請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27356完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(C. C. Yang) | |
| dc.contributor.author | Chih-Wei Lu | en |
| dc.contributor.author | 呂志偉 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:02:17Z | - |
| dc.date.available | 2008-01-30 | |
| dc.date.copyright | 2008-01-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-24 | |
| dc.identifier.citation | [1-1] D Huang, EA Swanson, CP Lin, JS Schuman, WG Stinson, W Chang, MR Hee, T Flotte, K Gregory, CA Puliafito, and Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[1-2] G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science, 276, 2037-2039 (1997). [1-3] http://www.e-radiography.net/index.htm [1-4] http://faculty.washington.edu/chudler/image.html [1-5] J. C. Carmen, B. L. Roeder, J. L. Nelson, B. L. Beckstead, C. M. Runyan, G. B. Schaalje, R. A. Robison, and W. G. Pitt, “Ultrasonically Enhanced Vancomycin Activity Against Staphylococcus Epidermidis Biofilms in Vivo,” 18, 237-245 (2004). [1-6] J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, 'Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,' Opt. Lett. 22, 934-936 (1997). [1-7] R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, 'Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,' Opt. Lett. 25, 820-822 (2000). [1-8] M. V. Sarunic, B. E. Applegate, and J. A. Izatt, 'Spectral domain second-harmonic optical coherence tomography,' Opt. Lett. 30, 2391-2393 (2005). [1-9] Y. Pan, J. Welzel, R. Birngruber, and R. Engelhardt, “Optical coherence-gate imaging of biological tissues.” IEEE Selelcted Topics Quantum Electron, 2, 1029-1034 (1996). [1-10] C. B. Su, “Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: A new technique.” Opt. Lett. 22, 665-667 (1997). [1-12] G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, 'Rapid acquisition of in vivo biological images by use of optical coherence tomography,' Opt. Lett. 21, 1408-1410 (1996). [1-13] A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, Jr., and J. A. Izatt, 'Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,' Opt. Lett. 24, 1358-1360 (1999). [1-14] X. J. Wang, T. E. Milner, and J. S. Nelson, 'Characterization of fluid flow velocity by optical Doppler tomography,' Opt. Lett. 20, 1337-1339 (1995). [1-15] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, 'In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,' Opt. Lett. 22, 1439-1441 (1997). [1-16] Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, 'Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,' Opt. Lett. 25, 1358-1360 (2000). [1-17] Z. Ding, Y. Zhao, H. Ren, J. Nelson, and Z. Chen, 'Real-time phase-resolved optical coherence tomography and optical Doppler tomography,' Opt. Express 10, 236-245 (2002). [1-18] M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Silva, 'Birefringence characterization of biological tissue by use of optical coherence tomography,' Opt. Lett. 23, 228-230 (1998). [1-19] D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, 'Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,' Opt. Lett. 28, 1436-1438 (2003). [1-20] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, 'Spectroscopic optical coherence tomography,' Opt. Lett. 25, 111-113 (2000). [1-21] C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, 'Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,' Opt. Lett. 29, 1647-1649 (2004). [1-22] T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. -J. Toublan, K. S. Suslick, and S. A. Boppart, 'Engineered microsphere contrast agents for optical coherence tomography,' Opt. Lett. 28, 1546-1548 (2003). [1-23] Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, 'Second-harmonic optical coherence tomography,' Opt. Lett. 29, 1090-1092 (2004). [1-24] C. Vinegoni, J. Bredfeldt, D. Marks, and S. Boppart, 'Nonlinear optical contrast enhancement for optical coherence tomography,' Opt. Express 12, 331-341 (2004). [1-25] K. Divakar Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Molecular contrast in optical coherence tomography by use of a pump-probe technique,” Opt. Lett. 28, 340–342 (2003). [1-26] A. Dubois, L. Vabre, A. -C. Boccara, and E. Beaurepaire, 'High-Resolution Full-Field Optical Coherence Tomography with a Linnik Microscope,' Appl. Opt. 41, 805-812 (2002). [1-27] K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, 'En-face scanning optical coherence tomography with ultra-high resolution for material investigation,' Opt. Express 13, 1015-1024 (2005). [1-28] L. Vabre, A. Dubois, and A. C. Boccara, 'Thermal-light full-field optical coherence tomography,' Opt. Lett. 27, 530-532 (2002). [1-29] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, 'Optical coherence tomography using a frequency-tunable optical source,' Opt. Lett. 22, 340-342 (1997). [1-30] R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, 'Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,' Opt. Lett. 25, 820-822 (2000). [1-31] R. Leitgeb, C. Hitzenberger, and A. Fercher, 'Performance of fourier domain vs. time domain optical coherence tomography,' Opt. Express 11, 889-894 (2003). [1-32] R. Huber, M. Wojtkowski, and J. G. Fujimoto, 'Fourier Domain Mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,' Opt. Express 14, 3225-3237 (2006). [2-1] A. M. Kowalevicz, T. Ko, I. Hartl, and J. G. Fujimoto, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349-353 (2002). [2-2] A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, and W. Drexler, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28, 905-907 (2003). [2-3] D. L. Marks, A. L. Oldenburg, and J. J. Reynolds, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Opt. Lett. 27, 2010-2012 (2002). [2-4] Y. Wang, Y. Zhao, J. S. Nelson, and Z. Chen, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28, 182-184 (2003). [2-5] W. K. Niblack, J. O. Schenk, B. Liu, and M. E. Brezinski, “Dispersion in a grating-based optical delay line for optical coherence tomography,” Appl. Opt. 42, 4115-4118 (2003). [2-6] E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, “Real-time dispersion compensation in scanning interferometry,” Opt. Lett. 27, 1998-2000 (2002). [2-7] A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, “Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry,” J. Opt. Soc. Am. A, 20, 333-341 (2003). [2-8] J. F. de Boer, C. E. Saxer, and J. S. Nelson, “Stable carrier generation and phase-resolved digital data processing in optical coherence tomography,” Appl. Opt. 40, 5787-5790 (2001). [2-9] D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, 'Digital Algorithm for Dispersion Correction in Optical Coherence Tomography for Homogeneous and Stratified Media,' Appl. Opt. 42, 204-217 (2003). [2-10] A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, 'Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography,' Opt. Express 9, 610-615 (2001). [2-11] A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata and T. Lasser, “Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique ,” Opt. Comm. 204 67–74, (2002). [2-12] I. J. Hsu, C. W. Sun, C. W. Lu, C. C. Yang, C. P. Chiang, and C. W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42, 227-234 (2003). [2-13] M. Takeoka, D. Fujishima, and F. Kannari, 'Optimization of ultrashort-pulse squeezing by spectral filtering with the Fourier pulse-shaping technique,' Opt. Lett. 26, 1592-1594 (2001). [2-14] J. -H. Chung and A. M. Weiner, 'Real-Time Detection of Femtosecond Optical Pulse Sequences via Time-To-Space Conversion in the Lightwave Communications Band,' J. Lightwave Technol. 21, 3323- (2003). [2-15] N. Nishizawa and T. Goto, 'Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,' Opt. Express 8, 328-334 (2001). [2-16] R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Optics Letters, 27, 406-408 (2002). [2-17] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, 'Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,' Opt. Express 12, 2404-2422 (2004). [2-18] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, 'Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,' Opt. Lett. 28, 2067-2069 (2003). [2-19] R. Leitgeb, C. Hitzenberger, and A. Fercher, 'Performance of fourier domain vs. time domain optical coherence tomography,' Opt. Express 11, 889-894 (2003). [3-1] X. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissues,” Optics Letters 17, 4-6 (1992). [3-2] X. J. Wang, T. E. Milner, R. P. Dhond, W. V. Sorin, S. A. Newton and J. S. Nelson, “Characterization of human scalp hairs by optical low-coherence reflectometry,” Optics Letters 20, 524-526 (1995). [3-3] U. Wiedmann, P. Gallion and G. H. Duan, “A generalized approach to optical low-coherence reflectometry including spectral filtering effects,” J. Lightwave Technology 16, 1343-1347 (1998). [3-4] Y. L. Kim, J. T. Walsh, Jr., and M. R. Glucksberg, “Phase-slope and group-dispersion calculations in the frequency domain by simple optical low-coherence reflectometry,” Applied Optics 42, 6959-6966 (2003). [3-5] D. L. Marks, A. L. Oldenburg, and J. J. Reynolds, “Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography,” Optics Letters, 27, 2010-2012 (2002). [3-6] A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, and W. Drexler, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Optics Letters 28, 905-907 (2003). [3-7] K. Bizheva, B. Považay, B. Hermann, H. Sattmann, and W. Drexler, “Compact, broad-bandwidth fiber laser for sub-2-mm axial resolution optical coherence tomography in the 1300-nm wavelength region” Optics Letters 28, 707-709 (2003). [3-8] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, and W. Drexler, “Submicrometer axial resolution optical coherence tomography,” Optics Letters 27, 1800-1802 (2002). [3-9] L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Optics Letters 27, 530-532 (2002). [3-10] Y. Wang, Y. Zhao, J. S. Nelson, and Z. Chen, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Optics Letters 28, 182-184 (2003). [3-11] F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Applied Optics 36, 6548-6553 (1997). [3-12] G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Optics Letters 22, 1811-1813 (1997). [3-13] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, 'Measurement of Intraocular Distances by Backscattering Spectral Interferometry,' Optics Communications 117, 43-48 (1995). [4-1] B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization sensitive optical coherence tomography,” Invest. Ophthalmol. Visual Sci. 45, 2606-2612, (2004). [4-2] Tuqiang Xie, Huikai Xie, Gary K. Fedder, and Yingtian Pan, “Endoscopic Optical Coherence Tomography with a Modified Microelectromechanical Systems Mirror for Detection of Bladder Cancers,” Appl. Opt. 42, 6422-6426 (2003). [4-3] K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, and M. J. Everett, 'Mapping of Birefringence and Thermal Damage in Tissue by use of Polarization-Sensitive Optical Coherence Tomography ,' Appl. Opt. 37, 6026-6036 (1998). [4-4] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, 'In-vivo retinal imaging by optical coherence tomography,' Opt. Lett. 18, 1864- (1993). [4-5] V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, 'In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,' Opt. Lett. 31, 2308-2310 (2006). [4-6] A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, 'In vivo video rate optical coherence tomography,' Opt. Express 3, 219-229 (1998). [4-7] B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, 'Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,' Opt. Express 13, 1131-1137 (2005). [4-8] S. Boppart, 'In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography,' Opt. Express 14, 1547-1556 (2006). [4-9] R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, and K. Hsu, 'Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,' Opt. Express 13, 3513-3528 (2005). [4-10] H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, 'Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,' Opt. Express 14, 5937-5944 (2006). [4-11] P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, 'Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,' Opt. Express 12, 3532-3542 (2004). [4-12] B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, 'Submicrometer axial resolution optical coherence tomography,' Opt. Lett. 27, 1800-1802 (2002). [4-13] S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, 'High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,' Opt. Lett. 28, 1981-1983 (2003). [5-1] L. D. Victor, “Obstructive sleep apnea,” American Family Physician 60, 2279-2288 (1999). [5-2] M. A. Popvsky and N. R. Haley, “Further characterization of transfusion-related acute lung injury: Demographics, clinical and laboratory features and morbidity,” Immunohematol 16, 157-159 (2000). [5-3] J. Bux, “Transfusion-related acute lung injury (TRALI): a serious adverse event of blood transfusion,” Vox Sang 89, 1-10 (2005). [5-4] D. M. Brizel, S. P. Scully, J. M. Harrelson, L. J. Layfield, J. M. Bean, L. R. Prosnitz, and M. W. Dewhirst, 'Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma,' Cancer Res. 56, 941-943 (1996). [5-5] I. Y. Petrova, R. O. Esenaliev, Y. Y. Petrov, H. -P. F. Brecht, C. H. Svensen, J. Olsson, D. J. Deyo, and D. S. Prough, 'Optoacoustic monitoring of blood hemoglobin concentration: a pilot clinical study,' Opt. Lett. 30, 1677-1679 (2005). [5-6] D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, 'Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,' Opt. Lett. 28, 1436-1438 (2003). [5-7] D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, 'Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,' Opt. Lett. 30, 1015-1017 (2005). [5-8] L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12, 041212 (2007). [5-9] http://omlc.ogi.edu/spectra/index.html [5-10] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, 'Spectroscopic optical coherence tomography,' Opt. Lett. 25, 111-113 (2000). [5-11] H. Cang, T. Sun, Z. -Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, 'Gold nanocages as contrast agents for spectroscopic optical coherence tomography,' Opt. Lett. 30, 3048-3050 (2005). [5-12] C. Xu, P. Carney, and S. Boppart, 'Wavelength-dependent scattering in spectroscopic optical coherence tomography,' Opt. Express 13, 5450-5462 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27356 | - |
| dc.description.abstract | 光學同調斷層掃瞄可提供生物之二維到三維影像,在臨床診斷上應用頗廣。光學同調斷層掃瞄的基本架構為一干涉儀,其深度解析度由系統所使用的光源頻譜寬度所決定,使用頻譜較寬的光源可以獲得比較高的深度解析度。另外,掃瞄速度的提升也是另一個光學同調斷層掃瞄重要的課題。相位延遲調變掃瞄器和頻譜域光學同調斷層掃瞄都是可以提昇掃瞄速度的技術。高解析度以及快速掃瞄都是光學同調斷層掃瞄系統重要的發展方向,然而,同時保持高解析度及高掃瞄速度相當困難。
在這篇論文中,我們研究方目標為發展高解析度且高速掃瞄的光學同調斷層掃瞄系統。首先,我們提出了一個軟體色散補償的技術,利用結合多次掃描來達到動態的色散補償以配合不同的應用。第二,我們提出了一個提升光學同調斷層掃瞄解析度的技術,此技術的原理是結合不同相位調變速度的掃描,來達到提升解析度的效果。第三,我們設計並製作一套高解析度的頻譜域光學同調斷層掃瞄的系統。頻譜域光學同調斷層掃瞄有較高的掃瞄速度,在這個研究中,我們利用非線性光學去加大光源的頻寬以達到高解析度且高掃瞄速度的目標。最後,我們使用頻譜解析頻譜域光學同調斷層掃瞄量測血氧飽和濃度,藉由比較波長大於以及小於800奈米的深度背向散射強度變化的差異,渴求出血氧飽和濃度的變化。頻譜解析頻譜域光學同調斷層掃瞄,因為它可以提供特定位置的血氧飽和濃度資訊,比一般商用的近紅外光譜血氧量測儀較為優越。 | zh_TW |
| dc.description.abstract | Optical coherence tomography (OCT) is one of the widely used biomedical imaging techniques, which can provide two-dimensional cross-section images for many clinical applications. An OCT system is based on an optical interferometer. The longitudinal resolution depends on the bandwidth of the light source used in the OCT system. Use of a broadband light source can lead to the longitudinal resolution down to a few microns. The scanning speed of OCT system is another advantageous issue for its application. The development of the technique of spectral–domain OCT improves significantly the OCT scanning speed. In this dissertation, we first propose a software dispersion compensation method to eliminate the dispersion mismatch in an OCT system. By combining the multiple scans, dispersion mismatch can be dynamically adjusted for different applications. Second, we demonstrate a method for improving the OCT resolution. The resolution enhancement originates from the superposition of several longitudinal scans with different phase modulation speeds. Third, a high-resolution spectral-domain OCT system is demonstrated. In the spectral-domain OCT system, the resolution is improved by using a broadband light source generate from the nonlinear optics effects in a high numerical-aperture fiber. By fast sweeping the spectrum, a fast-scanning and high-resolution OCT system can be achieved. Next, the hemoglobin oxygen saturation level is measured by a spectroscopic spectral-domain OCT system. Hemoglobin oxygen saturation level can be obtained by comparing the A-mode scan profiles between the wavelength ranges shorter and longer than 800 nm. This technique has the potential for high-resolution in vivo haemoglobin oxygen saturation level monitoring. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:02:17Z (GMT). No. of bitstreams: 1 ntu-97-D90941003-1.pdf: 2442844 bytes, checksum: 29b6597a8f82f6d32cc8b0f22a933d47 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Chapter 1 Introduction
1.1 Overview 1 1.2 Optical Coherence Tomography (OCT) 3 1.3 Functional imaging of OCT 1.3.1 Optical Doppler Tomography 10 1.3.2 Polarization-sensitive OCT (PSOCT) 12 1.3.3 Spectroscopic OCT 15 1.3.4 Harmonic OCT 18 1.3.5 Full-field OCT 20 1.4 Spectral-domain OCT (SDOCT) 22 1.5 Motivations and the Organization of This Dissertation 26 Chapter 2 Resolution Improvement in Optical Coherence Tomography with Segmented Spectrum Management 2.1 Introduction 34 2.2 Experimental procedures 39 2.3 Experimental results 44 2.4 Discussions 51 2.5 Summary 54 Chapter 3 Optical Coherence Tomography with Resolution beyond the Fourier Transform Limit 3.1 Introduction 59 3.2 Experimental procedures and Results 62 3.3 Theories 67 3.4 Discussions 71 3.5 Conclusion 73 Chapter 4 High-resolution spectral-domain optical coherence tomography based on frequency-scanning the expanded spectrum of a fs Cr:forsterite laser 4.1 Introduction 77 4.2 Broadband Frequency-sweeping Light Source 80 4.3 Spectral-domain OCT Setup and Operation 84 4.4 High-resolution OCT Scanning Results on Tissues 87 4.5 Discussions and Summary 91 Chapter 5 Measurement of the Hemoglobin Oxygen Saturation Level with Spectroscopic Spectral-domain Optical Coherence Tomography 5.1 Introduction 96 5.2 SSD-OCT System Setup 100 5.3 Experimental Results 103 5.4 Discussions 107 5.5 Summaries 111 Chapter 6 Conclusions 114 | |
| dc.language.iso | en | |
| dc.subject | 生醫影像 | zh_TW |
| dc.subject | 干涉儀 | zh_TW |
| dc.subject | 斷層掃瞄 | zh_TW |
| dc.subject | OCT | en |
| dc.subject | Tomography | en |
| dc.subject | Interferometer | en |
| dc.title | 光學同調斷層掃瞄技術研究及應用 | zh_TW |
| dc.title | Technology Development and Application of Optical Coherence Tomography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 邵耀華(Yio-Wha Shau),江衍偉(Yean-Woei Kiang),周晟(Chien Chou),江俊斌(Chun-Pin Chiang),林啟萬(Chii-Wann Lin),蔡睿哲(Jui-che Tsai),孫家偉(Chia-Wei Sun) | |
| dc.subject.keyword | 斷層掃瞄,生醫影像,干涉儀, | zh_TW |
| dc.subject.keyword | Tomography,OCT,Interferometer, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
