Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2742
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 朱美妃,鍾孫霖 | |
dc.contributor.author | Tsai-Wei Chen | en |
dc.contributor.author | 陳采薇 | zh_TW |
dc.date.accessioned | 2021-05-13T06:49:07Z | - |
dc.date.available | 2019-08-25 | |
dc.date.available | 2021-05-13T06:49:07Z | - |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-18 | |
dc.identifier.citation | Ahrens, L.H., Erlank, A.J., 1969. Hafnium. Handbook of Geochemistry, 2. Springer.
Aldliss, D.T., Whandoyo, R., Ghazali, S.A., Kusyono, 2011. Geologic map of the Sidikalang and part of Sinabang (0618), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Allègre, C.J., Courtillot, V., Tapponnier, P., Hirn, A., Mattauer, M., Coulon, C., Jaeger, J.J., Achache, J., Schärer, U., Marcoux, J., 1984. Structure and evolution of the Himalaya–Tibet orogenic belt. Nature, 307(5): 17-22. Amante, C., Eakins, B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. Arth, J.G., Barker, F., 1976. Rare-earth partitioning between hornblende and dacitic liquid and implications for the genesis of trondhjemitic-tonalitic magmas. Geology, 4(9): 534-536. Aspden, J.A., Kartawa, W., Aldiss, D.T., Djunuddin, A., Diatma, D., Clarke, M.C.G., Whandoyo, R., Harahap, H., 2007. Geologic map of the Padangsidempuan and Sibolga (0717), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Barber, A.J., Crow, M.J., Milsom, J., 2005. Sumatra: geology, resources and tectonic evolution. Geological Society of London. Bea, F., Pereira, M.D., Stroh, A., 1994. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4): 291-312. Belousova, E.A., Griffin, W.L., O'reilly, S.Y., Fisher, N.L., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622. Belousova, E.A., Griffin, W.L., Pearson, N.J., 1998. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineralogical Magazine, 62(3): 355-366. Belousova, E.A., Jiménez, J.M.G., Graham, I., Griffin, W.L., O’Reilly, S.Y., Pearson, N., Martin, L., Craven, S., Talavera, C., 2015. The enigma of crustal zircons in upper-mantle rocks: Clues from the Tumut ophiolite, southeast Australia. Geology, 43(2): 119-122. Bennett, J.D., Bridge, D.McC., Cameron, N.R., Djunuddin, A., Ghazali, S.A., Jeffery, D.H., Kartawa, W., Keats, W., Rock, N.M.S., Thompson, S.J., 1981a. Geologic map of the Calang Quadrangle (0420), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Bennett, J.D., Bridge, D.McC., Cameron, N.R., Djunuddin, A., Ghazali, S.A., Jeffery, D.H., Kartawa, W., Keats, W., Rock, N.M.S., Thompson, S.J., Whandoyo, R., 1981b. Geologic map of the Banda Aceh (0421), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Bouvier, A.-S., Ushikubo, T., Kita, N.T., Cavosie, A.J., Kozdon, R., Valley, J.W., 2012. Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contributions to Mineralogy and Petrology, 163(5): 745-768. Burnham, A.D., Berry, A.J., 2017. Formation of Hadean granites by melting of igneous crust. Nature Geoscience. Castillo, P.R., 2012. Adakite petrogenesis. Lithos, 134: 304-316. Cameron, N.R., Aspden, J.A., Bridge, D.McC., Djunuddin, A., Ghazali, S.A., Harahap, H., Hariwidjaja, Johari, S., Kartawa, W., Keats, W., Ngabito, H., Rock, N.M.S., Whandoyo, R., 1982. Geologic map of the Medan (0619), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Cameron, N.R., Aspden, J.A., Miswar, Syah, H.H., 1981. Geologic map of the Tebingtinggi (0719), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Cameron, N.R., Bennett, J.D., Bridge, D.McC., Clarke, M.C.G., Djunuddin, A., Ghazali, S.A., Harahap, H., Jeffery., D.H., Kartawa, W., Keats, W., Ngabito, H., Rock, N.M.S., Thompson, S.J., 2007a. Geologic map of the Takengon (0520), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Cameron, N.R., Bennett, J.D., Bridge, D.McC., Djunuddin, A., Ghazali, S.A., Harahap, H., Jeffery, D.H., Kartawa, W., Keats, W., Rock, N.M.S., Whandoyo, R., 2012. Geologic map of the Tapaktuan (0519), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Cameron, N.R., Djunuddin, A., Ghazali, S.A., Harahap, H., Keats, W., Kartawa, W., Miswar, Ngabito, H., Rock, N.M.S., Whandoyo, R., 2007b. Geologic map of the Langsa (0620), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2013. The continental record and the generation of continental crust. Geological Society of America Bulletin, 125(1-2): 14-32. Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific geology, 8(2): 173-174. Chesner, C.A., 2012. The Toba caldera complex. Quaternary International, 258: 5-18. Chesner, C.A., Rose, W.I., A. Deino, R.D., Westgate, J.A., 1991. Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified. Geology, 19(3): 200-203. Chu, M.-F., 2006. Application of ICP-MS to the study of Transhimalayan petrogenesis, PhD thesis of Department of Geosciences, National Taiwan University, 269 pp. Chu, M.-F., Chung, S.-L., O'Reilly, S.Y., Pearson, N.J., Wu, F.-Y., Li, X.-H., Liu, D., Ji, J., Chu, C.-H., Lee, H.-Y., 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 307(3): 479-486. Chu, M.-F., Chung, S.-L., Song, B., Liu, D., O'Reilly, S.Y., Pearson, N.J., Ji, J., Wen, D.-J., 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748. Chung, S.-L., Chu, M.-F., Ji, J., O'Reilly, S.Y., Pearson, N.J., Liu, D., Lee, T.-Y., Lo, C.-H., 2009. The nature and timing of crustal thickening in Southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1): 36-48. Chung, S.-L., Chu, M.-F., Zhang, Y., Xie, Y., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X., Zhang, Q., Wang, Y., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3): 173-196. Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q., Zhang, Q., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024. Clarke, M.C.G., Ghazali, S.A., Harahap, H., Kusyono, Stephenson, B., 2011. Geologic map of the Pematangsiantar (0718), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Clarke, M.C.G., Kartawa, W., Djunuddin, A., Suganda, E., Bagdja, M., 1982. Geologic map of the Pakan Baru (0816), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Condie, K.C., 2005. TTGs and adakites: are they both slab melts? Lithos, 80(1): 33-44. Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon, pp. 469-500. Debon, F., Le Fort, P., Sheppard, S.M.F., Sonet, J., 1986. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section. Journal of Petrology, 27(1): 219-250. Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665. Diehl, J.F., Onstott, T.C., Chesner, C.A., Knight, M.D., 1987. No short reversals of Brunhes age recorded in the Toba tuffs, north Sumatra, Indonesia. Geophysical Research Letters, 14(7): 753-756. Es’kova, E.M., 1959. Geochemistry of Nb and Ta in the nepheline syenite massifs of the Vishnevyie Mountains. Geokhimiya, 2: 130-139. Finch, R.J., Hanchar, J.M., 2003. Structure and chemistry of zircon and zircon-group minerals. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon, pp. 1-25. Finch, R.J., Hanchar, J.M., Hoskin, P.W.O., Burns, P.C., 2001. Rare-earth elements in synthetic zircon: Part 2. A single-crystal X-ray study of xenotime substitution. American Mineralogist, 86(5-6): 681-689. Frondel, C., 1953. Hydroxyl substitution in thorite and zircon. Gasparon, M., Varne, R., 1995. Sumatran granitoids and their relationship to Southeast Asian terranes. Tectonophysics, 251(1-4): 277-299. Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., Schwartz, J.J., 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology, 35(7): 643-646. Grimes, C.B., Wooden, J.L., Cheadle, M.J., John, B.E., 2015. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170(5-6): 1-26. Guillong, M., Horn, I., Günther, D., 2003. A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd: YAG laser for laser ablation ICP-MS. Journal of analytical atomic spectrometry, 18(10): 1224-1230. Halden, N.M., Hawthorne, F.C., Campbell, J.L., Teesdale, W.J., Maxwell, J.A., Higuchi, D., 1993. Chemical characterization of oscillatory zoning and overgrowth in zircon using 3 MeV µ-PIXE. The Canadian Mineralogist, 31: 637-347. Hanchar, J.M., Finch, R.J., Hoskin, P.W.O., Watson, E.B., Cherniak, D.J., Mariano, A.N., 2001. Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. American Mineralogist, 86(5-6): 667-680. Hazen, R.M., Finger, L.W., 1979. Crystal structure and compressibility of zircon at high pressure. American Mineralogist, 64(1): 196. Hinton, R.W., Upton, B.G.J., 1991. The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochimica et Cosmochimica Acta, 55(11): 3287-3302. Horn, I., Rudnick, R.L., McDonough, W.F., 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chemical Geology, 164(3): 281-301. Hoskin, P.W.O., 1998. Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and laser ablation ICPMS: a consideration and comparison of two broadly competitive techniques. Journal of Trace and Microprobe Techniques, 16(3): 301-326. Hoskin, P.W.O., 2000. Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64(11): 1905-1923. Hoskin, P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. Hoskin, P.W.O., Ireland, T.R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630. Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon, pp. 27-62. Ireland, T.R., Wlotzka, F., 1992. The oldest zircons in the solar system. Earth and Planetary Science Letters, 109(1-2): 1-10. Jackson, S.E., 2008. Calibration strategies for elemental analysis by LA–ICP–MS. In: Sylvester, P. (Ed.), Laser ablation-ICP-MS in the earth sciences, pp. 169-188. Ji, W.-Q., Wu, F.-Y., Chung, S.-L., Liu, C.-Z., 2014. The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 210: 168-180. Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4): 397-429. Jochum, K.P., Willbold, M., Raczek, I., Stoll, B., Herwig, K., 2005. Chemical Characterisation of the USGS Reference Glasses GSA‐1G, GSC‐1G, GSD‐1G, GSE‐1G, BCR‐2G, BHVO‐2G and BIR‐1G Using EPMA, ID‐TIMS, ID‐ICP‐MS and LA‐ICP‐MS. Geostandards and Geoanalytical Research, 29(3): 285-302. Kastowo, Leo, G.W., Gafoer, S., Amin, T.C., 1996. Geologic map of the Padang (0715), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Keats, W., Cameron, N.R., Djunuddin, A., Ghazali, S.A., Harahap, H., Kartawa, W., Ngabito, H., Rock, N.M.S., Thompson, S.J., Whandoyo, R., 2011. Geologic map of the Lhokseumawe (0521 and 0621), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. La Tourrette, T.Z., Burnett, D.S., Bacon, C.R., 1991. Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon. Geochimica et Cosmochimica Acta, 55(2): 457-469. Lee, H.-Y., 2007. The Linzizong volcanic successions, southern Tibet: Ages, geochemical characteristics and geodynamic significance, PhD thesis of Department of Geosciences, National Taiwan University, 189 pp. Lee, H.-Y., Chung, S.-L., Ji, J., Qian, Q., Gallet, S., Lo, C.-H., Lee, T.-Y., Zhang, Q., 2012. Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 53: 96-114. Liu, X.-C., Wu, F.-Y., Yu, L.-J., Liu, Z.-C., Ji, W.-Q., Wang, J.-G., 2016. Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 667: 163-175. Lu, Y.-J., Loucks, R.R., Fiorentini, M., McCuaig, T.C., Evans, N.J., Yang, Z.-M., Hou, Z.-Q., Kirkland, C.L., Parra-Avila, L.A., Kobussen, A., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. Soc. Econ. Geol. Spec. Publ, 19: 329-347. Luhr, J.F., Carmichael, I.S.E., 1980. The colima volcanic complex, Mexico. Contributions to Mineralogy and Petrology, 71(4): 343-372. Mahood, G., Hildreth, W., 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11-30. Marsh, B.D., 1996. Solidification fronts and magmatic evolution. Mineralogical Magazine, 60(1): 5-40. Martin, H., 1994. The Archaean grey gneisses and the genesis of the continental crust. In: Condie, K.C. (Ed.), Archaean Crustal Evolution, Developments in Precambrian Geology, pp. 205-259. Martin, H., Smithies, R.H., Rapp, R., Moyen, J.-F., Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1): 1-24. McCourt, W.J., Cobbing, E.J., 1993. The geochemistry, geochronology and tectonic setting of granitoid rocks from southern Sumatra, western Indonesia, GRDC Bandung. McCourt, W.J., Crow, M.J., Cobbing, E.J., Amin, T.C., 1996. Mesozoic and Cenozoic plutonic evolution of SE Asia: evidence from Sumatra, Indonesia. Geological Society, London, Special Publications, 106(1): 321-335. Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. Miller, C., Schuster, R., Klötzli, U., Frank, W., Purtscheller, F., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424. Miller, C.F., 2016. Eruptible magma. Proceedings of the National Academy of Sciences: 13941-13943. Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529-532. Nagasawa, H., 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites. Earth and Planetary Science Letters, 9(4): 359-364. Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K., Lamarão, C., 2013. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geology, 335: 1-7. Nash, W.P., Crecraft, H.R., 1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322. Ninkovich, D., Shackleton, N.J., Abdel-Monem, A.A., Obradovich, J.D., Izett, G., 1978. K–Ar age of the late Pleistocene eruption of Toba, north Sumatra. Nature, 276: 574-577. Nishimura, S., Abe, E., Yokoyama, T., Wirasantosa, S., Dharma, A., 1977. Danau Toba-The outline of Lake Toba, North Sumatra, Indonesia. Paleolimnology Lake Biwa Japan Pleistocene, 5: 313-332. Norman, M.D., Griffin, W.L., Pearson, N.J., Garcia, M.O., O’reilly, S.Y., 1998. Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 13(5): 477-482. Okamoto, K., 1979. Geochemical study on magmatic differentiation of Asama volcano, central Japan. Journal of the Geological Society of Japan, 85(8): 525-535. Pan, G.-T., Ding, J., Yao, D.-S., Wang, L.-Q., 2004. Guide book of 1:1,500,000 geological map of the Qinghai-Xizang (Tibet) Plateau and adjacent areas. Chengdu Cartographic Publishing House, 48 pp. Pupin, J.P., 1980. Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73(3): 207-220. Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4): 1-25. Reed, S.J.B., 1975. Electron microprobe analysis, 2. Cambridge University Press Cambridge, 400 pp. Rock, N.M.S., Aldiss, D.T., Aspden, J.A., Clarke, M.C.G., Djunuddin, A., Kartawa, W., Miswar, Thompson, S.J., Whandoyo, R., 2011. Geologic map of the Lubuksikaping (0716), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Rollinson, H., Martin, H., 2005. Geodynamic controls on adakite, TTG and sanukitoid genesis: implications for models of crust formation: Introduction to the Special Issue. Lithos, 79(1): ix-xii. Rollinson, H.R., 2007. Early Earth systems: a geochemical approach. John Wiley & Sons, 285 pp. Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U°VPb ages and metamorphism. Chemical Geology, 184(1): 123-138. Rubatto, D., Gebauer, D., 2000. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps, Cathodoluminescence in geosciences. Springer, pp. 373-400. Sato, K., 1991. K-Ar ages of granitoids in central Sumatra, Indonesia. Bulletin Geological Survey of Japan, 42: 111-181. Schwartz, M.O., Surjono, 1990. Sungai Isahan-a new primary tin occurrence in Sumatra. Geol. Sot. Malays. Bull, 26: 147-179. Scoates, J.S., Chamberlain, K.R., 1995. Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: petrologic consequences and U-Pb ages. Journal of Earth and Planetary Materials, 80(11-12): 1317-1327. Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5): 751-767. Silitonga, P.H., Kastowo, 2007. Geologic map of the Solok (0815), Sumatra. Scale 1:250,000. Geological Survey of Indonesia, Directorate of Mineral Resources, Geological Research and Development Centre, Bandung. Sisson, T.W., 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. Chemical Geology, 117(1-4): 331-344. Speer, J.A., 1982. Orthosilicates. Reviews in Mineralogy, 5. Stepanov, A.S., Hermann, J., Rubatto, D., Rapp, R.P., 2012. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300: 200-220. Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313-345. Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265. Trail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70-87. Ushikubo, T., Kita, N.T., Cavosie, A.J., Wilde, S.A., Rudnick, R.L., Valley, J.W., 2008. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust. Earth and Planetary Science Letters, 272(3): 666-676. Vavra, G., 1993. A guide to quantitative morphology of accessory zircon. Chemical Geology, 110(1-3): 15-28. Wang, C., Song, S., Niu, Y., Su, L., 2015. Late Triassic adakitic plutons within the Archean terrane of the North China Craton: Melting of the ancient lower crust at the onset of the lithospheric destruction. Lithos, 212: 353-367. Wang, Q., Zhu, D.-C., Zhao, Z.-D., Guan, Q., Zhang, X.-Q., Sui, Q.-L., Hu, Z.-C., Mo, X.-X., 2012. Magmatic zircons from I-, S-and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences, 53: 59-66. Wang, R.C., Fontan, F., Shijin, X., Xiaoming, C., Monchoux, P., 1996. Hafnian zircon from the apical part of the Suzhou granite, China. The Canadian Mineralogist, 34(5): 1001-1010. Watson, E.B., 1979. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology, 70(4): 407-419. Watson, E.B., Harrison, T.M., 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841-844. Watson, E.B., Liang, Y., 1995. A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. American Mineralogist, 80(11-12): 1179-1187. Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. Wen, D.-R., 2007. The Gangdese batholith, southern Tibet: ages, geochemical characteristics and petrogenesis, PhD thesis of Department of Geosciences, National Taiwan University, 140 pp. Wen, D.-R., Chung, S.-L., Song, B., Iizuka, Y., Yang, H.-J., Ji, J., Liu, D., Gallet, S., 2008a. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos, 105(1): 1-11. Wen, D.-R., Liu, D., Chung, S.-L., Chu, M.-F., Ji, J., Zhang, Q., Song, B., Lee, T.-Y., Yeh, M.-W., Lo, C.-H., 2008b. Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3): 191-201. Wilde, S.A., Valley, J.W., Peck, W.H., Graham, C.M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409(6817): 175-178. Williams, H., Turner, S., Kelley, S., Harris, N., 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342. Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. Yui, T.-F., Maki, K., Wang, K.-L., Lan, C.-Y., Usuki, T., Iizuka, Y., Wu, C.-M., Wu, T.-W., Nishiyama, T., Martens, U., 2012. Hf isotope and REE compositions of zircon from jadeitite (Tone, Japan and north of the Motagua fault, Guatemala): implications on jadeitite genesis and possible protoliths. European Journal of Mineralogy, 24(2): 263-275. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2742 | - |
dc.description.abstract | 在地球演化相關研究中,鋯石長期以來被視為可以記述大陸地殼演化的時空膠囊。根據前人的地球化學分析結果知道大陸地殼平均組成在晚太古宙從TTG岩套轉變為花崗岩類,鑑於鋯石對親岩元素有較高的相容性,一般認為其有機會將岩漿的化學成分差異記錄在組成中。因為埃達克岩為TTG岩套的現代類比,所以本研究針對西藏南部後碰撞埃達克岩、岡底斯I型花崗岩類、蘇門答臘高/低總REE濃度花崗岩類以及多巴火山岩的岩漿鋯石進行電子微探和雷射剝蝕感應耦合電漿質譜原位分析,分別利用這兩個方法測量鋯石中三個主量元素和二十九個微量元素的含量,並比較埃達克岩與花崗岩類的鋯石化學組成。
結果顯示本研究的鋯石組成成分為31.4–34.8 wt.%的SiO2、60.2–68.6 wt.%的ZrO2、0.6–2.4 wt.%的HfO2,以及200–5000 ppm的稀土元素,並在稀土元素分配圖上呈現Ce與Eu的異常,而儘管埃達克岩相對花崗岩類的全岩組成具有明顯的重稀土元素虧損現象,但在鋯石稀土元素分配圖上樣本間幾乎不存在區別。並且任一項鋯石化學組成特徵皆未與全岩SiO2含量和ASI產生相關性,指示結晶分異作用不會對鋯石的組成造成顯著影響。本研究認為鋯石無法像全岩可以反映埃達克岩及花崗岩類的組成差異,除了晶格應變和電荷平衡要求的影響之外,亦可能起因於樣本中的鋯石是在晶漿環境中生長,周圍的岩漿已經演化到中後期,所以不同群體鋯石所記錄的岩漿組成並非平均熔體成分,且彼此差異很小;另一方面,先於或與鋯石同時結晶的礦物相(如磷灰石、獨居石等)也會降低熔體中輕稀土元素和中稀土元素的含量,所以會將岡底斯埃達克岩鋯石原本應該繼承的重稀土元素虧損特性消除掉。 雖然上述結果顯示埃達克岩與花崗岩類中的鋯石無明顯的化學成分差別,但本研究嘗試利用統計分析對龐大的鋯石微量元素組成資料庫進行處理,目的是為了客觀挑選出埃達克岩和花崗岩類鋯石中其他的成分判別因子,最後共選出Ti、V、Yb、Hf、Sc/Yb、U/Yb、Eu/Eu*、ΣHREE等八個判別因子。即使統計分析的結果無法利用雙變數圖分開埃達克岩和花崗岩類的鋯石群體,判別因子的線性組合仍可以提供一個有潛力的族群判別方式,將兩個鋯石群體分開。 | zh_TW |
dc.description.abstract | Zircon has long been proposed as a time capsule of crustal formation. Concerning of its high capacity of lithophile elements, the dramatic change in crustal chemical composition in late Archean, i.e. from TTG suites to granitoids, may be recorded in zircon remnants. In this study, geochemical contents of zircons from adakites, a modern analogue of TTG suites, in southern Tibet were determined and compared with those in Gangdese I-type granitoids, Sumatra high/low ΣREE granitoids and Toba volcanics in order to examine the hypothesis. For zircons in each sample group, electron probe microanalysis and laser ablation-inductively coupled plasma mass spectrometry were conducted in order to provide in situ concentrations of 3 major- and 29 trace elements, respectively.
Zircons in this study have a common composition of 31.4–34.8 wt.% SiO2, 60.2–68.6 wt.% ZrO2, and 0.6–2.4 wt.% HfO2 with ΣREE abundances of 200–5000 ppm, Ce positive anomaly and Eu negative anomaly in REE patterns. The REE patterns of zircons show little inter-sample discrepancy though there is significant difference in whole-rock HREE contents between adakites and granitoids. Since none of geochemical feature, including REE contents, of zircons in this study correlates with SiO2 content or ASI of corresponding host rocks, fractional crystallization has an insignificant impact on the compositional variation in zircons. In addition to the influence of lattice strain and charge balance requirements, zircons in these rock samples are proposed to crystallize from the magma mush, so they record the composition of evolved magma with least composition difference, not that of the bulk melt. More specifically, the pre-/co-existing mineral phases, i.e. apatite, monazite, etc., play a critical role in preferentially taking the LREE and MREE from melt, and eliminating the HREE depletion characteristics in residual melt and thus zircons of Gangdese adakites. With the aim of objectively identifying geochemical discriminants of zircons from adakites and granitoids, statistical analysis was used and then 8 parameters were selected, i.e. Ti, V, Yb, Hf, Sc/Yb, U/Yb, Eu/Eu*, ΣHREE. Despite the fact that the zircon populations of adakites- and granitoids-origins more or less overlap in any bivariate plot, the linear combination of discriminants provides a potential way to distinguish zircons from these two groups. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:49:07Z (GMT). No. of bitstreams: 1 ntu-106-R04224102-1.pdf: 259767114 bytes, checksum: 5bc82f1e2d4b2bec3683817b61bdcf2f (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 IV Abstract VI 目錄 VIII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 研究動機 1 1.1.1 埃達克岩與花崗岩類 1 1.1.2 礦物組成分析 3 1.2 研究目的 5 第二章 文獻回顧 6 2.1 鋯石微量元素組成 6 2.1.1 鋯石結構與組成 6 2.1.2 微量元素組成圖解 10 2.2 地質背景 16 2.2.1 埃達克岩 16 2.2.2 花崗岩類 18 2.2.3 火山岩 21 第三章 研究方法 24 3.1 研究區域與樣本資訊 24 3.2 樣本靶製作與影像 36 3.3 儀器分析 40 3.3.1 能量分散式光譜儀 40 3.3.2 電子微探分析儀 40 3.3.3 雷射剝蝕感應耦合電漿質譜儀 42 3.4 資料處理 46 3.4.1 單變量統計分析 46 3.4.2 多變量統計分析 47 第四章 研究結果 50 4.1 鋯石外型及內部觀察 50 4.2 鋯石主量元素分析結果 58 4.3 鋯石微量元素分析結果 66 4.4 統計分析結果 78 4.4.1 單變量統計分析 78 4.4.2 多變量統計分析 85 第五章 討論 87 5.1 鋯石稀土元素特徵 87 5.1.1 鈰與銪異常 87 5.1.2 稀土元素分配圖形對比 92 5.2 鋯石微量元素組成於岩石成因之應用 95 5.2.1 晶漿環境 95 5.2.2 共生礦物相競爭 97 5.3 埃達克岩及花崗岩類之鋯石組成判別 102 5.3.1 前人鋯石微量元素判別規則 102 5.3.2 判別函數 105 第六章 結論 112 參考文獻 114 附錄一、附圖及附表 127 附錄二、統計分析程式碼 218 | |
dc.language.iso | zh-TW | |
dc.title | 埃達克岩與花崗岩類中鋯石微量元素組成在岩石成因上的應用 | zh_TW |
dc.title | Trace Element Determination of Zircons from Adakites and Granitoids: Implications for Petrogenetic Processes | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴昱銘,呂學諭,李皓揚 | |
dc.subject.keyword | 鋯石,埃達克岩,花崗岩類,微量元素組成,地球化學判別因子, | zh_TW |
dc.subject.keyword | zircon,adakites,granitoids,trace element composition,geochemical discriminants, | en |
dc.relation.page | 219 | |
dc.identifier.doi | 10.6342/NTU201702909 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
Appears in Collections: | 地質科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf | 253.68 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.