1941;1:293-297. 35.Huggins C, Stevens R, Hodges C. The effect of castration on advanced carcinoma of the prostate gland: studies on prostate cancer. Arch Surg 1941;43:209-223. 36.Vogelzang NJ, Chodak GW, Soloway MS, Block NL, Schellhammer PF, Smith JA Jr, Caplan RJ, Kennealey GT. Goserelin versus orchiectomy in the treatment of advanced prostate cancer: final results of a randomized trial. Zoladex Prostate Study Group. Urology 1995;46:220-226. 37.Petrylak DP, Macarthur RB, O'Connor J, Shelton G, Judge T, Balog J, Pfaff C, Bagiella E, Heitjan D, Fine R, Zuech N, Sawczuk I, Benson M, Olsson CA. Phase I trial of docetaxel with estramustine in androgen-independent prostate cancer. J Clin Oncol 1999;17:958-967. 38.Savarese DM, Halabi S, Hars V, Akerley WL, Taplin ME, Godley PA, Hussain A, Small EJ, Vogelzang NJ. Phase II study of docetaxel, estramustine, and low-dose hydrocortisone in men with hormone-refractory prostate cancer: a final report of CALGB 9780. Cancer and Leukemia Group B. J Clin Oncol 2001;19:2509-2516. 39.Hudes GR, Nathan F, Khater C, Haas N, Cornfield M, Giantonio B, Greenberg R, Gomella L, Litwin S, Ross E, Roethke S, McAleer C. Phase II trial of 96-hour paclitaxel plus oral estramustine phosphate in metastatic hormone-refractory prostate cancer. J Clin Oncol 1997;15:3156-3163. 40.Hudes GR, Greenberg R, Krigel RL, Fox S, Scher R, Litwin S, Watts P, Speicher L, Tew K, Comis R. Phase II study of estramustine and vinblastine, two microtubule inhibitors, in hormone-refractory prostate cancer. J Clin Oncol 1992;10:1754-1761. 41.Hudes G, Einhorn L, Ross E, Balsham A, Loehrer P, Ramsey H, Sprandio J, Entmacher M, Dugan W, Ansari R, Monaco F, Hanna M, Roth B. Vinblastine versus vinblastine plus oral estramustine phosphate for patients with hormone-refractory prostate cancer: A Hoosier Oncology Group and Fox Chase Network phase III trial. J Clin Oncol 1999;17:3160-3166. 42.Kantoff PW, Halabi S, Conaway M, Picus J, Kirshner J, Hars V, Trump D, Winer EP, Vogelzang NJ. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of the cancer and leukemia group B 9182 study. J Clin Oncol 1999;17:2506-2513. 43.Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 1996;14:1756-1764. 44.Gronberg H, Isaacs SD, Smith JR. Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA 1997;278:1251-1255. 45.Rose DP, Connolly JM. Dietary fat, fatty acids and prostate cancer. Lipids 1992;27 798-803. 46.Carter BS, Steinberg GD, Beaty TH. Familial risk factors for prostate cancer. Cancer Surv 1991;11: 5-13. 47.Gao X, LaValley MP, Tucker KL. Prospective studies of dairy product and calcium intakes and prostate cancer risk: a meta-analysis. J Natl Cancer Inst 2005;97:1768-1777. 48.Lippman SM, Benner SE, Hong WK. Cancer chemoprevention. J Clin Oncol 1994(12):851-873. 49.Kelloff GJ, Hawk ET, Karp JE, Crowell JA, Boone CW, Steele VE, Lubet RA, Sigman CC. Progress in clinical chemoprevention. Semin Oncol 1997;24:241-252. 50.Ito S, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T. Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells. FEBS Lett 2004;571:31-34. 51.Graf BA, Milbury PE, Blumberg JB. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 2005;8:281-290. 52.Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 2004;134:3479S-3485S. 53.van Proppel G, van den Berg H. Vitamins and cancer. Cancer Lett 1997;114:195-202. 54.Mukherjee AK, Basu S, Sarkar N, Ghosh AC. Advances in cancer therapy with plant based natural products. Crurrent Medicinal Chemistry 2001;8:1467-1486. 55.Syed DN, Khan N, Afaq F, Mukhtar H. Chemoprevention of Prostate Cancer through Dietary Agents: Progress and Promise. Cancer Epidemiol Biomarkers Prev 2007;16:2193-2203. 56.Adhami VM, Mukhtar H. Anti-oxidants from green tea and pomegranate for chemoprevention of prostate cancer. Mol Biotechnol 2007;37:52-57. 57.Khan N, Mukhtar H. Tea polyphenols for health promotion. Life Sci 2007;81:519-533. 58.Kawai M, Hirano T, Higa S, Arimitsu J, Maruta M, Kuwahara Y, Ohkawara T, Hagihara K, Yamadori T, Shima Y, Ogata A, Kawase I, Tanaka T. Flavonoids and related compounds as anti-allergic substances. Allergol Int 2007;56:113-123. 59.Erdman JW Jr, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, Harnly J, Hollman P, Keen CL, Mazza G, Messina M, A S, Vita J, Williamson G, Burrowes J. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr 2007;137(3 Suppl 1):718S-737S. 60.van Opstal N. Data sheets on quarantine pests Fiches informatives sur les organismes de quarantaine Solanum elaeagnifolium. EPPO Bulletin 2007;37:236-245. 61.Maiti PC. Rich sources of solasodine. Current Science 1967;36:126. 62.Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr 2002;88:587-605. 63.Tas S, Avci O. Rapid clearance of psoriatic skin lesions induced by topical cyclopamine. A preliminary proof of concept study. Dermatology 2004;209:126-131. 64.MA M. Useful plants of dermatology. VIII. The false hellebore (Veratrum californicum). J Am Acad Dermatol 2006;54:718-720. 65.Sano M, Suzuki M, Miyase T, Yoshino K, Maeda-Yamamoto M. Novel antiallergic catechin derivatives isolated from oolong tea. J Agric Food Chem 1999;47:1906-1910. 66.Suzuki M, Yoshino K, Maeda-Yamamoto M, Miyase T, Sano M. Inhibitory effects of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate on mouse type IV allergy. J Agric Food Chem 2000;48:5649-5633. 67.Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001;1:34-45. 68.Huang H, Tindall DJ. The role of the androgen receptor in prostate cancer. Crit Rev Eukayot Gene Expr 2002;12:193-207. 69.Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA 2002;99:11890-11895. 70.Hobisch A, Eder IE. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 1998;58:4640-4645. 71.Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Androgen receptor status of lymph node metastases from prostate cancer. The Prostate 1996;28:129-135. 72.Edwards J, Krishna NS, Grigor KM, Bartlett JM. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 2003;89:552-556. 73.Stesrns ME, McGarvey T. Prostate cancer: therapeutic, diagnostic, and basic studies. Lab Invest 1992;67:540-552. 74.Goktas S, Ziada A, Crawford ED. Combined androgen blockade for advanced prostatic carcinoma. Prostate Cancer Prostatic Dis 1999;2:172-179. 75.Gittes RF. Carcinoma of the prostate. N Engl J Med 1991;324:236-245. 76.Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 2001;90:157-177. 77.Liu LZ, Fang J, Zhou Q, Hu X, Shi X, Jiang BH. Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer. Mol Pharmacol 2005;68:635-643. 78.Maggiolini M, Vivacqua A, Carpino A, Bonofiglio D, Fasanella G, Salerno M, Picard D, Ando S. The Mutant Androgen Receptor T877A Mediates the Proliferative but Not the Cytotoxic Dose-Dependent Effects of Genistein and Quercetin on Human LNCaP Prostate Cancer Cells. Mol Pharmacol 2002;62:1027-1035. 79.Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 2001;21:381-406. 80.Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-κB signalling and gene expression by blocking IκB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology 2005;115:375-387. 81.Ko WG, Kang TH, Lee SJ, Kim YC, Lee BH. Effects of luteolin on the inhibition of proliferation and induction of apoptosis in human myeloid leukaemia cells. Phytother Res 2002;16:295-298. 82.Kimata M, Inagaki N, Nagai H. Effects of luteolin and other flavonoids on IgE-mediated allergic reaction. Planta Med 2000;66:25-29. 83.Perez-Garcia F, Adzet T, Canigueral S. Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radical Res 2000;33:661-665. 84.Kim JH, Jin YR, Park BS, Kim TJ, Kim SY, Lim Y, Hong JT, Yoo HS, Yun YP. Luteolin prevents PDGF-BB-induced proliferation of vascular smooth muscle cells by inhibition of PDGF β-receptor phosphorylation. Biochem Pharmacol 2005;69:1715-1721. 85.Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E Jr, Lee MT. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 1999;128:999-1010. 86.Klotz L. Hormone therapy for patients with prostate carcinoma. Cancer Cell 2000;88:3009-3014. 87.Ueda H, Yamazaki C, Yamazaki M. Inhibitory effect of perilla leaf extract and luteolin on mouse skin tumor promotion. Biol Pharm Bull 2003;26:560-563. 88.Chiu FL, Lin JK. HPLC Analysis of Naturally Occurring Methylated Catechins, 3'- and 4'-Methyl-epigallocatechin Gallate, in Various Fresh Tea Leaves and Commercial Teas and Their Potent Inhibitory Effects on Inducible Nitric Oxide Synthase in Macrophages. J Agric Food Chem 2005;53:7035-7042. 89.Sato N, Gleave ME, Bruchovsky N, Rennie PS, Beraldi E, Sullivan LD. A metastatic and androgen-sensitive human prostate cancer model using intraprostatic inoculation of LNCaP cells in SCID mice. Cancer Res 1997;57:1584-1589. 90.Ko YJ, Devi GR, London CA, Kayas A, Reddy MT, Iversen PL, Bubley GJ, Balk SP. Androgen receptor downregulation in prostate cancer with phosphorodiamidate morpholino antisense oligomers. J Urol 2004;172:1140-1144. 91.Liao X, Tang S, Thrasher JB, Griebling TL, Li B. Small-interfering RNA induced androgen receptor silencing leads to apoptotic cell death in prostate cancer. Mol Cancer Ther 2005;4:505-515. 92.Sheflin L, Keegan B, Zhang W, Spaulding SW. Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels. Biochem Biophys Res Commun 2000;276:144-150. 93.Solit DB, Scher HI, Rosen N. Hsp90 as a therapeutic target in prostate cancer. Semi in Oncol 2003;30:709-716. 94.Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Androgen receptor status of lymph node metastases from prostate cancer. Prostate 1996;28:129-135. 95.Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001;61:3550-3555. 96.Chen S, Song CS, Lavrovsky Y, Bi B, Vellanoweth R, Chatterjee B, Roy AK. Catalytic cleavage of the androgen receptor messenger RNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme. Mol Endocrinol 1998;12:1558-1566. 97.Butler LM, Centenera MM, Neufing PJ, Buchanan G, Choong CS, Ricciardelli C, Saint K, Lee M, Ochnik A, Yang M, Brown MP, Tilley WD. Suppression of androgen receptor signaling in prostate cancer cells by an inhibitory receptor variant. Mol Endocrinol 2006;20:1009-1024. 98.Haag P, Bektic J, Bartsch G, Klocker H, Eder IE. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 2005;96:251-258. 99.Montironi R, Mazzucchelli R, Marshall JR, Bartels PH. Prostate cancer prevention: review of target populations, pathological biomarkers, and chemopreventive agents. J Clin Pathol 1999;52:793-803. 100.Waladkhani AR, Clemens MR. Effect of dietary phytochemicals on cancer development. Int J Mol Med 1998;1:747-753. 101.Brownson DM, Azios NG, Fuqua BK, Dharmawardhane SF, Mabry TJ. Flavonoid effects relevant to cancer. J Nutr 2002;132:3482S-3489S. 102.Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 2001;19:837-844. 103.Lee HH, Ho CT, JK L. Theaflavin-3,3'-digallate and penta-O-galloyl-β-D-glucose inhibite rat liver microsomal 5α-reductase activity and the expression of androgen receptor in LNCaP prosate cancer cells. Carcinogenesis 2004;25:1109-1118. 104.Georget V, Terouanne B, Nicolas JC, C. S. Mechanism of antiandrogen action: key role of hsp90 in conformational change and transcriptional activity of the androgen receptor. Biochemistry 2002;41:11824-11831. 105.Cohen P, Peehl DM, Graves HC, RG R. Biological effects of prostate specific antigen as an insulin-like growth factor binding protein-3 protease. J Endocrinol 1994;142:407-415. 106.Webber MM, Waghray A, Bello D. Prostate-specific antigen, a serine protease, facilitates human prostate cancer cell invasion. Clin Cancer Res 1995;1:1089-1094. 107.Yoshida E, Ohmura S, Sugiki M, Maruyama M, H M. Prostate-specific antigen activates single-chain urokinase-type plasminogen activator. Int J Cancer 1995;63:863-865. 108.Elangovan V, Sekar N, Govindasamy S. Chemopreventive potential of dietary bioflavonoids against 20-methylcholanthrene-induced tumorigenesis. Cancer Lett 1994;87:107-113. 109.Moncada S, Palmer RMJ, Higgs EA. Nitric oxide. Physiology, pathology and pharmacology. Pharmacol Rev 1991;43:109-142. 110.Saleh D, Ernst P, Lim S, Barnes PJ, Giaid A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J 1998;12:929-937. 111.Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol 2001;1:1397-1406. 112.Ho CT, Chen Q, Shi H, Zhang KQ, Rosen RT. Antioxidative effect of polyphenol extract prepared from various Chinese teas. Prev Med 1992;21:520-525. 113.Serafini M, Ghiselli A, Ferro Luzzi A. In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr 1996;50:28-32. 114.Wang ZY, Huang MT, Ferraro T, Wong CQ, Lou YR, Reuhl K, Iatropoulos M, Yang CS, Conney AH. Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in skin of SKH-1 mice. Cancer Res 1992;52:1162-1170. 115.Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 1995;43:27-32. 116.Yoshino K, Hara Y, Sno M, Tomita I. Antioxidatiive effects of black tea theaflavins and thearubigin on lipid peroxidation of rat liverhomogenates induced by tertbutyl hydroperoxide. Biol Pharm Bull 1994;17:146-149. 117.Jain AK, Shimoi K, Nakamura Y, Kada T, Hara Y, Tomita I. Crude tea extracts decrease the mutagenic activity of N-methyl-N-nitro-N-nitrosoguanidine in vitro and in intragastric tract of rats. Mutat Res 1989;210:1-8. 118.Shiraki M, Hara Y, Osawa T, Kumon H, Nakauama T, Kawakishi S. Antioxidative and antimutagenic effects of theaflavins from black tea. Mutat Res 1994;323:29-34. 119.Huang MT, Ho CT, Wang ZY, Ferraro T, Finnegan-Olive T, Lou Y R, Mitchell JM, Laskin JD, New-Mark H, Yang CS, Conney AH. Inhibitory effects of topical application of a green tea polyphenol fraction on tumor initiation and promotion in mouse skin. Carcinogenesis 1992;13:947-954. 120.Katiyar SK, Agarwal R, Zaim MT, Mukhtar H. Protection against N-nitrosodiethylamine and benzo[α]pyrene-induced forestomach and lung tumorigenesis in A/J mice by green tea Carcinogenesis 1993;14:849-855. 121.Mukhtar HM, Wang ZY, Katiyar SK, Agarwal R. Tea components: antimutagenic and anticarcinogenic effects. Preu Med 1992;21:351-360. 122.Oguni I, Nasu K, Yamamoto S, Nomura T. On the antitumor activity of fresh green tea leaf. Agric Biol Chem 1988;52:1879-1880. 123.Konishi H. Antiallergic constituents from oolong tea stem. Biol Pharm Bull 1995;18:683-686. 124.Matsuo N, Yamada K, Shoji K, Mori M, Sugano M. Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship Allergy 1997;52:58-64. 125.Wagner H. Search for new plant constituents with potential antiphlogistic and antiallergic activity. Planta Med 1996;37:77-82. 126.Donovan JL, Bell JR, Kasim-Karakas S, German JB, Walzem RL, Hansen RJ, Waterhouse AL. Catechin is present as metabolites in human plasma after consumption of red wine. J Nutr 1999;129:1662-1668. 127.Hackett AM, Griffiths LA, Broillet A, Wermeille M. The metabolism and excretion of (+)-[14C]cyanidanol-3 in man following oral administration. Xenobiotica 1983;13:279-286. 128.Lee MJ, Wang ZY, Li H, Chen L, Sun Y, Gobbo S, Balentine DA, Yang CS. Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol Biomarkers Prev 1995;4:393-399. 129.Li C, Meng X, Winnik B, Lee MJ, Lu H, Sheng S, Buckley B, Yang CS. Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry. Chem Res Toxicol 2001;14:702-707. 130.Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee MJ, Ho CT, Yang CS. Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice and rats. Chem Res Toxicol 2002;15:1042-1050. 131.Sano M, Suzuki M, Miyase T, Yoshino K, Maeda-Yamamoto M. Novel antiallergic catechin derivatives isolated from oolong tea. J Agric Food Chem 1999;47:1906-1910. 132.Suzuki M, Yoshino K, Maeda-Yamamoto M, Miyase T, Sano M. Inhibitory effects of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate on mouse type IV allergy. J Agric Food Chem 2000;48:5649-5633. 133.Sano M, Tabata M, Suzuki M, Degawa M, Miyase T, Maeda-Yamamoto M. Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection. Analyst 2001;126:816-820. 134.Tachibana H, Sunada Y, Miyase T, Sano M, Yamamoto-Maeda M, Yamada K. Identification of a methylated tea catechin as inhibitor of degranulation in human basophilic KU812 cells. Biosci Biotechnol Biochem 2000;64:452-454. 135.Bronner WE, Beecher GR. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J Chromatogr A 1998;805:137-142. 136.Finger A, Kuhr S, Engelhardt UH. Chromatography of tea constituents. J Chromatogr 1992;624:293-315. 137.Donovan JL LD, Stremple P, Waterhouse AL. Analysis of (+)-catechin, (-)-epicatechin and their 3'- and 4'-O-methylated analogs. A comparison of sensitive methods. J Chromatogr B Biomed Sci Appl 1999;726:277-283. 138.Yang B, Arai K, Kusu F. Determination of catechins in human urine subsequent to tea ingestion by high-performance liquid chromatography with electrochemical detection. Anal Biochem 2000;283:77-82. 139.Nakagawa K, Miyazawa T. Chemiluminescence-high-performance liquid chromatographic determination of tea catechin, (-)-epigallocatechin 3-gallate, at picomole levels in rat and human plasma. Anal Biochem 1997;248:41-49. 140.Zhu BT, Patel UK, Cai MX, Lee AJ, Conney AH. Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methytransferase. Xenobiotica 2001;31:879-890. 141.Lautala P, Ulmanen I, Taskinen J. Radiochemical high-performance liquid chromatographic assay for the determination of catechol O-methyltransferase activity towards various substrates. J chromatogr Biomed Sci Appl 1999;736:143-151. 142.Zhu BT, Patel UK, Cai MX, Conney AH. O-Methylation of tea polyphenols catalyzed by human placental cytosolic catechol-O-methyltransferase. Drug Metab Dispos 2000;28:1024-1030. 143.Kharitonov SA, Chung FK, Evans DJ, O’Connor BJ, Barnes PJ. The elevted level of exhaled nitric oxide in asthmatic patients is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med 1996;153:1773-1780. 144.Massaro AF, Mehta S, Lilly CM, Kobzik L, Reilly JJ, Drazen JM. Elevated nitric oxide concentrations in isolated lower airway gas of asthmatic subjects. Am J Respir Crit Care Med 1996;153:1510-1514. 145.Oh SJ, Min YG, Kim JW. Expression of nitric oxide synthases in nasalmucosa from a mouse model of allergic rhinitis. Ann Otol Rhinol Laryngol 2003;112:899-903. 146.Mulrennan SA, Redington AE. Nitric oxide synthase inhibition: therapeutic potential in asthma. Treat Respir Med 2004;3:79-88. 147.Norton SA. Useful plants of dermatology. III. Corticosteroids, Strophanthus, and Dioscorea. J Am Acad Dermatol 1998;38:256-259. 148.Steel CC, Drysdale RB. Electrolyte leakage from plant and fungal tissue and disruption of liposome membranes by α-tomatine. Phytochemistry 1988;27:1025-1030. 149.Keukens EA, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WM, de Kruijff B. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1995;1240:216-228. 150.Lavie Y, Harel-Orbital T, Gaffield W, Liscovitch M. Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells. Anticancer Res 2001;21:1189-1194. 151.Lee KR, Kozukue N, Han JS, Park JH, Chang EY, Baek EJ, Chang JS, Friedman M. Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J Agric Food Chem 2004;52:2832-2839. 152.Ito S, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T. Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells. FEBS Lett 2004;571:31-34. 153.Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell 1994;78:915-918. 154.Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 2005;4:471-479. 155.Bertolini A, Ottani A, Sandrini M. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr Med Chem 2002;9:1033-1043. 156.Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal 2001;13:85-94. 157.Parente L, Perretti M. Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem Pharmacol 2003;65:153-159. 158.Verrijzer CP, Van der Vliet PC. POU domain transcription factors. Biochim Biophys Acta 1993;1173:1-21. 159.Sawada T, Falk LA, Rao P, Murphy WJ, Pluznik DH. IL-6 induction of protein-DNA complexes via a novel regulatory region of the inducible nitric oxide synthase gene promoter: role of octamer binding proteins. J Immunol 1997;158:5267-5276. 160.Diez E, Balsinde J, Aracil M, Schuller A. Ethanol induces release of arachidonic acid but not synthesis of eicosanoids in mouse peritoneal macrophages. Biochim Biophys Acta 1987;921:82-89. 161.Stancovski I, Baltimore D. NF-kappaB activation: the I kappaB kinase revealed? Cell 1997;91:299-302. 162.Xie Q. A novel lipopolysaccharide-response element contributes to induction of nitric oxide synthase. J Biol Chem 1997;272:14867-14872. 163.Friedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem2002 50:5751-5780. 164.Matsushita S, Yanai Y, Fusyuku A, Fujiwara Y, Ikeda T, Ono M, Han C, Ojika M, Nohara T. Efficient conversion of tomatidine into neuritogenic pregnane derivative. Chem Pharm Bull (Tokyo) 2007;55:1077-1078. 165.Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 2002;418:889-892. 166.Friedman M, Henika PR, Mackey BE. Effect of feeding solanidine, solasodine and tomatidine to non-pregnant and pregnant mice. Food Chem Toxicol 2003;41:61-71. 167.Friedman M, Henika P R, Mackey BE. Feeding of potato, tomato and eggplant alkaloids affects food consumption and body and liver weights in mice. J Nutr 1996;126:989-999. 168.Wu KK. Inducible cyclooxygenase and nitric oxide synthase. Adv Pharmacol 1995;33:179-190. 169.Baeuerle PA, Baichwal VR. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol 1997;65:111-137. 170.Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 2001;480-481:243-268. 171.Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, Russell SW, Murphy WJ. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci USA 1993;90:9730-9734. 172.Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 1995;9:2723-2735. 173.Staudt LM, Clerc RG, Singh H, LeBowitz JH, Sharp PA, Baltimore D. Cloning of a lymphoid-specific cDNA encoding a protein binding the regulatory octamer DNA motif. Science 1988;241:577-580. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27442 | - |
dc.description.abstract | 前列腺癌(prostate cancer),又稱攝護腺癌。在美國,前列腺癌則是男性僅次於皮膚癌第二常見的癌症。亞洲國家男性罹患前列腺癌的比例比西方國家要低很多,但是移民美國的亞裔第二代,其罹患前列腺癌的比例仍高於居在亞洲國家的人民,其中重要的差異在生活型態的不同,西方的飲食中富有飽合脂肪及含有相對較低的維生素和微量元素。因此,可見飲食習慣與環境因子似乎與前列腺癌有某種程度的關聯性。
雄性激素受體(Androgen receptor, AR)在前列腺癌的生長中扮演極重要的角色。前列腺癌病患經抑制男性賀爾蒙療法(androgen-ablation therapy)後,雖然有一定的療效但多數病患會再度復發,而這種復發的癌症至今仍沒有有效的治療方法。近來研究指出這種復發的癌症與雄性激素受體(Androgen receptor, AR)有著密切的關係,此種復發的腫瘤不需要依賴男性賀爾蒙就能生長而且通常伴有AR基因增幅(Amplification)或過度表現(Overexpression)的現像。因此,近來前列腺癌的研究著重在如何降低AR表現及調控AR所涉及的訊息傳遞。 在本文的第二章中,我們發現類黃酮化合物—luteolin可以有效抑制前列腺癌細胞的生長。由於已有文獻指出若抑制AR的表現則會抑制細胞生長及使細胞走向細胞凋亡。因此,接下來探究在處理luteolin情形下是否會促進前列腺癌細胞細胞凋亡的發生並進一步檢查AR的表現是否受到影響。結果發現luteolin確實能夠促進前列腺癌細胞細胞凋亡,同時也發現AR的蛋白質表現會受到抑制而且會隨著處理luteolin濃度提高和時間增加而有抑制增加的狀況。有趣的是在同樣的處理下AR的mRNA抑制就不如蛋白質來的明顯,因此我們推論luteolin抑制AR的表現中,轉譯後機制可能扮演較重要的角色。接著我們利用蛋白質合成抑制劑(cycloheximide),蛋白解體抑制劑(proteasome inhibitor, MG132)以及免疫共同沈澱法(coimmunoprecipitation)等實驗,證明了luteolin抑制雄性激素受體的表現是透過影響AR與其保護蛋白—熱蛋白90(Heat shock protein 90, Hsp 90)的結合,AR一但失去Hsp 90的保護,雄性激素受體則會進一步被proteasome辨識並進一步裂解。最後我們也想了解在動物體內luteolin是否仍有抑制腫瘤生長的作用,我們將前列腺癌細胞移植到一免疫系統抑制的小鼠,長出腫瘤後腹腔注射給予luteolin,結果前列腺癌細胞在小鼠體內的生長也受到luteolin的抑制。 除了基因上的變化之外,慢性發炎也是許多癌症的起因,包括食道癌、胃癌、肝癌、大腸癌、膀胱癌和前列腺癌等。文獻指出前列腺反覆發炎或慢性發炎,有可能導致前列腺癌。在化學預防臨床試驗結果也發現:長期使用aspirin或是非類固醇抗發炎藥,可適度的降低前列腺癌風險。有鑑於此,在本文的第三章則是以內毒素所刺激的巨噬細胞當成發炎反應實驗模型來尋找新的或更有效的抗發炎藥物,未來可以提供已做癌症預防或治療的另一種選擇。 在第三章的第一節,我們先探討茶多酚甲基化衍生物的抗發炎作用。已有許多證據顯示茶多酚EGCG具有抗發炎、抗氧化、抗腫瘤等等的作用,其作用除EGCG直接作用外還有可能會經由其生物化學轉化衍生物產生這些作用。文獻指出甲基化的EGCG(O-methylated EGCG)較EGCG有較佳的生物活性如抗過敏效果,而抗發炎作用是否也是如此?在此針對O-methylated EGCG的抗發炎作用進行研究。結果發現在測試的三種茶多酚甲基化衍生物((-)-Epigallocatechin-3-O-(3-O-methyl)gallate (3'Me-EGCG), (-)-Epigallocatechin-3-O-(4-O-methyl)gallate (4'Me-EGCG) and (-)-4'-methyl epigallocatechin-3-O-(4-O-methyl)gallate (4',4'-diMe-EGCG))中以3'Me-EGCG的抗發炎作用最為明顯,在抑制一氧化氮(nitric oxide, NO)的產生或是降低可誘發型一氧化氮合酶(induced nitric oxide synthase, iNOS )表現均是如此。由於茶飲是除水之外消耗最大宗的飲品,所以我們也進一步分析茶飲及生茶葉中是否有茶多酚甲基化衍生物的存在而其含量又為何?在此我們利用高效率液相層析儀分析茶飲及生茶葉,結果發現4',4'-diMe-EGCG並不存在茶飲及生茶葉中。在生茶葉中則是以台灣三峽的青心柑仔茶葉含有較高的3'Me-EGCG和4'Me-EGCG。而比較綠茶,烏龍茶,紅茶及普洱茶飲則發現台灣龍井綠茶飲中有較高3'Me-EGCG和4'Me-EGCG的含量,烏龍茶次之,紅茶及普洱茶則未發現。 在第三章的第二節則是探討另一植物化學因子—類固醇生物鹼(steroidal alkaloids)的抗發炎作用。steroidal alkaloids其結構上近似類固醇的前趨物,常用來合成人造類固醇(anabolic steroids)、類固醇賀爾蒙(steroidal hormones)及腎上腺皮質類固醇(corticosteroids)等類固醇藥劑的材料。而在此我們仍以內毒素所刺激的巨噬細胞作為發炎反應實驗模型,研究steroidal alkaloids對於一些發炎中介者(inflammation mediators)的影響及機制探討。在測試的二種steroidal alkaloids(tomatidine and soalsodine)中,以來自番茄的類固醇生物鹼—tomatidine的抗發炎作用較為明顯。Tomatidine除可以有效抑制NO的產生及降低iNOS表現之外,亦可抑制前列腺素E2(PGE2)的產生和環氧化酶2(Cyclooxygenase-2, COX-2)表現。接著,進一步探究Tomatidine抑制發炎反應的機制,NF-kappa B 為啟動促進發炎之蛋白質表達的一種轉錄因子,實驗發現tomatidine可以經由抑制I-kappa B的磷酸化和I-kappa B的裂解,進而減少NF-kappa B核移位及其活性。另外絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)參與發炎反應的訊號傳遞,而tomatidine可以藉由其成員之一的c-Jun N-terminal kinase (JNK) pathway來抑制c-jun 磷酸化以及另一重要轉錄因子Octamer-2的表現,進而影響發炎中介者(inflammation mediators, 如iNOS及COX-2)的表現。 植物化學因子在疾病預防上扮演很重要的角色,然而其作用機制及其分子標的等等還不是很清楚。在本文中採用了許多植物化學因子,如類黃酮化合物、茶多酚甲基化衍生物及類固醇生物鹼進行癌症化學預防的研究,由結果得知:類黃酮化合物—luteolin可有效抑制前列腺癌細胞的生長。而內毒素所引發的發炎模式中,茶多酚甲基化衍生物—3'Me-EGCG及類固醇生物鹼—tomatidine均能降低的發炎中介者的表現。這些結果也說明了植物化學因子在疾病預防上的作用機制及其分子標的,期望藉由本文的研究結果,未來能夠提供癌症化學預防臨床試驗一些資訊,使癌症化學預防能有更多的選擇。 | zh_TW |
dc.description.abstract | Prostate cancer is the most common cancer in American men and the second leading cause of cancer death in this population. It is well known that there are significant differences in the incidence of certain types of cancer in particular countries or regions of the world. The incidence of clinically significant prostate cancer is vastly different between Western and East Asia countries. A difference points to factors in the ‘Western life-style’ fostering prostate cancer. One candidate is a diet rich in saturated fat and relatively low in vitamins and micronutrients from fruit and vegetables.
Androgen receptors play a critical role in regulating the growth, proliferation and progression in prostate carcinoma and androgen-refractory prostate cancer. Recent studies have suggested that prostate cancer cell proliferation is inhibited by AR downregulation. Hence, a therapy approach are focus on how to inhibiting AR expression and/or blocking the AR-mediated signaling. In chapter 2, our aim was to investigate luteolin, a flavonoid, affects AR expression and function in prostate cancer cells and xenografts. Luteolin inhibited LNCaP cell growth and the expression of androgen regulated PSA genes. Moreover, luteolin treatment resulted in repressing androgen-dependent trans-activation of AR by inhibiting AR nuclear translocation. Western blot analysis demonstrated that AR protein expression was inhibited by luteolin in dose- and time-dependent manners. Luteolin decreased the association of AR and heat shock protein 90 (Hsp90), which in turn induced AR degradation through proteasome-mediated pathway in ligand-independent manner. Our results also demonstrate that luteolin suppressed LNCaP xenograft tumor growth, PSA secretion, and AR protein expression in severe combined immunodeficient (SCID) mice. Recurrent or chronic inflammation has been implicated in the development of many human cancers, including those of the esophagus, stomach, liver, large intestine, urinary bladder and prostate. In clinical chemopreventive trials, using aspirin or NASIDs could suppress the incidence of many cancers, such as colon cancer, breast cancer, and prostate cancer. Hence, our study used the LPS-stimulated macrophage as an inflammation model to investigate the effect of O-methylated EGCG derivatives and steroidal alkaloids on anti-inflammation effects, and find more potent and other valuable compounds for anti-inflammation disorders. Tea polyphenols have been reported to act in ways that are antioxidative, antimutagenic effects, anticarcinogenic, and antiallergic activity. (-)-Epigallocatechin-3-gallate (EGCG), a major tea polyphenol, undergo substantial biotransformation to different derivatives that includes the methylated compounds. Recent researches have showed that the O-methylated derivatives of EGCG have more effectively compared with EGCG on biological impacts. In the part 1 of chapter 3, we compare the three O-methylation derivatives of EGCG ((-)-Epigallocatechin-3-O-(3-O-methyl)gallate (3'Me-EGCG), (-)-Epigallocatechin-3-O-(4-O-methyl)gallate (4'Me-EGCG) and (-)-4'-methyl epigallocatechin-3-O-(4-O-methyl)gallate (4',4'-diMe-EGCG)) to EGCG on the anti-inflammatory effects. We found that 3'Me-EGCG has higher inhibitory effect on the nitric oxide generation and iNOS and COX-2 expression as compared with EGCG, while 4'Me-EGCG and 4',4'-diMe-EGCG were less effective. In addition, we have investigated the composition of the three O-methylated EGCG derivatives, 3'Me-EGCG, 4'Me-EGCG, and 4',4'-diMe-EGCG in tea leaves by HPLC. We found that different content of these O-methylated EGCG show in various fresh tea leaves. Neither fresh tea leaves nor commercial tea leaves could detect the 4',4'-diMe-EGCG. Higher levels of 3'Me-EGCG and 4'Me-EGCG were detected in Chinshin-Kanzai (a species of Camellia Sinensis) cultivated in the mountain area of Sansia, Taipei County, Taiwan. Also, these O-methylated EGCG were found to be higher in autumn and winter than spring and summer. The young leaves (apical bud and the two youngest leaves) were found to be richer in these O-methylated EGCG than old leaves (from the tenth to the fifth leaf). In fermentation level, the amount of O-methylated EGCG is higher in unfermented longjin green tea than semifermentated oolong tea. However, the fermentated black tea and puerh tea did not find these O-methylated EGCG. In the part 2 of chapter 3, our researches have used steroidal alkaloid as agents in order to find new compounds for anti-inflammation disorders. The structures of steroidal alkaloids, tomatidine and soalsodine, were similar as anabolic steroids, steroidal hormones, and corticosteroids. Inducible nitric oxide synthase and cyclooxygenase-2 are important enzymes that mediate inflammatory processes and associated with inflammatory diseases and cancer. However, the molecular mechanisms of anti-inflammatory effects of these steroidal alkaloids were not clear. Our results were indicated that tomatidine has more potent anti-inflammatory action as compared to solasodine and diosgenin. Tomatidine could decrease LPS-stimulated production of nitrite oxide (NO) and prostaglandin (PG) via inhibition of iNOS and COX-2 expression. Tomatidine inhibited the LPS-induced iNOS and COX-2 expression through suppression of I-kappaB α phosphorylation and NF-kappaB nuclear translocation, and JNK pathway in turns inhibited the c-jun phosphorylation and Oct-2 expression. Recent studies demonstrate that phytochemicals can protect humans against diseases and how phytochemicals interfere with this mechanism is still unclear. In this dissertation, our results demonstrated that luteolin, a naturally flavnoid, could inhibited the cell growth in prostate cancer cells and xenografts. The LPS-stimulated macrophage could be use as an inflammation model to investigate the effect of O-methylated EGCG derivatives and steroidal alkaloids on anti-inflammation effects. Our experiments found that 3'Me-EGCG and tomatidine could act as anti-inflammatory agents and may be possible to develop as useful agents for chemoprevention of cancer or inflammatory disorders. However, our preclinical research might promising and ready for further study in clinical chemopreventive trials. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:05:08Z (GMT). No. of bitstreams: 1 ntu-96-D91442009-1.pdf: 2010535 bytes, checksum: c987a01b9338934aa490e9f50005cc08 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract v Abbreviations viii Table of Contents ix Chapter 1 Overview and Rationale 1. Prostate Cancer 1 1.1. Progression of Prostate cancer 1 1.2. Treatment of prostate cancer 5 2. Chemoprevention 7 2.1. Cancer chemoprevention 7 2.2. Mechanisms of prostate cancer chemoprevention 8 2.3. Phytochemicals 8 3. Experimental Rationale 12 Chapter 2 Luteolin down-regulates the expression and function of androgen receptor in LNCaP prostate cancer cells and xenografts 2.1. Introduction 15 2.2. Material and methods 17 2.3. Results 21 2.4. Discussion 27 2.5. Figures 31 Chapter 3 Anti-inflammatory Effects of Tea Polyphenols and Steroidal Alkaloids 3.1. HPLC Analysis of Naturally Occurring Methylated Catechins, 3'- and 4'-Methyl-epigallocatechin Gallate, in Various Fresh Tea Leaves and Commercial Teas and Their Potent Inhibitory Effects on Inducible Nitric Oxide Synthase in Macrophages 39 3.1.1. Introduction 39 3.1.2. Material and methods 41 3.1.3. Results 43 3.1.4. Discussion 47 3.1.5. Figures and Tables 50 3.2. Tomatidine inhibits the induction of nitric oxide synthase and cyclooxygenase-2 through inactivation of NF-kappaB and JNK pathway in lipopolysaccharide-stimulated mouse macrophages 60 3.2.1. Introduction 60 3.2.2. Material and methods 62 3.2.3. Results 64 3.2.4. Discussion 68 3.2.5. Figures 71 Chapter 4 Conclusion 79 References 81 Vita 96 | |
dc.language.iso | en | |
dc.title | 植物化合物於前列腺癌化學預防與抗發炎之研究 | zh_TW |
dc.title | Chemoprevention of prostate cancer and anti-inflammatory effect by phytochemicals | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 高銘欽,鍾景光,李宣佑,何元順,陳彥州,張明富,蕭水銀 | |
dc.subject.keyword | 癌症化學預防,前列腺癌,雄性激素受體,木犀草素,發炎反應,甲基化茶多酚,類固醇生物鹼, | zh_TW |
dc.subject.keyword | Chemoprevention,Prostate cancer,Androgen receptor,Luteolin,Inflammation,O-methylated EGCG,Steroidal alkaloids, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-01-11 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。