請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳世雄(Shih-Hsiung Wu) | |
| dc.contributor.author | Tung-Li Hsu | en |
| dc.contributor.author | 徐東立 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:00:55Z | - |
| dc.date.available | 2012-01-30 | |
| dc.date.copyright | 2008-01-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-26 | |
| dc.identifier.citation | 1 Brown, C. and Seidler, R. J., Potential pathogens in the environment: Klebsiella pneumoniae, a taxonomic and ecological enigma. Appl Microbiol 25 (6), 900 (1973).
2 Bagley, S. T., Seidler, R. J., Talbot, H. W., Jr., and Morrow, J. E., Isolation of Klebsielleae from within living wood. Appl Environ Microbiol 36 (1), 178 (1978). 3 Matsen, J. M., Spindler, J. A., and Blosser, R. O., Characterization of Klebsiella isolates from natural receiving waters and comparison with human isolates. Appl Microbiol 28 (4), 672 (1974). 4 Seidler, R. J., Knittel, M. D., and Brown, C., Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl Microbiol 29 (6), 819 (1975). 5 Casewell, M. W. and Phillips, I., Epidemiological patterns of Klebsiella colonization and infection in an intensive care ward. J Hyg (Lond) 80 (2), 295 (1978). 6 Cooke, E. M. et al., Further studies on the sources of Klebsiella aerogenes in hospital patients. J Hyg (Lond) 83 (3), 391 (1979). 7 Kuhn, I., Ayling-Smith, B., Tullus, K., and Burman, L. G., The use of colonization rate and epidemic index as tools to illustrate the epidemiology of faecal Enterobacteriaceae strains in Swedish neonatal wards. J Hosp Infect 23 (4), 287 (1993). 8 Sahly, H. and Podschun, R., Clinical, bacteriological, and serological aspects of Klebsiella infections and their spondylarthropathic sequelae. Clin Diagn Lab Immunol 4 (4), 393 (1997). 9 Chang, F. Y. and Chou, M. Y., Comparison of pyogenic liver abscesses caused by Klebsiella pneumoniae and non-K. pneumoniae pathogens. J Formos Med Assoc 94 (5), 232 (1995). 10 Tsay, R. W., Siu, L. K., Fung, C. P., and Chang, F. Y., Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med 162 (9), 1021 (2002). 11 Rahimian, J., Wilson, T., Oram, V., and Holzman, R. S., Pyogenic liver abscess: recent trends in etiology and mortality. Clin Infect Dis 39 (11), 1654 (2004). 12 Ko, W. C. et al., Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8 (2), 160 (2002). 13 Athamna, A. et al., Lectinophagocytosis of encapsulated Klebsiella pneumoniae mediated by surface lectins of guinea pig alveolar macrophages and human monocyte-derived macrophages. Infect Immun 59 (5), 1673 (1991). 14 Higaki, M., Chida, T., Takano, H., and Nakaya, R., Cytotoxic component(s) of Klebsiella oxytoca on HEp-2 cells. Microbiol Immunol 34 (2), 147 (1990). 15 Mizuta, K. et al., Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infect Immun 40 (1), 56 (1983). 16 Chuang, Y. P. et al., Genetic determinants of capsular serotype K1 of Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 193 (5), 645 (2006). 17 Fang, C. T. et al., A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199 (5), 697 (2004). 18 Struve, C. et al., Investigation of the putative virulence gene magA in a worldwide collection of 495 Klebsiella isolates: magA is restricted to the gene cluster of Klebsiella pneumoniae capsule serotype K1. J Med Microbiol 54 (Pt 11), 1111 (2005). 19 Kumar, A. S., Mody, K., and Jha, B., Bacterial exopolysaccharides--a perception. J Basic Microbiol 47 (2), 103 (2007). 20 Whitfield, C., Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75, 39 (2006). 21 Margaritis, A. and Pace, G.W., Microbial polysaccharides. In: Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine (Editor-in-chief: Murray Moo-Young); The Practice of Biotechnology: Current Commodity Products, 3.Harvey W. Blanch, Stephen Drew and Daniel I.C. Wang (Eds.), Pergamon Press, New York,, 41 (1985). 22 Rahn, A. and Whitfield, C., Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 47 (4), 1045 (2003). 23 Rahn, A., Drummelsmith, J., and Whitfield, C., Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 181 (7), 2307 (1999). 24 Grangeasse, C., Doublet, P., and Cozzone, A. J., Tyrosine phosphorylation of protein kinase Wzc from Escherichia coli K12 occurs through a two-step process. J Biol Chem 277 (9), 7127 (2002). 25 Cozzone, A. J., Grangeasse, C., Doublet, P., and Duclos, B., Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181 (3), 171 (2004). 26 Wugeditsch, T. et al., Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J Biol Chem 276 (4), 2361 (2001). 27 Vincent, C. et al., Relationship between exopolysaccharide production and protein-tyrosine phosphorylation in gram-negative bacteria. J Mol Biol 304 (3), 311 (2000). 28 Bugert, P. and Geider, K., Characterization of the amsI gene product as a low molecular weight acid phosphatase controlling exopolysaccharide synthesis of Erwinia amylovora. FEBS Lett 400 (2), 252 (1997). 29 Paiment, A., Hocking, J., and Whitfield, C., Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli. J Bacteriol 184 (23), 6437 (2002). 30 Drummelsmith, J. and Whitfield, C., Translocation of group 1 capsular polysaccharide to the surface of Escherichia coli requires a multimeric complex in the outer membrane. EMBO J 19 (1), 57 (2000). 31 Paulsen, I. T., Beness, A. M., and Saier, M. H., Jr., Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143 ( Pt 8), 2685 (1997). 32 Nesper, J. et al., Translocation of group 1 capsular polysaccharide in Escherichia coli serotype K30. Structural and functional analysis of the outer membrane lipoprotein Wza. J Biol Chem 278 (50), 49763 (2003). 33 Zhang, Z. Y., Chemical and mechanistic approaches to the study of protein tyrosine phosphatases. Acc Chem Res 36 (6), 385 (2003). 34 Fauman, E. B. and Saper, M. A., Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21 (11), 413 (1996). 35 Preneta, R. et al., Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase from Klebsiella pneumoniae. Comp Biochem Physiol B Biochem Mol Biol 131 (1), 103 (2002). 36 Levene, P. A., Alsberg, C. L., The cleavage products of vitellin. J. Biol. Chem 2, 6 (1906). 37 Lipmann, Fritz A.; Levene, P. A., Serinephosphoric acid obtained on hydrolysis of vitellinic acid. J. Biol. Chem 98, 6 (1932). 38 Burnett, G. and Kennedy, E. P., The enzymatic phosphorylation of proteins. J Biol Chem 211 (2), 969 (1954). 39 Manning, G., Plowman, G. D., Hunter, T., and Sudarsanam, S., Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27 (10), 514 (2002). 40 Loomis, W. F., Shaulsky, G., and Wang, N., Histidine kinases in signal transduction pathways of eukaryotes. J Cell Sci 110 ( Pt 10), 1141 (1997). 41 Parkinson, J. S., Signal transduction schemes of bacteria. Cell 73 (5), 857 (1993). 42 Cozzone, A. J., ATP-dependent protein kinases in bacteria. J Cell Biochem 51 (1), 7 (1993). 43 Manai, M. and Cozzone, A. J., Analysis of the protein-kinase activity of Escherichia coli cells. Biochem Biophys Res Commun 91 (3), 819 (1979). 44 Zhang, C. C., Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol 20 (1), 9 (1996). 45 Deutscher, J. and Saier, M. H., Jr., ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. Proc Natl Acad Sci U S A 80 (22), 6790 (1983). 46 Duclos, B. et al., Autophosphorylation of a bacterial protein at tyrosine. J Mol Biol 259 (5), 891 (1996). 47 Manaï M, Cozzone AJ, Characterization of the amino acids phosphorylated in E. coli proteins. FEMS Microbiol Lett 17, 5 (1983). 48 South, S. L., Nichols, R., and Montie, T. C., Tyrosine kinase activity in Pseudomonas aeruginosa. Mol Microbiol 12 (6), 903 (1994). 49 Warner, K. M. and Bullerjahn, G. S., Light-Dependent Tyrosine Phosphorylation in the Cyanobacterium Prochlorothrix hollandica. Plant Physiol 105 (2), 629 (1994). 50 Atkinson, M., Allen, C., and Sequeira, L., Tyrosine phosphorylation of a membrane protein from Pseudomonas solanacearum. J Bacteriol 174 (13), 4356 (1992). 51 Potts, M. et al., A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem 268 (11), 7632 (1993). 52 Dadssi, M. and Cozzone, A. J., Evidence of protein-tyrosine kinase activity in the bacterium Acinetobacter calcoaceticus. J Biol Chem 265 (34), 20996 (1990). 53 Waters, B. Vujaklija, D. Gold, M. R. Davies, J., Protein tyrosine phosphorylation in streptomycetes. FEMS Microbiology Letters (1994). 54 Krebs, E. G. and Beavo, J. A., Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48, 923 (1979). 55 Flint, A. J., Tiganis, T., Barford, D., and Tonks, N. K., Development of 'substrate-trapping' mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 94 (5), 1680 (1997). 56 Xie, L., Zhang, Y. L., and Zhang, Z. Y., Design and characterization of an improved protein tyrosine phosphatase substrate-trapping mutant. Biochemistry 41 (12), 4032 (2002). 57 Macek, B. et al., The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6 (4), 697 (2007). 58 Macek, B. et al., Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics (2007). 59 Smith, P. K. et al., Measurement of protein using bicinchoninic acid. Anal Biochem 150 (1), 76 (1985). 60 Wang, Y., Santini, F., Qin, K., and Huang, C. Y., A Mg(2+)-dependent, Ca(2+)-inhibitable serine/threonine protein phosphatase from bovine brain. J Biol Chem 270 (43), 25607 (1995). 61 Xing, K. et al., Low molecular weight protein tyrosine phosphatase (LMW-PTP) and its possible physiological functions of redox signaling in the eye lens. Biochim Biophys Acta 1774 (5), 545 (2007). 62 Fang, C. T. et al., Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis 45 (3), 284 (2007). 63 Grangeasse, C. et al., Autophosphorylation of the Escherichia coli protein kinase Wzc regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase. J Biol Chem 278 (41), 39323 (2003). 64 Mijakovic, I. et al., Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. EMBO J 22 (18), 4709 (2003). 65 Breazeale, S. D., Ribeiro, A. A., and Raetz, C. R., Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. J Biol Chem 278 (27), 24731 (2003). 66 Soldo, B., Lazarevic, V., Pagni, M., and Karamata, D., Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31 (3), 795 (1999). 67 Klein, G., Dartigalongue, C., and Raina, S., Phosphorylation-mediated regulation of heat shock response in Escherichia coli. Mol Microbiol 48 (1), 269 (2003). 68 Mijakovic, I. et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res 34 (5), 1588 (2006). 69 Lescop, E. et al., The solution structure of Escherichia coli Wzb reveals a novel substrate recognition mechanism of prokaryotic low molecular weight protein-tyrosine phosphatases. J Biol Chem 281 (28), 19570 (2006). 70 Madhurantakam, C. et al., Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution. J Bacteriol 187 (6), 2175 (2005). 71 Xu, H., Xia, B., and Jin, C., Solution structure of a low-molecular-weight protein tyrosine phosphatase from Bacillus subtilis. J Bacteriol 188 (4), 1509 (2006). 72 Wang, S. et al., Crystal structures of a low-molecular weight protein tyrosine phosphatase from Saccharomyces cerevisiae and its complex with the substrate p-nitrophenyl phosphate. Biochemistry 39 (8), 1903 (2000). 73 Zhang, M., Stauffacher, C. V., Lin, D., and Van Etten, R. L., Crystal structure of a human low molecular weight phosphotyrosyl phosphatase. Implications for substrate specificity. J Biol Chem 273 (34), 21714 (1998). 74 Vincent, C. et al., Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181 (11), 3472 (1999). 75 Ramponi, G. and Stefani, M., Structure and function of the low Mr phosphotyrosine protein phosphatases. Biochim Biophys Acta 1341 (2), 137 (1997). 76 Frasch, S. C. and Dworkin, M., Tyrosine phosphorylation in Myxococcus xanthus, a multicellular prokaryote. J Bacteriol 178 (14), 4084 (1996). 77 Shi, L., Potts, M., and Kennelly, P. J., The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22 (4), 229 (1998). 78 van Montfort, R. L. et al., Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423 (6941), 773 (2003). 79 Chiarugi, P. et al., Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation. J Biol Chem 276 (36), 33478 (2001). 80 Fiaschi, T. et al., Low molecular weight protein-tyrosine phosphatase is involved in growth inhibition during cell differentiation. J Biol Chem 276 (52), 49156 (2001). 81 Thompson, J. D., Higgins, D. G., and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 (22), 4673 (1994). 82 Grangeasse, C., Cozzone, A. J., Deutscher, J., and Mijakovic, I., Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32 (2), 86 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27312 | - |
| dc.description.abstract | 克雷伯氏肺炎桿菌NTUH-K2044引起之肝膿瘍併發轉移性病灶是種台灣近年來新興的感染性疾病,這種人類細菌性病原外層包覆著多醣類物質成為物理性屏障,這種醣鞘結構稱為莢膜多醣體(CPS),是一種重要的致病因子,用來躲避人體免疫系統的攻擊。文獻指出,與莢膜多醣體合成有關的基因組位於cps (capsule polysaccharide synthesis) 基因座上,其中包含wzb基因,研究發現,剔除wzb基因後的菌株會失去莢膜的包覆,因而推測wzb基因參與莢膜多醣體合成過程的調控,此外,根據蛋白質序列比對分析,Wzb蛋白也被認為是一種低分子量之酪胺酸去磷酸脢(LMW-PTP:Low molecular weight protein tyrosine phosphatase)。
為了釐清Wzb蛋白利用蛋白質酪胺酸磷酸化作用調控莢膜多醣體生合成時所扮演的角色,首先,將造成肝膿瘍之克雷伯氏桿菌NTUH-K2044品系的wzb基因選殖至適當基因載體,並在其C端同時加上His以及HA胜肽標記,此外,依據其催化區設計了Wzb蛋白的受質捕捉(substrate-trapping)突變株,分別為WzbC9S、WzbD115A及WzbC9S/D115A。Wzb 蛋白的去磷酸化活性在pH 5.5環境下達到最高,於26.8°C所測得的動力學常數:Km、Vmax、Kca以及Kcat/Km 分別為1.35 mM、 34.8 μmole min-1 mg-1、641.1 min-1以及475 mM-1 min-1。在酵素活性抑制實驗中發現,Wzb不會受到高濃度之NaF與EDTA的抑制(10 mM),相反地,在10 μM H2O2、1 μM vanadate、1 mM Iodoacetamide的處理下,Wzb的活性則受到完全抑制。從以上這些結果證實克雷伯氏桿菌NTUH-K2044的Wzb蛋白可被歸類為低分子量酪胺酸去磷酸脢。 胞外去磷酸化實驗結果指出,許多內生性酪胺酸磷酸化蛋白質會受到Wzb的去磷酸化作用,暗指這些未知蛋白都有可能是Wzb蛋白的目標物且受其調控,藉由未知蛋白的身分鑑定來了解細菌體內受到酪胺酸磷酸化系統調控的細胞活性,為了揭露Wzb蛋白的天然受質(natural substrates)的真面目,低分子量酪胺酸去磷酸脢首次被用在受質捕捉實驗裡,結果不如預期,未能成功鑑定出任何酪胺酸磷酸化蛋白,然而,透過直接測試的方法得知,具有自體酪胺酸磷酸化激脢活性的Wzc是屬於Wzb的一個受質,然而,仍然有許多天然受質鑑定上的障礙需要被克服,為了更進一步了解酪胺酸磷酸化系統與細菌莢膜多醣體生合成的關聯性抑或是其他相關的細胞反應,未來我們必須找到一些更適合的研究方法藉此回答這些問題,受質鑑定的研究仍然持續地在進行中。 | zh_TW |
| dc.description.abstract | Liver abscess with metastatic complications caused by Klebsiella pneumoniae (K. pneumoniae) is an emerging infectious disease in Taiwan in the recent years. The human bacterial pathogen was wrapped in a physical barrier of exopolysaccharides. The sugar coated structure, termed capsular polysaccharides (CPS), is an important virulence factor which protects the pathogen from attack by the host immune system. It has been documented that a cassette of genes involved in CPS development are gathered at the capsule biosynthesis locus (cps). The Wzb gene is localized within such gene cluster which determines synthesis and assembly of CPS. It has been suggested that wzb is involved in the regulation of CPS biosynthesis, since the capsule is eliminated in the wzb knockout strain. Furthermore, Wzb is also considered as a kind of low molecular weight protein tyrosine phosphatases (LMW-PTP) based on the protein sequence alignment.
In order to confirm the role of Wzb in regulating bacterial CPS biosynthesis through protein tyrosine phosphorylation, we first cloned the Wzb from the liver abscess strain K. pneumoniae NTUH-K2044 and tagged the protein with both histidines (His) and haemagglutinin epitop (HA) at the C-terminus. Meanwhile, substrate-trapping mutants, C9S, D115A and C9S/D115A, were also generated based on the information of the active site. The maximal enzymatic activity of Wzb was achieved at a pH of 5.5 and the corresponding kinetic constants Km, Vmax, Kcat and Kcat/Km, measured at 26.8°C, were 1.35 mM, 34.8 μmole min-1 mg-1, 641.1 min-1and 475 mM-1 min-1, respectively. The inhibition assay revealed that Wzb is not inhibited by NaF and EDTA, even at a high concentration (10 mM). On the contrary, pre-incubation with 10 mM H2O2 or 1 μM vanadate or 1 mM indoacetamide caused the phosphatase to lose its activity completely. These results confirmed that Wzb of K. pneumoniae NTUH-K2044 can be classified as a LMW-PTP. In vitro dephosphorylation assay indicated that several endogenous tyrosine phosphorylated proteins can be dephosphorylated by Wzb, suggesting that these unknown proteins are potential targets of Wzb and governed by it. On the other word, the cellular activity regulated by tyrosine phosphorylation system in bacteria can be clarified by substrate identification. In order to uncover the endogenous substrates of Wzb, we perform substrate-trapping experiments to pull them out where the LMW-PTP is first adopted. Against all expectations, substrate-trapping analysis falls to identify any endogenous tyrosine phosphorylated proteins, however the tyrosine-autokinase, Wzc, can serve as a substrate of Wzb that was verified by a straightforward manner. There are still several obstacles to overcome in the recognition of natural substrates. For further understanding of the precise roles of tyrosine phosphorylation system in bacterial CPS biosynthesis or other associated cellular responses, more precise experimental methods must be exploited in the future to answer those questions. Our investigation on the substrate identification is still ongoing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:00:55Z (GMT). No. of bitstreams: 1 ntu-97-R94b46028-1.pdf: 3046163 bytes, checksum: 2a4bb517fa94ad7717d6061a7e5ee2d5 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT III INTRODUCTION 1 1. KLEBSIELLA PNEUMONIAE 1 2. BACTERIAL EXOPOLYSACCHARIDES 3 3. PHOSPHORYLATION IN BACTERIA 6 4. CHARACTERIZATION OF PTPS SUBSTRATES 9 MATERIAL AND METHOD 12 1. BACTERIAL STRAINS AND PLASMID 12 2. CULTURE MEDIUM AND GROWTH CONDITION 12 3. CLONING OF THE PUTATIVE LMW-PTP WZB 12 4. SITE-DIRECTED MUTAGENESIS 13 5. OVEREXPRESSION AND PURIFICATION OF WZB 14 6. ASSAY FOR PROTEIN TYROSINE PHOSPHATASE ACTIVITY 15 8. INHIBITION ASSAY 17 9. IMMUNOBLOTTING ANALYSIS 17 10. IMMUNOPRECIPITATION 18 11. PROTEIN IDENTIFICATION 19 RESULT 20 1. PURIFICATION OF THE PUTATIVE LMW-PTP WZB FROM K. PNEUMONIAE 20 1.1 Cloning of the wzb gene 20 1.2 Multiple sequence alignment of LMW-PTPs from various organisms suggests that Wzb is a LMW-PTP 21 1.3 Generation of the Wzb mutants 21 2. THE ENZYMATIC ACTIVITY OF WZB IS INFLUENCED BY VARIOUS FACTORS 22 2.1 The pH effect on Wzb activity reveals that the maximal enzymatic activity was achieved at pH 5.5 22 2.2 Kinetics of Wzb was performed that the corresponding kinetic constants were Km: 1.35 mM, Vmax: 34.8 μmole min-1 mg-1, Kcat: 641.1 min-1 and Kcat/Km: 475 mM-1 min-1 22 2.3 Wzb was a tyrosione phosphatase determined by enzyme inhibition assay 23 3. ENDOGENOUS SUBSTRATES FOR WZB 24 3.1 There was no difference in growth rate among the K. pneumoniae NTUH-K2044 wildtype, magA- and wzb- mutant strains 24 3.2 Differential profiles of protein tyrosine phosphorylation were existed between wildtype and magA- mutant strains 25 3.3 Wzb potentially dephosphorylate endogenous proteins phosphorylated on tyrosine residues 26 3.4 Substrate-trapping analysis failed to capture the natural substrates that can be dephosphorylated by Wzb 26 3.5 It is a popular occurrence in several bacterial species that Wzc is a substrate of Wzb 27 DISCUSSION 30 FIGURE CONTENTS 37 REFERENCES 56 | |
| dc.language.iso | en | |
| dc.subject | 低分子量酪胺酸磷酸脢 | zh_TW |
| dc.subject | 克雷伯氏肺炎桿菌 | zh_TW |
| dc.subject | 莢膜多醣體 | zh_TW |
| dc.subject | capsular polysaccharide | en |
| dc.subject | low-molecular weight protein tyrosine phosphatase | en |
| dc.subject | Klebsiella pneumoniae | en |
| dc.title | 克雷伯氏肺炎桿菌NTUH-K2044低分子量酪胺酸去磷酸酶Wzb之定性與受質鑑定 | zh_TW |
| dc.title | Characterization and substrate identification of LMW-PTP Wzb in Klebsiella pneumoniae NTUH-K2044 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱繼輝(Kay-Hooi Khoo),王錦堂(Jin-Town Wang) | |
| dc.subject.keyword | 克雷伯氏肺炎桿菌,莢膜多醣體,低分子量酪胺酸磷酸脢, | zh_TW |
| dc.subject.keyword | Klebsiella pneumoniae,capsular polysaccharide,low-molecular weight protein tyrosine phosphatase, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
