請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27305完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱鈞(Chun Chu),盧虎生(Huu-Sheng Lur) | |
| dc.contributor.author | Yih-Min Shy | en |
| dc.contributor.author | 施意敏 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:00:42Z | - |
| dc.date.available | 2008-02-01 | |
| dc.date.copyright | 2008-02-01 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-27 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27305 | - |
| dc.description.abstract | 盤固草A254 (Digitaria decumbens)為台灣地區栽培最廣的牧草品種,由於花粉不稔,造成傳統育種之困境,為加速傳統育種效率,期利用生物技術提供遺傳改良的另一個途徑。因此本研究之首要目標為建立盤固草基因轉殖技術及植株再生系統。
以盤固草未成熟花穗為培殖體,接種於含有2,4-D與BA、KN及CPPU不同濃度組合之MS培養基,探討細胞分裂素對盤固草癒合組織形態、癒合組織誘導率及植株再生率之影響。在含有2,4-D 2.0 mg/l及不同細胞分裂素的MS培養基,白色緊密癒合組織的誘導率KN 0.5 mg/l 為 100.0 %、BA 0.5 mg/l為95.0 %、CPPU 0.5 mg/l為 90.0 %,差異不顯著。將不同細胞分裂素誘導的癒合組織,接種至含有TDZ 0.05 mg/l 的MS培養基,其中KN 0.5 mg/l 誘導的白色緊密癒合組織有68.9 % 具植株分化率,BA 0.5 mg/l 為 96.7 %,CPPU 0.5 mg/l為80.0 %,而透明鬆軟的癒合組織甚少植株的分化。根據本試驗結果,以2,4-D 2.0 mg/l 與BA 0.5 mg/l 誘導的癒合組織,具有很高的植株再生率,此植株再生系統之建立將有助於後續細胞懸浮培養與基因轉殖之研究。 盤固草細胞懸浮培養方法之建立,以盤固草A254未成熟花穗,接種於含有2,4-D 2 mg/l的MS固體培養基,誘導透明鬆軟的癒合組織,可持續繼代培養於含有2,4-D 2 mg/l的MS液體培養基,至少六個月以上。一旦需要植株再生時,可於原懸浮細胞培養基添加BA 0.5 mg/l ,培養一週後,再移至含有2,4-D 2 mg/l及BA 0.5 mg/l 的固體培養基,以誘導白色緊密的胚性癒合組織。將這些胚性癒合組織移至含有BA 0.5 mg/l 或TDZ 0.05 mg/l 的MS培養基,分別有88.9 % 或87.7 % 的癒合組織可再生為完整植株。本研究結果,建立一個可促進細胞持續增殖,並保有高頻度植株再生能力的細胞懸浮培養方法。 利用盤固草組織培養系統,以基因鎗粒子轟擊的方式,將帶有CaMV35S 起動子、GUS或GFP報導基因及HPT基因篩選標示基因的載體,轉殖至盤固草幼穗誘導的癒合組織。以含有50 mg/l hygromycin 培養基進行癒合組織及再生植株抗性篩選。表現抗hygromycin 的癒合組織,在基因鎗轟擊後二週經組織染色分析,仍可穩定表現出GUS蛋白質活性。再生植株經由長達四個月的hygromycin篩選,經PCR分析部份植株帶有報導基因片段。目前已由497個經基因鎗轟擊後的癒合組織,篩選出16株抗hygromycin 的綠色正常植株,平均基因轉殖效率為3.2 %。本研究為盤固草以基因鎗基因轉殖後獲再生植株之首篇報告,可作為將來多倍體牧草基因轉殖之參考。 | zh_TW |
| dc.description.abstract | Pangolagrass A254 (Digitaria decumbens) is a forage species and has a wide adaption in Taiwan. Male sterility is a major limiting factor in traditional breeding program of pangolagrass. The objective of this study was to develop an efficient plant regeneration system from immature inflorescences and cell suspension culture of pangolagrass to accelerate crop improvement of this species by genetic transformation.
Explants were cultured in MS medium supplemented with different concentrations of 2,4-D, KN, BA and CPPU. The effects of cytokinins on callus induction frequency and morphology were examined. The frequency of white and compact callus induced were KN 0.5 mg/l (100.0 %),BA 0.5 mg/l (95 %), CPPU 0.5 mg/l (90.0 %) with 2,4-D 2 mg/l was supplied. Calli induced with different cytokinins and cultured on MS medium supplemented with TDZ 0.05 mg/l. The plant regenerated from white and compact callus with 2,4-D 2.0 mg/l and BA 0.5 mg/l were 96.7 %, KN 0.5 mg/l (68.9 %) and CPPU 0.5 mg/l (80.0 %) respectively. There was no plant regeneration from friable and transparent callus. The optimal medium for callus induction was 2,4-D 2 mg/l with BA 0.5 mg/l and plant regenerated with BA 0.5 mg/l. The high frequency of plant regeneration was very essential and beneficial for cell suspension cultures and genetic transformation studies. The transparent and friable calli were used to establish and maintain the suspension cultures with 2,4-D 2 mg/l for at least 6 months. For plant regeneration, the embryogenic calli were induced by adding BA 0.5 mg/l in suspension medium for one week and then transferring to solid medium with 2,4-D 2 mg/l and BA 0.5 mg/l. The addition of BA in the suspension medium enhanced embryogenic callus formation and the ability of plant regeneration. The plant regeneration frequency of the embryogenic calli derived from cell suspension system reached up to 88.9 % and 87.8 % cultured with BA 0.5 mg/l and TDZ 0.05 mg/l, respectively. The results showed that the calli could keep proliferating and regenerating into the plantlets with high frequency under control. Embryogenic callus, initiated from immature inflorescence of pangolagrass, was bombarded with a vector mainly containing the CaMV35S promoter, GUS or GFP reporter gene and HPT (hygromycin phosphotransferase) selectable marker gene. Stable calli with GUS stained were visualized for 2 weeks after bombardment. Plantlets regenerated from callus with hygromycin selection medium for four months were analyzed by PCR, and indicate the reporter gene integration into the plant genome. The transformation efficiency was 3.2 % which was estimated with 16 plantlets regenerated with hygromycin selection medium from 496 calli after particle bombardment. These results would be played a very important base of polyploid grass and it is the first report on transgenic plants production of triploid pangolagrass using particle bombardment technique. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:00:42Z (GMT). No. of bitstreams: 1 ntu-97-D88621101-1.pdf: 2310244 bytes, checksum: a6272127a2f3e4c5151b5d93c5f87e88 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 i 誌謝 ii 目錄 iii 圖表目錄 vii 縮寫字對照 x 中文摘要 1 英文摘要 3 第一章 前言 6 壹、 研究目的 7 貳、 本論文研究方向與實驗架構 14 參、 參考文獻 15 第二章 未來研究方向 26 壹、 牧草品質與木質素合成基因之改良途徑 27 一、 細胞壁的形成與結構 28 二、 木質素合成途徑 29 三、 木質素的酚酸組成對牧草品質之影響 33 四、 基因轉殖技術應用在木質素合成途徑的研究 34 貳、 利用植物組織培養生產外源性蛋白質之經濟評估 36 一、 植物組織培養在生產外源性蛋白質的應用 37 二、 組織培養與農作物生產 38 三、 產品品質的控管 40 四、 蛋白質的純化回收 41 五、 醣化作用(Glycosylation) 43 參、 參考文獻 44 第三章 盤固草未成熟花穗培養與植株再生 52 中文摘要 53 壹、 前言 54 貳、 材料與方法 56 一、 試驗材料 56 二、 幼穗消毒 56 三、 基本培養基與培養條件 56 四、 癒合組織的誘導 57 五、 癒合組織的分化與植株再生 57 六、 再生植株之移植 57 七、 統計分析 58 參、 結果與討論 59 一、 2,4-D, BA與KN對誘導癒合組織形成之影響 59 二、 2,4-D, BA與KN誘導的癒合組織對植株再生率之影響 59 三、 CPPU對誘導盤固草未成熟花穗形成癒合組織之影響 61 四、 CPPU誘導之癒合組織形態對植株再生率之影響 62 肆、 參考文獻 76 Abstract 80 第四章 盤固草細胞懸浮培養與植株再生 81 中文摘要 82 壹、 前言 83 貳、 材料與方法 86 一、 試驗材料、幼穗消毒、基本培養基與培養條件 86 二、 癒合組織的誘導 86 三、 細胞懸浮培養的建立 86 四、 癒合組織的分化與植株再生 87 五、 統計分析 87 參、 結果與討論 88 一、 BA促進盤固草未成熟花穗形成胚性癒合組織 88 二、 2,4-D及BA對細胞懸浮培養之影響 89 三、 BA促進液體懸浮培養細胞形成胚性癒合組織與植株再生 90 肆、 參考文獻 96 Abstract 101 第五章 盤固草基因鎗轉殖系統之建立 102 中文摘要 103 壹、 前言 104 貳、 材料與方法 106 一、 試驗材料、幼穗消毒、基本培養基與培養條件 106 二、 癒合組織的誘導與植株再生 106 三、 細胞懸浮培養與植株再生 106 四、 基因鎗轟擊前之滲透壓處理 106 五、 轉殖的質體 106 六、 大腸桿菌質體DNA的純化 107 七、 DNA包覆金粒子表面的沉澱處理與基因鎗操作條件 108 八、 轉殖癒合組織與植株的篩選 109 九、 GUS組織化學染色 109 十、 植物DNA萃取 110 十一、 PCR分析 111 十二、 統計分析 111 參、 結果與討論 112 一、 盤固草懸浮細胞之基因鎗轉殖 112 二、 盤固草癒合組織之基因鎗轉殖 112 三、 基因轉殖再生植株的PCR基因檢測 113 肆、 參考文獻 121 Abstract 125 圖表目錄 表目錄 Table 3-1. Effect of 2,4-D, BA and KN on callus induction from immature inflorescences of pangolagrass. 66 Table 3-2. Effect of callus induced with 2,4-D and KN on plant regeneration of pangolagrass. 67 Table 3-3. Effect of callus induced with BA on plant regeneration of pangolagrass. 68 Table 3-4. Effect of CPPU on the percentage of callus induction from immature inflorescence of pangolagrass. 69 Table 3-5. Effect of callus type on the plant regeneration ability of pangolagrass. 70 Table 3-6. Effect of callus induced with CPPU on plant regeneration of pangolagrass. 71 Table 3-7. Effect of callus induced with CPPU on the plant regeneration survivability of pangolagrass. 72 Table 4-1. Effect of 2,4-D and BA on the type of callus induction from immature inflorescences of pangolagrass. 93 Table 4-2. Effect of liquid medium with 2,4-D and BA on plant regeneration from cell suspension culture of pangolagrass. 94 Table 5-1. Effect of particle bombardment pressure and frequency on transformation efficiency of pangolagrass. 116 圖目錄 Fig. 2-1. Lignin biosynthesis pathway. (modified from Brett and Waldron, 1996) 32 Fig. 3-1. The morphology of pangolagrass regenerated from the white and compact callus induced with 2,4-D and BA. 73 Fig. 3-2. Effect of 2,4-D and CPPU on the morphology of callus induced from immature inflorescence of pangolagrass. 74 Fig. 3-3. The morphology of pangolagrass regenerated from the white and compact callus induced with CPPU and plant growth in the field 75 Fig. 4-1. The cell suspension cultures and plant regeneration system of pangolagrass. 95 Fig. 5-1. The morphology of callus formation and plant regeneration from cell suspension culture of pangolagrass. 117 Fig. 5-2. Histochemical GUS expression in embryogenic callus of pangolagrass. 118 Fig. 5-3. The morphology of putative transgenic pangolagrass regenerated on selection medium and growth in filed. 119 Fig. 5-4. PCR amplification of a DNA fragment with specific primer pair of the GFP , HPT and noncoding regions of chloroplast DNA in the putative transgenic pangolagrass. 120 附錄目錄 Appendix I. Preparation of MS medium stock solution. 126 Appendix II. Map of pCAMBIA 1301 (A) and pCAMBIA 1302 (B) vector. (http://www.cambia.org. ) 127 Appendix III. The condition of PCR program, primer sequences and expected product sizes for pCAMBIA 1301, pCAMBIA 1302, pCAMBIA 2201 of plasmid DNA and noncoding regions of chloroplast DNA. 128 Appendix IV. The production of PCR-ampified DNA fragment for pCAMBIA 1301, pCAMBIA 1302, pCAMBIA 2201 of plasmid DNA and noncoding regions of chloroplast DNA. 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植株再生 | zh_TW |
| dc.subject | 癒合組織 | zh_TW |
| dc.subject | 細胞懸浮培養 | zh_TW |
| dc.subject | callus | en |
| dc.subject | plant regeneration | en |
| dc.subject | cell suspension culture | en |
| dc.title | 盤固草組織培養與基因鎗轉殖系統之建立 | zh_TW |
| dc.title | Establishment of Tissue Culture and Particle Bombardment Transformation System in Pangolagrass ( Digitaria decumbens ) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡新聲(Hsin-Sheng Tsay),許福星(Fu-Hsing Hsu),徐濟泰(Jih-Tay Hsu),蘇睿智(Ruey-Chih Su),張孟基(Men-Chi Chang) | |
| dc.subject.keyword | 細胞懸浮培養, 癒合組織, 植株再生, | zh_TW |
| dc.subject.keyword | cell suspension culture, callus, plant regeneration, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
