請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27375完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜祖恕 | |
| dc.contributor.author | Ching-Yao Lin | en |
| dc.contributor.author | 林敬堯 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:02:53Z | - |
| dc.date.available | 2008-01-30 | |
| dc.date.copyright | 2008-01-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2008-01-23 | |
| dc.identifier.citation | [1] Shizan Fang and Tusheng Zhang. (2005) A study of a class of stochastic differential equations with non-Lipschitzian coefficients.Probability Theory and Related Fields, vol.132, pp.356-390.
[2] Applebaum, David(2003) , L′evy Process and Stochastic Calculus , Cambridge University Press. [3] Ikeda I.,Watanabe S.(1989) , Stochastic Differential equation and Diffusion Processes, North-Holland Mathematical Library. [4] J.M.Steele(2001) , Stochastic Calculus and Financial Applications , Springer. [5] H.Kunita , ” Stochastic Differential equation Based on L′evy Process and Stochastic Flows of Diffeo- morphisms ” , SDEs Driven by L′evy Processes. [6] R. Cont and P. Tankov(2004) , Financial Modelling with Jump Processes , Chapman & Hall/CRC. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27375 | - |
| dc.description.abstract | 我們在這篇論文主要探討的是Lévy 過程隨機微分方程解的三個性質。一個是在non-Lipschitz conditions條件下,強解的存在性,而Shizan Fang and Tusheng Zhang [1]已經討論過diffusion case。其二,我們關心在non-Lipschitz conditions條件下,解相對於初始值的相依性,而Shizan Fang and Tusheng Zhang [1]也已經討論過diffusion case。其三,我們比較兩條Lévy 過程隨機微分方程解的差異,僅在drift這一項不一樣,而Ikeda and Watanabe [3]也已經討論過diffusion case。 | zh_TW |
| dc.description.abstract | We shall discauss three properties of stochastic differential equation on Lèvy processes. One is the existence of the strong solutions of stochastic differential equation on Lèvy processes with non-Lipschitz conditions, the diffusion case with non-Lipschitz conditions have been studied by Shizan Fang and Tusheng Zhang [1]. Second subject is that we would generalize to the dependence of the solutions with respect to the initial values with Lévy processes.(The results are discussed by Shizan Fang and Tusheng Zhang [1] with diffusion cases) The third is the comparison theorem that says that there are two stochastic differential equation on Lèvy processes with different drift terms and we can compare the solutions by the two drift terms. The comparison theorem with diffusion case have studied by Ikeda and Watanabe [3]. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:02:53Z (GMT). No. of bitstreams: 1 ntu-96-R94221017-1.pdf: 473744 bytes, checksum: ddf537c333622043601745305a1d47ab (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 謝辭 ii
中文摘要 iii Abstract iv Chapter 1. Introduction [1] Chapter 2. L′evy processes [3] 1. L′evy processes and random measures [3] 2. L′evy-Itˆo decomposition and L′evy-Khintchine representation [5] Chapter 3. Stochastic integration [7] 1. Stochastic integration [7] 2. Stochastic integrals based on L′evy processes [9] 3. Itˆo’s formula [11] 4. Exponential martingales [14] Chapter 4. Existence of the strong solution of SDE on L′evy processes with non-Lipschitz conditions and continuity for initial data [17] 1. Existence of strong solution [17] 2. Continuity of solution of SDE for initial data [24] Chapter 5. A Comparison theorem on L′evy processes [29] Bibliography [32] | |
| dc.language.iso | en | |
| dc.title | 在非Lipschitz係數條件及L′evy過程下隨機微分方程之特性 | zh_TW |
| dc.title | Some properties of stochastic differential equation on L′evy processes with non-Lipschitz coefficients | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許順吉,吳慶堂 | |
| dc.subject.keyword | L′evy 過程,L′evy 型隨機微分方程,Comparison theorem, | zh_TW |
| dc.subject.keyword | L′evy processes,stochastic differential equation on L′evy processes,Comparison theorem, | en |
| dc.relation.page | 32 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 462.64 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
