Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27375
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜祖恕
dc.contributor.authorChing-Yao Linen
dc.contributor.author林敬堯zh_TW
dc.date.accessioned2021-06-12T18:02:53Z-
dc.date.available2008-01-30
dc.date.copyright2008-01-30
dc.date.issued2007
dc.date.submitted2008-01-23
dc.identifier.citation[1] Shizan Fang and Tusheng Zhang. (2005) A study of a class of stochastic differential equations with non-Lipschitzian coefficients.Probability Theory and Related Fields, vol.132, pp.356-390.
[2] Applebaum, David(2003) , L′evy Process and Stochastic Calculus , Cambridge University Press.
[3] Ikeda I.,Watanabe S.(1989) , Stochastic Differential equation and Diffusion Processes, North-Holland
Mathematical Library.
[4] J.M.Steele(2001) , Stochastic Calculus and Financial Applications , Springer.
[5] H.Kunita , ” Stochastic Differential equation Based on L′evy Process and Stochastic Flows of Diffeo-
morphisms ” , SDEs Driven by L′evy Processes.
[6] R. Cont and P. Tankov(2004) , Financial Modelling with Jump Processes , Chapman & Hall/CRC.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27375-
dc.description.abstract我們在這篇論文主要探討的是Lévy 過程隨機微分方程解的三個性質。一個是在non-Lipschitz conditions條件下,強解的存在性,而Shizan Fang and Tusheng Zhang [1]已經討論過diffusion case。其二,我們關心在non-Lipschitz conditions條件下,解相對於初始值的相依性,而Shizan Fang and Tusheng Zhang [1]也已經討論過diffusion case。其三,我們比較兩條Lévy 過程隨機微分方程解的差異,僅在drift這一項不一樣,而Ikeda and Watanabe [3]也已經討論過diffusion case。zh_TW
dc.description.abstractWe shall discauss three properties of stochastic differential equation on Lèvy processes. One is the existence of the strong solutions of stochastic differential equation on Lèvy processes with non-Lipschitz conditions, the diffusion case with non-Lipschitz conditions have been studied by Shizan Fang and Tusheng Zhang [1]. Second subject is that we would generalize to the dependence of the solutions with respect to the initial values with Lévy processes.(The results are discussed by Shizan Fang and Tusheng Zhang [1] with diffusion cases) The third is the comparison theorem that says that there are two stochastic differential equation on Lèvy processes with different drift terms and we can compare the solutions by the two drift terms. The comparison theorem with diffusion case have studied by Ikeda and Watanabe [3].en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:02:53Z (GMT). No. of bitstreams: 1
ntu-96-R94221017-1.pdf: 473744 bytes, checksum: ddf537c333622043601745305a1d47ab (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents謝辭 ii
中文摘要 iii
Abstract iv
Chapter 1. Introduction [1]
Chapter 2. L′evy processes [3]
1. L′evy processes and random measures [3]
2. L′evy-Itˆo decomposition and L′evy-Khintchine representation [5]
Chapter 3. Stochastic integration [7]
1. Stochastic integration [7]
2. Stochastic integrals based on L′evy processes [9]
3. Itˆo’s formula [11]
4. Exponential martingales [14]
Chapter 4. Existence of the strong solution of SDE on L′evy processes with non-Lipschitz conditions and continuity for initial data [17]
1. Existence of strong solution [17]
2. Continuity of solution of SDE for initial data [24]
Chapter 5. A Comparison theorem on L′evy processes [29]
Bibliography [32]
dc.language.isoen
dc.title在非Lipschitz係數條件及L′evy過程下隨機微分方程之特性zh_TW
dc.titleSome properties of stochastic differential equation on L′evy processes with non-Lipschitz coefficientsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee許順吉,吳慶堂
dc.subject.keywordL′evy 過程,L′evy 型隨機微分方程,Comparison theorem,zh_TW
dc.subject.keywordL′evy processes,stochastic differential equation on L′evy processes,Comparison theorem,en
dc.relation.page32
dc.rights.note有償授權
dc.date.accepted2008-01-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
462.64 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved