請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27388
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇明道 | |
dc.contributor.author | Chi-Fang Pan | en |
dc.contributor.author | 潘麒帆 | zh_TW |
dc.date.accessioned | 2021-06-12T18:03:18Z | - |
dc.date.available | 2008-01-25 | |
dc.date.copyright | 2008-01-25 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-01-22 | |
dc.identifier.citation | 1. Arnell, N. W. (1989). 'Expected annual damages and uncertainties in flood frequency estimation,' Journal of Water Resources Planning and Management, Vol. 115, No. 1, pp. 94-107.
2. Berning, C., Du Plessis, L. A., and Viljoen, M. F. (2001). 'Loss function for structural flood mitigation measures,' PO Box 339, Department of Agricultural Economics, University of the Free State, Bloemfontein, 9300. 3. Borch, K. H., 1990, Economics of Insurance, North-Hollan Chen, A. S. (2004). 'Personal Communication.' 4. Downton, M. W. , Miller, J.,and Pielke Jr.(2005).”Reanalysis of U.S. National Weather Service Flood Loss Database,” Natural Hazards Review, 6:13-22. 5. Dutta, D., Herath, S., and Musiake, K. (2003). 'A mathematical model for flood loss estimation,' Journal of Hydrology, Volume 277, Number 1, 1 June 2003 , pp. 24- 49(26) 6. Eckstein, O. (1958). “Water resources development; the economics of project evaluation,”Harvard University Press, Cambridge. 7. FEMA. (1977). 'Reducing floood damage through building design: a guide manual - elevated residential structures.' 8. Grigg, N. S. (1996). “Water Resources Management,” McGraw-Hill, New York. 9. Grigg, N. S., and Helweg, O. J. (1975). ' State of the art of estimating flood damage in urban areas,” Water Resources Bulletin, v. 11 (2), 379-390.. 10. Helweg, O. J. (1985).“Water Resources: Planning and management,” 11. Hogg, R. V., and Klugman, S. A. (1984).”Loss Distribution,” Jehn Wiley and Sons. 12. Hooijer, A., Klijn, F., Pedroli, G. B. M., and van Os, A. G. (2004). 'Towards sustainable flood risk management in the Rhine and Meuse river basins: synopsis of the findings of IRMA-SPONGE,' River Research and Applications, Volume 20, Issue 3 , Pages 343 – 357. 13. Hsu, M. H., Chen, S. H., and Chang, T. J. (2000). 'Inundation Simulation for Urban Drainage Basin with Storm Sewer System,' Journal of Hydrology. 14. J. Lowry etc.(2006).”Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project,”Remote Sensing of Environment, Volume 108, Issue 1, Pages 59-73. 15. James, L. D. (1972). 'Role of economics in planning flood plain land use,' Journal of the Hydraulics Division, Vol. 98, No. 6, pp. 981-992 16. JAMES R. A. etc.(1976),”A Land Use And Land Cover Classification System For Use With Remote Sensor Data” 17. Joseph F. K. and Ross S. L.(2003).”An Experimental Assessment of Minimum Mapping Unit Size,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 9, 18. Katz, R. W., Parlange, M. B., and Naveau, P. (2002). 'Statistics of extremes in hydrology,' Advances in Water Resources Volume 25, Issues 8-12, August-December 2002, Pages 1287-1304 19. Born, P., and Viscusi ,W.K.(2006).” The catastrophic effects of natural disasters on insurance markets,” Journal of Risk and Uncertainty, Volume 33, Numbers 1-2 / 2006, 55-72 20. McBean, E. A., Gorrie, J., Fortin, M., and Ding, J. (1988). 'Flood depth-damage curves by interview survey,' Journal of Water Resources Planning and Management, Vol. 114, No. 6, November/December 1988, pp. 613-634 21. Neuse River Basin(2004).http://h2o.enr.state.nc.us/basinwide/whichbasinneuse.htm 22. Penning-Rowsell, E. C., and Chatterton, I. B. (1977). “The Benefits of Flood Alleviation: A Manual of Assessment Techniques” 23. PITTWATER COUNCIL(2002).”FLOOD RISK MANAGEMENT POLICY FOR PITTWATER” 24. Smith, D. I. (1994). 'Flood damage estimation - A review of urban stage-damage curves and loss function,' Water S. A. Vol. 20, no. 3, pp. 231-238. 25. Cheng, S.E. and Wang, R. Y.(2004).”Analyzing Hazard Potential of Typhoon Damage by Applying Grey Analytic Hierarchy Process,” Natural Hazards, Volume 33, Number 1 / 2004, 77-103. 26. Wurbs, R., Toneatti, S., and Sherwin, J.(2001). 'Modelling uncertainty in flood studies,' International Journal of Water Resources Development, Volume 17, Number 3, 1 September 2001 , pp. 353-363(11) 27. 中國社會科學院經濟研究所(2007)http://www.cenet.org.cn/cn/ 28. 汐止市公所(2000),http://www.hsichih.tpc.gov.tw/ 29. 行政院內政部(2007),http://www.moi.gov.tw/home/ 30. 財政部(2004),財政部九十三年度委託研究計畫-颱風洪水保險之運作) 31. 許銘熙等(1998),八十七年汐止淹水災因分析與建議初步報告 32. 湯俊湘(1977),保險學 33. 張靜貞,羅紀,林振輝(2004),基隆河汐止、五堵地區居民參與洪災保險意願之研究 34. 張靜貞. (2003). 颱洪災害損失評估與風險分攤及減輕機制之研究 35. 張齡芳(2000),住宅區淹水損失之推估 36. 經濟部水利署(2007),http://www.wra.gov.tw/ 37. 國政基金會(2007),http://www.npf.org.tw/ 38. 糠瑞林(2005),區域淹水災害風險評估及其未確定性分析 39. 糠瑞林等(2005),工商業淹水災害損失曲線 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27388 | - |
dc.description.abstract | 台灣的地理位置處於太平洋與亞洲大陸的交界地帶,因海島地形、緯度與季風因素,容易遭受如颱風和暴雨而導致的水災。面對因洪災不斷造成的經濟損失,政府能提供應付的臨時緊急重大事項經費卻十分有限,因此本研究探討在面臨淹水風險災害時,如何利用保險的分散和移轉風險功能,引進民間保險業者和資本市場支援,提高民眾保險意願,建立有效的淹水保險制度,除了減輕政府的洪災風險,降低國家整體經濟損失之外,也可讓民眾有一定程度的洪災保障,並使災後的復建能夠迅速進行。
本研究以二維零慣性漫地流模式與雨水下水道模式模擬汐止地區年平均淹水深度,以此作為淹水風險潛勢評估標準,使用Natural-Break與自訂方式決定不同等級之淹水風險,再以路網與村里形成之區域為依據進行淹水風險分區,各分區住戶負擔各自區域淹水風險。同時設定各種淹水保險模擬情境,改變一樓住戶與二樓以上住戶負擔保費比例,導入以電話訪查獲得之淹水保險意願曲線,觀察在各種情境下能得到的意願保險住戶與可收得之保費,並將不分區、不分級的情況比較之。 模擬顯示,投保意願住戶以Natural-Break在分級分區下,一樓住戶負擔保費為二樓以上住戶之兩倍為最多,共有20977戶;同樣情境下之自訂分級之投保意願住戶有20920戶;不分區則有19202戶。顯示對不同淹水風險等級區域進行空間上的分區,以各分區淹水損失由各分區住戶自行負擔其淹水損失為原則,依樓高進行住戶分級,在一定程度上能夠提高人民保險意願,協助建立淹水保險。唯效果並不十分顯著,可建立其他指標判定個別區域適合之初始淹水風險指標分級,並建立更精確之淹水保險意願曲線,應能得到更完善之淹水保險分級分區制度。 | zh_TW |
dc.description.abstract | Situated at the border area between the Asia Continent and the Pacific Ocean, Taiwan is conducive to floods brought by typhoons and rainstorms because of its insular topography, latitude and monsoon climate. While floods have constantly been damaging the economy, the government can only provide a quite limited expenditure on emergencies. Therefore, the present research probes into the ways in which we can take advantage of the functions of risk segregation and transfer of insurance while facing flood hazards, so as to introduce the support of civil insurance companies and capital markets, to enhance citizens’ willingness to carry insurance, and to establish an effective flood insurance system. In this way, the flood risks of the government and the overall economic loss of the country can be reduced.
The present research simulates the average annual flooding depth of Shi-Jr District, so as to establish an assessment standard for the potential of flood hazard. Besides, Natural-Break and manual methods are utilised to determine the different levels of flood hazards, and areas formed by roads and villages are used as the basis for flood hazard zoning, in which the residents respectively burden different flood hazards in different zones. Meanwhile, after setting up various simulated conditions for flood insurance and changing the proportions of insurance fee that first-floor residents and residents above the second floor should pay, this research also adopts a curve of the willingness to participate in flood insurance obtained by phone surveys, so as to observe the number of residents willing to assume insurance and the amount of insurance fee thus collected under various circumstances. According to the simulation, in a condition where the zoning and risk classification are done with Natural-Break and where the first-floor residents burden twice the insurance fee than residents above the second floor, there are most residents willing to assume insurance; the number of such residents is 20,977. Under the same circumstance except that the risk classification becomes manual, there are 20,920 residents willing to carry insurance. In situations without zoning, there are 19,202 such residents. As the simulation shows, citizens’ willingness to participate in insurance and assist in establishing a flood insurance system can be enhanced to a certain degree as areas with different levels of flood hazards are zoned spatially. However, the effects would not be too remarkable merely in this way. A more completed system for the zoning and classification of flood insurance can be achieved by establishing other index to judge the primary classifying index of flood hazards suitable for individual areas. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:03:18Z (GMT). No. of bitstreams: 1 ntu-97-R94622010-1.pdf: 2137712 bytes, checksum: b6f5639013676de67f78966035fda7f2 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目 錄
謝誌 Ⅰ 中文摘要 Ⅱ 英文摘要 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅷ 第一章 前言 1 1-1研究背景 1 1-2研究目的 2 1-3研究流程 3 第二章 文獻回顧 5 2-1颱風洪水淹水損失及推估方法 5 2-2風險管理 8 2-3保險原則 9 2-4巨災保險概念 10 2-5風險分級 10 第三章 資料蒐集 12 3-1研究區域 12 3-2淹水潛勢 17 3-3住戶資料 17 3-4保費意願 21 第四章 淹水風險評估 24 4-1淹水損失推估 24 4-2年平均淹水損失 27 4-3總淹水損失 27 4-4風險指標 29 第五章 淹水風險分級分區 31 5-1風險指標分級 31 5-2分群分析 35 5-3行政區域劃分 49 5-4行政分區結果 50 第六章 風險分區效能評估 54 6-1情境模擬 54 6-2投保意願 57 第七章 結論與建議 61 7-1結果討論 61 7-2結論 61 7-3未來研究建議 62 參考文獻 63 圖目錄 圖1-1 研究流程圖 3 圖2-1 歷史淹水深度-損失曲線 6 圖2-2 淹水深度-淹水損失關係曲線 8 圖3-1 汐止村里圖 12 圖3-2 研究區域內不同之淹水深度分佈圖 13 圖3-3 水利用地 15 圖3-4 軍事用地、礦業用地、交通用地 16 圖3-5 農業用地、工業用地 16 圖3-6 扣除非居住區域之研究區域 17 圖3-7 淹水區域住戶分佈 18 圖3-8 福安里實際建物圖 20 圖3-9 福安里建築用地分佈 21 圖3-10 保險意願累積曲線 23 圖4-1 AAFL示意圖 24 圖4-2 淹水損失-深度曲線 25 圖4-3 各淹水重現期淹水損失 26 圖4-4 淹水損失-超越機率曲線 27 圖4-5 年平均淹水損失分佈 28 圖4-6 網格內住戶數分佈 28 圖4-7 淹水深度-超越機率曲線 29 圖4-8 研究區域年平均淹水深度分佈 30 圖5-1 台北村里人口密度分佈_ Natural-Break 31 圖5-2 台北村里人口密度分佈_ Equal-Interval 32 圖5-3 台北村里人口密度分佈_ Quantile 32 圖5-4 台北村里人口密度分佈_ Standard- Deviation 33 圖5-5 年平均淹水風險(Natural-Break) 34 圖5-6 年平均淹水風險(自訂分級) 35 圖5-7 淹水風險分級(Natural-Break) 36 圖5-8 淹水風險分級(自訂分級) 37 圖5-9 階層聚落法 38 圖5-10 NNH範例 38 圖5-11 各風險指標等級NNH分群分析(Natural-Break) 39 圖5-12 各風險指標等級NNH分群分析(自訂分級) 40 圖5-13 NNH分群分析(Natural-Break) 41 圖5-14 NNH分群分析(自訂分級) 42 圖5-15 分群交疊判斷 43 圖5-16 NNH與零星資料網格(Natural-Break) 44 圖5-17 零星資料點歸類 45 圖5-18 NNH結果(Natural-Break) 46 圖5-19 NNH結果(自訂分級) 47 圖5-20 行政分區 49 圖5-21 MMU示意 50 圖5-22 行政分區劃分 50 圖5-23 行政分區結果(Natural-Break) 51 圖5-24 行政分區結果(自訂分級) 52 圖6-1 住戶分區圖(Natural-Break) 55 圖6-2 住戶分區圖(自訂分級) 55 表目錄 表3-1 村里住戶分佈 19 表3-2 保費與保險意願 22 表5-1 分群後錯誤率(Natural-Break) 48 表5-2 分群後錯誤率(自訂分級) 48 表5-3 錯誤率(Natural-Break) 53 表5-4 錯誤率(自訂分級) 53 表6-1 分級分區示意 54 表6-2 分區住戶分佈(Natural-Break) 56 表6-3 分區住戶分佈(自訂分級) 56 表6-4 風險分攤金額(Natural-Break) 56 表6-5 風險分攤金額(自訂分級) 56 表6-6 各情境風險分攤與意願投保戶數(Natural-Break) 58 表6-7 各情境風險分攤與意願投保戶數(自訂分級) 58 表6-8 保費累積意願下所收總保費與住戶(Natural-Break) 59 表6-9 保費累積意願下所收總保費與住戶(自訂分級) 59 | |
dc.language.iso | zh-TW | |
dc.title | 區域淹水風險之分級分區 | zh_TW |
dc.title | Risk Classifications for Flood Hazard Zoning | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張靜貞,李光敦 | |
dc.subject.keyword | 淹水風險,保險,分區,分級,淹水損失, | zh_TW |
dc.subject.keyword | flood risk,insurance,classification,zoning,flood hazard, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-01-23 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。