Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27325
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如(Gong-Ru Lin)
dc.contributor.authorChung-Hsiang Changen
dc.contributor.author張忠翔zh_TW
dc.date.accessioned2021-06-12T18:01:19Z-
dc.date.available2013-01-30
dc.date.copyright2008-01-30
dc.date.issued2008
dc.date.submitted2008-01-28
dc.identifier.citationChapter I
[1] C. Bonafos, M. Carrada, N. Cherkashin, H. Coffin, D. Chassaing, G. Ben Assayag, A. Claverie, T. Muller, K.H. Heinig, M. Perego, M. Fanciulli, P. Dimitrakis, P. Normand, “Manipulation of two-dimensional arrays of Si nanocrystals embedded in thin SiO2 layers by low energy ion implantation,” J. Appl. Phys. 95, pp.5696-5702 (2004).
[2] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, pp. 1046-1048 (1990).
[3] E. Edelberg, S. Bergh, R. Naone, M. Hall, E. S. Aydil, “Luminescence from plasma deposited silicon films,” J. Appl. Phys. 81, pp.2410-2417 (1997).
[4] F. Iacona, G. Franzo, C. Spinella, “Correlation between luminescence and structural properties of Si nanocrystals,” J. Appl. Phys. 87, pp.1295-1303 (2000).
[5] D.J. DiMaria, J. R. Kirtley, E. J. Pakulis, D. W. Dong, S. T. Kuan, F. L. Pesavento, T. N. Theis, J. A. Cutro, and S. D. Brorson, “Electroluminescence studies in Silicon dioxide films containing tiny Silicon islands,” J Appl. Phys. 56, pp.401-416 (1984).
[6] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in Silicon nanocrystals,” Nature 408, pp.440-444 (2000).
Chapter II
[1] Q. Ye, R. Tsu, and E. H. Nicollian, “Resonant tunneling via microcrystalline-silicon quantum confinement,” Phys. Rev. B 44, pp. 1806 - 1811 (1991).
[2] A. Pèrez-Rodrìguez, O. González-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, ”White luminescence from Si+ and C+ ion-implanted SiO2 films,” J. Appl. Phys. 94, pp. 254 - 262 (2003).
[3] D. Pacifici, E. C. Moreira, G. Franzo, V. Martorino, and F. Priolo, “Defect production and annealing in ion-irradiated Si nanocrystals,” Phys. Rev. B 65, 144109 (2002).
[4] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, pp. 1046-1048 (1990).
[5] E. Neufeld, S. Wang, R. Apetz, C. Buchal, R. Carius, C.W. White and D.K. Thomas, “Effect of annealing and H2 passivation on the photoluminescence of Si nanocrystals in SiO2,” Thin Solid Films 294, pp.238-241 (1997).
[6] S.P. Withrow, C.W. White, A. Meldrum, J.D. Budai, D.M. Hembree and J.C. Barbour, “Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2,” J. Appl. Phys. 86, pp.396-401(1999).
[7] S. Cheylan and R.G. Elliman, “Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett. 78 (2001).
[8] K.L. Brower, “Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface,” Phys. Rev. B 38, pp.9657-9666 (1988).
[9] J.H. Stathis and E. Cartier, “Atomic hydrogen reactions with Pb centers at the (100) Si/SiO2 interface,” Phys. Rev. Lett. 72, pp. 2745-2748 (1994).
[10] Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, S. B. Zhang and X. B. Liao, “Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix,” Appl. Phys. Lett. 81, pp. 4174-4176 (2002).
[11] C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, pp. 11024-11036 (1993).
[12] P. Gonzalez, D. Fernandez, J. Pou, E. Garcia, J. Serra, B. Leon, M. Perez-Amor ,T. Szorenyi, “Study of the Gas-Phase Parameters Affecting the Silicon-Oxide Film Deposition Induced by an ArF Laser,” Appl. Phys. A 57, pp. 181-185 (1993).
[13] O. Jambois, H. Rinnert, X.Devaux, and M.Vergnat, “Influence of the annealing treatments on the luminescence properties of SiO/SiO2 multilayers,” J. Appl. Phys. 100, Art. No. 123504 (2006).
[14] F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials 26, pp. 33-46 (2004).
[15] F. Yuna, B.J. Hindsa, S. Hatatania, S. Odaa,U, Q.X. Zhaob, M. Willander, “Study of structural and optical properties of nanocrystalline silicon embedded in SiO2,” Thin Solid Films 375, pp. 137-141 (2000).
[16] Chang-Hee Cho, Baek-Hyun Kim, Tae-Wook Kim, and Seong-Ju Park, Nae-Man Park and Gun-Yong Sung, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film,” Appl. Phys. Lett. 86, pp. 143107 (2005).
[17] S. Guhaa, S. B. Qadri, R. G. Musket, M. A. Wall and Tsutomu Shimizu-Iwayama, “Characterization of Si nanocrystals grown by annealing SiO2 films with uniform concentrations of implanted Si,” J. Appl. Phys. 88, pp. 3954 - 3961 (2000).
Chapter III
[1] L. Tsybeskov, S.P. Duttagupta, K.D. Hirschman, P.M. Fauchet, “Stable and efficient electroluminescence from a porous silicon-based bipolar device,” Appl. Phys. Lett. 68, pp. 2058-2060 (1996).
[2] B. Gelloz, N. Koshida, “Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode,” J. Appl. Phys. 88, pp. 4319-4324 (2000).
[3] S. Fujita, N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74 , pp. 308-310 (1999).
[4] T. Makino, N. Suzuki, Y. Yamada, T. Yoshida, T. Seto, N. Aya,” Size classification of Si nanoparticles formed by pulsed laser ablation inheliumbackground gas,” Appl. Phys. A 69, S243-247 (1999).
[5] P. Photopoulos, A.G. Nassiopoulou, “Room-and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77, pp.1816-1818 (2000).
[6] M. Fujii, A. Mimura, S. Hayashi, D. Kovalev, F. Koch, Mater. Res. Soc. Symp. Proc. 638 (2001) F9.2.1.
[3.7] S. Takeoka, M. Fujii, S. Hayashi, Phys. “Photoluminescence from Si Nanocrystals Embedded in SiO2 Matrices in a Weak Confinement Regime,” Stat. Sol. B 224, pp.229-232 (2001).
[8] D. Muller, P. Kna´pek, J. Faure´, B. Prevot, J.J. Grob, B. Ho¨nerlage, I. Pelant, “Blue electroluminescence from high dose Si+ implantation in SiO2,” Nucl. Instrum.Methods B 148, pp. 997-1001 (1999).
[9] J. Valenta, J. Dian, K. Luterova´, P. Kna´pek, I. Pelant, M. Nikl, D. Muller, J.J. Grob, J.-L. Rehspringer, B. Ho¨nerlage, ”Temperature behaviour of optical properties of Si +-implanted SiO2,” Eur. Phys. J. D 8, pp. 395-398 (2000).
[10] Park N M, Choi C J, Seong T Y and Park S J, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, pp.1355-1357 (2001).
[11] Kim T W, Cho C H, Kim B H and Park S J, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3,” Appl. Phys. Lett. 88, NO.123102 (2006).
[12] Yang M S, Cho K S, Jhe J H, Seo S Y, Shin J H, Kim K J and Moon D W, “Effect of nitride passivation on the visible photoluminescence from Si-nanocrystals,” Appl. Phys. Lett. 85, pp.3408-3410 (2004).
[13] Kang Z T, Arnold B, Summers C J and Wagner B K, “Synthesis of silicon quantum dot buried SiOx films with controlled luminescent properties for solid-state lighting,” Nanotechnology 17, pp.4477-4482 (2006).
[14] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett. 82, pp.197-200 (1999).
[15] Puzder A, Williamson A J, Grossman J C and Galli G, “Surface chemistry of silicon nanoclusters,” Phys. Rev. Lett. 88, NO.097401 (2002).
[16] D. Muller, P. Knapek, J. Faure, B. Prevot, J. J. Grob, B. H. Onerlage, and I. Pelant, “Blue electroluminescence from high dose Si+ implantation in SiO2,” Nucl. Instrum. Methods Phys. Res. B 148, pp. 997-1001 (1999).
[17] L. Rebohle, J. von Borany, H. Fröb, and W. Skorupa, “Blue photo- and electroluminescence of silicon dioxide layers ion-implanted with group IV elements,” Appl. Phys. B: Lasers Opt. 71, pp. 131-151 (2000).
[18] H.Z. Song, X.M. Bao, N.S. Li, and J.Y. Zhang, “Relation between electroluminescence and photoluminescence of Si-implanted SiO2,” J. Appl. Phys. 82, pp.4028-4032 (1997).
[19] M.-B. Park, N.-H. Cho, “Structural, chemical and optical features of nanocrystalline Si films prepared by PECVD techniques,” APPLIED SURFACE SCIENCE 190, pp. 151-156 (2002).
[20] Zhongyuan Ma, Li Wang, Kunji Chen, Wei Li, Lin Zhang, Yun Bao, Xiaowei Wang, Jun Xu, Xinfan Huang, Duan Feng, “Blue light emission in nc-Si/SiO2 multilayers fabricated using layer by layer plasma oxidation,” J. Non-Cryst. Solids 299, pp. 648-652 (2002).
[21] J.-H. Shim, Seongil Im, Youn Joong Kim, N.-H. Cho, “Nanostructural and optical features of hydrogenated nanocrystalline silicon films prepared by aluminium-induced crystallization,” Thin Solid Films 503, pp. 55 – 59 (2006).
[22] Fabio Iacona, Giorgia Franzo, Eduardo Ceretta Moreira, Domenico Pacifici, Alessia Irrera, Francesco Priolo, “Luminescence properties of Si nanocrystals embedded in optical microcavities,” Materials Science and Engineering C 19, pp. 377–381 (2002).
[23] J.-H. Shim, Seongil Im, N.-H. Cho, “Nanostructural features of nc-Si:H thin films prepared by PECVD,” Applied Surface Science 234, pp. 268–273 (2004).
[24] J.-H. Shim and N.-H. Cho, “Structural and Chemical Features of Silicon Nanocrystallites in Nanocrystalline Hydrogenated Silicon Thin Films,” GLASS PHYSICS AND CHEMISTRY 31, pp. 525-529 (2005).
[25] X. Zhao, O. Schoenfeld, J. Kusano,Y. Aoyagi, and T. Sugano, “Observationof direct transitions in silicon nanocrystallites,” Jpn. J. Appl. Phys. 33, pp. L899–L901 (1994).
[26] C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B 48, pp. 11024-11036 (1993).
[27] F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perrie`re, E. Fogarassy, A. Slaoui, M. Froment, “Modification of SiO through room-temperature plasma treatments, rapid thermal annealings, and laser irradiation in a nonoxidizing atmosphere,” Phys. Rev. B 37, pp. 6468-6477 (1988).
[28] S. Hayashi, T. Nagareda, Y. Kanazawa, K. Yamamoto, “Photoluminescence of Si-rich SiO2-films-Si clusters as luminescent centers,” Jpn. J. Appl. Phys. 32, pp.3840-3845(1993).
[29] P. Gonzalez, D. Fernandez, J. Pou, E. Garcia, J. Serra, B. Leon, M. Perez-Amor ,T. Szorenyi, “Study of the Gas-Phase Parameters Affecting the Silicon-Oxide Film Deposition Induced by an ArF Laser,” Appl. Phys. A 57, pp. 181-185 (1993).
[30] O. Jambois, H. Rinnert, X.Devaux, and M.Vergnat, “Influence of the annealing treatments on the luminescence properties of SiO/SiO2 multilayers,” J. Appl. Phys. 100, Art. No. 123504 (2006).
[31] F. Ay, A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials 26, pp.33-46 (2004).
Chapter IV
[1 ] N.-M. Park, T.-S. Kim, and S.-J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett. 78, pp. 2575-2577 (2001)
[2] S. Furukawa and T. Miyasato, “3-Dimensional quantum well effects in ultrafine Silicon particles,” Jpn. J. Appl. Phys. 27, L2207-2209 (1988).
[3] L.-S. Liao, X.-M. Bao, X.-Q. Zhang, N.-S. Li, and N.-B. Min, “Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,” Appl. Phys. Lett. 68, pp. 850-852 (1996);
[4] M. Ehbrecht, B. Kohn, F. Huisken, M. A. Laguna, and V. Paillard, “Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition,” Phys. Rev. B 56, pp. 6958-6964 (1997).
[5] L. Patrone, D. Nelson, V. I. Safaov, M. Sentis, W. Marine, and S. Giorgio,” Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation,” J. Appl. Phys. 87, pp. 3829-3837 (2000).
[6] F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzo` , F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 mm in Er-doped Si nanocluster-based devices,” Appl. Phys. Lett., Vol. 81, pp.3242-3244 (2002).
[7] G.G. Qin, A.P. Li, B.R. Zhang, Bing-Chen Li, “Visible electroluminescence from semitransparent au film extra thin Si-rich Silicon-oxide film p-Si structure,” J. Appl. Phys. 78, pp.2006-2009 (1995).
[8] K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, P.M. Fauchet, “Silicon-based visible light-emitting devices integrated into microelectronic circuits,” Nature 384, pp.338-341 (1994).
[9] L. Rebohle, J. Von Borany, R.A. Yankov, W. Skorupa, I.E. Tyschenko, H. Frob, K. Leo, “Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers,” Appl. Phys. Lett. 71, pp.2809-2811 (1997).
[10] S. Fujita, N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74, pp.308-310 (1999).
[11] N. Lalic, J. Linnros, “Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide,” J. Lumin. 80, pp.263-267 (1999).
[12] P. Photopoulos, A.G. Nassiopoulou, “Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77, pp.1816-1818 (2000).
[13] A. Irrera, D. Paci(ci, M. Miritello, G. FranzTo, F. Priolo, F. Iacona, D. San(lippo, G. Di Stefano, P.G. Fallica, “Excitation and de-excitation properties of silicon quantum dots under electrical pumping,” Appl. Phys. Lett. 81, pp.1866-1868 (2002).
[14] J. Valenta, R. Juhasz, and J. Linnros, Appl. “Photoluminescence spectroscopy of single silicon quantum dots,” Phys. Lett. 80, pp. 1070-1073 (2002).
[15] G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, F. Priolo, “Electroluminescence of silicon nanocrystals in MOS structures,” Appl. Phys. A 74, pp. 1-5 (2002).
[16] Toshihiro Matsuda, Kiyoshi Nishihara, Masaharu Kawabe, Hideyuki Iwata, Satoshi Iwatsubo, Takashi Ohzone, “Blue electroluminescence from MOS capacitors with Si-implanted SiO2,” Solid-State Electronics 48, pp. 1933–1941 (2004).
[17] L Ding, T P Chen, Y Liu, M Yang, J I Wong, K Y Liu, F R Zhu and S Fung, “The influence of the implantation dose and energy on the electroluminescence of Si+-implanted amorphous SiO2 thin films,” Nanotechnology 18, pp. 455306 (2007).
[18] A Benami, G Santana, AOrtiz, A Ponce, D Romeu, J Aguilar-Hern´andez, G Contreras-Puente and J C Alonso, “Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3,” Nanotechnology 18, pp. 155704 (2007).
[19] Y Liu, T P Chen, Y Q Fu, M S Tse, J H Hsieh, P F Hoand Y C Liu, “A study on Si nanocrystal formation in Si-implanted SiO2 films by x-ray photoelectron spectroscopy,” J. Phys. D: Appl. Phys. 36, L97–L100 (2003).
[20] B. H. Augustinea, E. A. Ireneb, Y. J. He, K. J. Price, L. E. McNeil, K. N. Christensen and D. M. Maher, “Visible light emission from thin films containing Si, 0, N, and H,” J. Appl. Phys., Vol. 78, pp. 4020-4030(1995)
[21] X. W. Zhang, “Microstructural modification of nc-Si/SiOx films during plasma-enhanced chemical vapor deposition,” phys. stat. sol. (a) 202, No. 9, pp. 1773–1777 (2005).
[22] Gong-Ru Lin, Chun-Jung Lin, Chi-Kuan Lin, Li-Jen Chou and Yu-Lun Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” J. Appl. Phys. 97, NO.094306 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27325-
dc.description.abstract在本論文中,在低功率的電漿輔助化學氣相沉積系統內,證實N2O/SiH4流量比例與氧/矽組成比例對於成長最多量奈米矽的富矽氧化矽薄膜有相關性,藉由降低N2O與N2O/SiH4流量比例調整富矽氧化矽的氧/矽組成比率從1.38到0.88且得到類高斯分佈的非線性近紅外光激螢光。降低N2O/SiH4 比率,大量的Si-H吸收鍵結在870與2250 cm-1幫助形成小尺寸奈米矽並且防止表面再氧化。N2O/SiH4比例訂在5.5時,對厚度歸一化的最強光激螢光峰值是在760 nm且此時的氧/矽比為1.24且矽濃度大約44.64 atom %。特別注意的是,N2O流量維持小至25sccm來限制氧解離作用和完全分解SiH4,因此在矽奈米晶表面的懸擺鍵結上產生微量的氫鈍化。N2O:SiH4流量降至5:1且與典型的退火1hr過程相比,退火時間及溫度短至15分鐘1100 oC時達到最佳。HRTEM分析透露如此小的奈米矽晶直徑約為1.5±0.2 nm。由FTIR分析可知,我們推論極低流量的電漿輔助化學氣相沉積可以完全從SiH4分解出Si並且產生極小的氫氣鈍化。使我們易於精確控制矽奈米晶的尺寸和大幅增強藍光光激螢光強度。在外加290V的情況下發現了具有藍光的電激發光現象,相較於PI斜率為0.37mW/A情況下的紅光金氧半二極體光功率為270 nW,藍光金氧半二極體的光功率可達333 nW至500 nW,我們利用低N2O流量製程條件在富矽氧化矽成長出小尺寸高密度奈米矽晶,並以此成功做出高輸出功率的金氧半二極體元件。zh_TW
dc.description.abstractIn this thesis, correlation between N2O/SiH4 fluence ratio and O/Si composition ratio for optimizing Si nanocrystal precipitation in Si-rich SiOx grown by low-plasma PECVD is demonstrated. The O/Si composition ratio of SiOx can be adjustable from 1.38 to 0.88 by detuning N2O fluence and N2O/SiH4 ratio to obtain a nonlinearly Gaussian-like dependency with near-infrared photoluminescence (PL). By reducing N2O/SiH4 ratio, abundant Si-H bonds with absorption at 870 and 2250 cm-1 assist small-size Si nanocrystal precipitation and prevent outer surface re-oxidation. Maximum PL at 760 nm at O/Si=1.24 with corresponding Si concentration of 44.64 atom.% is obtained at N2O/SiH4 ratio of 5.5. In particular, the N2O fluence remains as small as 25 sccm to restrict oxygen desorption and to complete SiH4 decomposition, thus minizing the hydrogen passivation on dangling bonds at Si nanocrystal surface. The N2O:SiH4 fluence is decreased to 5:1 and the optimized annealing are achieved as short as 15 min at 1100oC in comparison with typical 1-hr process. HRTEM analysis reveals such tiny Si nanocrystals exhibit diameter of only 1.5±0.2 nm. From FTIR results, we conclude that the ultra-low fluence PECVD can completely decompose the Si from SiH4 with minimum hydrogen passivation, which facilitates the precise control of Si nanocrystal size and greatly enhances the blue PL intensity. The blue-light EL pattern is observed at 290 V for the MOSLED made on SiOx grown at N2O fluence as low as 25 sccm. The maximum emitting power is about 333~500 nW for the blue-light MOSLED as compared to that of 270 nW for red-light MOSLED associated with a PI slope of 0.37 mW/A. Higher output power of MOSLED on low-N2O-fluence grown SiOx is attributed to the smaller Si nanocrystals with larger density.en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:01:19Z (GMT). No. of bitstreams: 1
ntu-97-R94941064-1.pdf: 1764852 bytes, checksum: f6506b4216981792e807742cb800d876 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsCONTENTS
Abstract (in Chinese)…………………………………………………………………i
Abstract (in English)………………………………………………………………....ii
Acknowledgement…………………………………………………………………..iii
Contents……………………………………………………………………………..iv
List of table..………………………………………………………………………...vi
List of figures………………………………………………………………………..vii
Chapter 1 : Introduction…………………………………………………………1
1.1Photoluminescences (PL) and characteristics of Silicon nanocrystals in Si-rich SiO2………………………………………………………………....1
1.2 Electroluminescences (EL) of nc-Si embedded oxide structures…………..2
1.3 Motivation…………………………………………………………………..3
1.4 Organization of Thesis………………………………………………...........3
1.5 References…………………………………………………………………..5
Chapter 2 : Optimized O/Si composition ratio and Hydrogen passivation for enhancing Si nanocrystal based luminescence in Si-rich SiOx grown by PECVD with Argon diluted SiH4…………………...….. 6
2.1 Introduction…………………………………………………………………6
2.2 Experiments…………………………………………………………………7
2.3 Results and Discussions……………………………………………………..9
2.3.1 PL of PECVD-grown Si-rich SiOx……………………………………9
2.3.2 Analysis of TEM results……………………………………………...11
2.3.3 FTIR results…………………………………………………………..12
2.3.4 Variations of O/Si composition ratio at different fluence ratios …….14
2.4 Conclusion………………………………………………………………….15
2.5 References………………………………………………………………….17
Chapter 3 : Wavelength tunable blue photoluminescence of ultralow-fluence PEVCD grown SiOx with buried Si nanocrystals……………….. 26
3.1 Introduction………………………………………………………………..26
3.2 Experiments………………………………………………………………..28
3.3 Results and Discussions……………………………………………………30
3.3.1 Strong blue photoluminescence of PECVD-grown Si-rich SiOx……30
3.3.2 TEM results……………………………………………………….…31
3.3.3 Analysis of RBS and XPS………………………………………...…33
3.3.4 FTIR results………………………………………….………………34
3.4 Conclusion………………………………………………………………….36
3.5 References………………………………………………………………….38
Chapter 4 : Blue and Yellow Electroluminescence of MOSLED Made on Si-rich SiOx Film with detuning Buried Si Nanoclusters Size…………….. 48
4.1 Introduction……………………………………………………………..…48
4.2 Experiments………………………………………………………………..50
4.3 Results and Discussions……………………………………………………51
4.3.1 PL of PECVD-grown Si-rich SiOx at different growth time…………51
4.3.2 Analysis of RBS and XPS……………………………………………53
4.3.3 Strong blue and yellow EL results…………………………….….….54
4.4 Conclusion………………………………………………………………….58
4.5 References………………………………………………………………….60
Chapter 5 : Summary…………………………………………………………...….71
References…………………………………………………………………….……..77
dc.language.isoen
dc.subject金氧半zh_TW
dc.subject電激螢光zh_TW
dc.subject奈米矽晶zh_TW
dc.subject多矽氧化矽zh_TW
dc.subject電漿輔助化學氣相沉積zh_TW
dc.subject光激螢光zh_TW
dc.subjectMetal-Oxide-Semiconductoren
dc.subjectElectroluminescenceen
dc.subjectPhotoluminescenceen
dc.subjectNanocrystallite Sien
dc.subjectSi-rich SiOxen
dc.subjectPECVDen
dc.title多矽氧化矽組成比例對奈米矽基金氧半二極體發光特性分析zh_TW
dc.titleEffect of Composition Ratio of Si-rich SiOx on Light Emitting Characteristics of Si Nanocrystal Based Metal-Oxide-Semiconductor Diodeen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee何志浩,林清富,郭浩中,周立人
dc.subject.keyword電激螢光,光激螢光,奈米矽晶,多矽氧化矽,電漿輔助化學氣相沉積,金氧半,zh_TW
dc.subject.keywordElectroluminescence,Photoluminescence,Nanocrystallite Si,Si-rich SiOx,PECVD,Metal-Oxide-Semiconductor,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2008-01-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved