請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27288
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
dc.contributor.author | Chwei-Yuh Chiou | en |
dc.contributor.author | 邱垂鈺 | zh_TW |
dc.date.accessioned | 2021-06-12T18:00:12Z | - |
dc.date.available | 2008-01-30 | |
dc.date.copyright | 2008-01-30 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-01-28 | |
dc.identifier.citation | [1] M. C-Y. Niu, Composite Airframe Structures, Conmilit Press LTD., Los Angeles, CA, 1992
[2] R. M. Jones, Mechanics of Composite Materials, Scriptta Book Company, Washington D.C., 1985 [3] S. W. Tsai, Composite Design, 4th Edition, Paris: Think Composite, 1988 [4] M. Lombardi and R. T. Haftka, “Anti-Optimization Technique for Structural Design under Load Uncertainties”, Computer Methods in Applied Mechanics and Engineering, Vol. 157, pp.19~31, 1998 [5] C. Zang, M. I. Friswell and J. E. Mottershead, “A Review of Robust Optimal-Design and its Application in Dynamics”, Computers & Structures, Vol. 83, pp.315~326, 2005 [6] D. Moens and D. Vanepitte, “A Survey of Nonprobabilistic Uncertainty Treatment in Finite Element Analysis”, Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp.1527~1555, 2005 [7] C. W. Bert, “Optimal Design of Composite Panels for Business Aircraft”, Society of Automotive Engineering, Paper no. 770453, 1977 [8] H. Fukunaga and T. W. Chou, “Simplified Design Techniques for Laminate Cylindrical Pressure Vessel under Stiffness and Strength Constraints”, Journal of Composite Materials, Vol. 22, pp.1156~1169, 1988 [9] G. S. Landriani and M. Rovati, “An Optimal Design for Two-Dimensional Structures Made of Composite Materials”, ASME Journal of Engineering Material and Technology, Vol. 113, pp.341~352, 1991 [10] J. R. Vinson, “Minimum Weight Web-Core Composite Sandwich Panels Subjected to Combined Uniaxial Compression and In-Plane Shear Loads”, Proceedings of 28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, pp.282~288, 1987 [11] C. W. Bert, “Optimal Design of a Composite-Material Plate to Maximized its Fundamental Frequency”, Journal of Sound and Vibration, Vol. 2, pp.229~237, 1977 [12] S. L. Donaldson, “Simplified Optimization of Composite Structures, Material and Process - Continuing Innovations”, Society for the Advancement of Material and Process Engineering, Vol. 28, pp.20~29, 1983 [13] W. J. Park, “An Optimal Design of Simple Symmetric Laminates under the First Ply Failure Criterion”, Journal of Composite Materials, Vol. 16, pp.341~354, 1982 [14] J. Onoda, “Optimal Laminate Configurations of Cylindrical Shells for Axial Buckling”, AIAA Journal, Vol.23, pp.1093~1098, 1985 [15] K. P. Rao, J. C. Issac, S. Viswanath and S. S. Murthy, “Optimum Design of Composite Laminate for Strength by Ranking”, Journal of Reinforced Plastics and Composites, Vol. 10, pp.477~494, 1991 [16] D. L. Graesser, Z. B. Zabinsky, M. E. Tuttle and G. I. Kim, “Designing Laminated Composites Using Random Search Technique”, Composite Structures, Vol. 18, pp.311~325, 1991 [17] S. K. Morton and J. P. H. Webber, “Heuristic Methods in the Design of Composite Laminate Plates”, Composite Structures, Vol. 19, pp.207~265, 1991 [18] P. M. J. W. Martin, “Optimum Design of Anisotropic Sandwich Panels with Thin Faces”, Engineering Optimization, Vol. 11, pp.3~12, 1987 [19] S. Adali, “Multiobjective Design of an Antisymmetric Hybrid Laminates by Nonlinear Programming”, ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 105, pp.214~219, 1983 [20] S. Adali and K. J. Duffy, “Design of Antisymmetric Hybrid Laminates for Maximum Buckling load I: Optimum Layer Thickness”, Composite Structures, Vol. 14, pp.49~60, 1900 [21] D. Bushnell, “Use of PANDA2 to Optimize Composite, Imperfect, Stiffened, Locally Buckling Panels under Combined In-Plane Loads and Normal Pressures”, Design and Analysis of Composite Material Vessels, D. Hui and J. T. Kozik. Eds., ASME, pp.21~42, 1990 [22] H. T. Hu and S. S. Wang, “Optimization for Buckling Resistance of Fiber-Composite Laminate Shells with and without Cutouts”, 31st AIAA/ASME/ASCE/AHA Structures, Structural Dynamics and Material Conference, pp.1300~1312, 1990 [23] S. J. Handy and N. H. Malik, “Optimal Design of Laminates Structural Members”, Design of Composite Materials, ImechE, Vol. 204, pp.49~60, 1990 [24] C. Fang and G. S. Springer, “Design of Composite Laminates by a Monte Carlo Method”, Journal of Composite Materials, Vol. 27, pp.721~753, 1993 [25] T. Y. Kam and J. A. Snyman, “Optimal Design of Laminated Composite Plates Using a Global Optimization Technique”, Composite Structures, Vol. 19, pp.351~370, 1991 [26] A. Puck and H. Schurmann, “Failure Analysis of FRP Laminates by Physically-Based Phenomenological Models”, Composites Science and Technology, Vol. 62, pp.1633~1662, 2002 [27] G. J. Moore, MSC/NASTRAN Design Sensitivity and Optimization, The MSC Software Corporation, Los Angeles, CA, 2004 [28] M. Miki and Y. Murotsu, “Reliability of Unidirectional Fibrous Composites”, AIAA Journal, Vol. 28, pp.1980~1986, 1990 [29] Y. Murotsu and M. Miki, “Reliability Design of Fiber Reinforced Composites”, Structural Safety, Vol. 15, pp.35~49, 1994 [30] H. Nakayasu, “Stochastic Materials Design of Fibrous Composite Laminates”, In Probabilistic Structural Mechanics: Advances in Structural Reliability Methods pp.392~411, IUTAM Symposium, San Antonio, Texas, 1993 [31] S. Mahadevan, “Probabilistic Optimum Design of Framed Structures”, Computers and Structures, Vol. 42, pp.365~374, 1992 [32] S. Mahadevan and X. Liu, “Probabilistic Optimum Design of Composite Laminate”, Journal of Composite Materials, Vol. 32, pp.68~82, 1998 [33] L. P. Chao, “A Design-for-manufacture Methodology for Incorporating Manufacturing Uncertainties in the Robust Design of Fibrous Laminated Composite Structures”, Journal of Composite Materials Vol. 27, pp.175~194, 1993 [34] H. Li, R. Foschi, R. Vaziri, G. Fernlund and A. Poursartip, “Probability-Based Modeling of Composites Manufacturing and its Application to Optimal Process Design”, Journal of Composite Materials, Vol. 36, pp.1967~1991, 2002 [35] X. Y. Qu, R. T. Haftka and T. F. Johnson, “Deterministic and Reliability-Based Optimization of Composites for Cryogenic Environments”, AIAA journal, Vol. 41, No. 10, pp.2029~2036, 2003 [36] Z. P. Mourelatos and J. Zhou, “Reliability Estimation and Design with Insufficient Data-Bases on Possibility Theory”, AIAA Journal, Vol.43, pp.1696~1705, 2005 [37] I. E. Elishakoff, R. T. Haftka and J. Fang, “Structural Design under Bounded Uncertainty – Optimization with Anti-Optimization”, Computer and Structure, Vol. 53 pp.1401~1405, 1994 [38] I. E. Elishakoff, Y. W. Li and J. H. Starners Jr., “A Deterministic Method to Predict the Effect of Unknown-but-bounded Elastic Moduli on the Buckling of Composite Structures”, Computer Methods in Applied Mechanics and Engineering, Vol. 29, pp.71-82, 1994 [39] A. R. Defaria, “Buckling Optimization and Anti-optimization of Composite Plates – Uncertain Loading Combination”, International Journal for Numerical Methods in Engineering, Vol. 53, No. 3, pp.719~732, 2002 [40] S. P. Gurav, J. F. L. Goosen and F. vanKeuten, “Bounded-But-Unknown Uncertainty Optimization Using Design Sensitivities and Parallel Computing – Application to MEMS”, Computers & Structures, Vol. 83, pp.1134~1149, 2005 [41] M. Y. Cho and S. Y. Rhee, “Optimization of Laminate with Free Edges under Bounded Uncertainty Subject to Extension, Bending and Twisting”, International Journal of Solids and Structures, Vol. 41, No. 1, pp.227~245, 2004 [42] M. Cho and S. Y. Rhee, “Layup Optimization Considering Free-Edge Strength and Bounded Uncertainty of Material Properties”, AIAA Journal, Vol. 41, No. 11, pp.2274~2282, 2003 [43] L. E. Elishakoff, “Essay on Uncertainties in Elastic and Viscoelastic Structures: from A. M. Freudental’s Criticisms to Modern Convex Models”, Computers & Structures, Vol. 56, pp.871~895, 1995 [44] G. N. Vanderplaats, “Numerical Optimization Techniques for Engineering with Applications”, AIAA Journal, Vol. 22, No. 11, 1984 [45] G. N. Vanderplaats and H. Sugimoto, ”Application of Variable Metric Methods to Structural Synthesis”, Engineering Computations, Vol. 2, No. 2, 1985 [46]陳正宗,林信立,邱垂鈺,全湘偉,黃志勇,韓文仁,秦無忝,有限元素分析及工程運用-MSC/NASTRAN軟體運用,北門出版社,1996 [47] MSC.Software Corporation, MSC.Nastran 2004 Reference Manual, Los Angeles, CA, 2004 [48]MSC.Software Corporation,, MSC.Nastran 2004 Linear Static Analysis User’s Guide, Los Angeles, CA , 2004 [49] Military Handbook 5 G: Metallic Materials and Elements for Aerospace Vehicle Structures, Washington, D. C., Department of Defense, 1994 [50] R. J. Roark and W. C. Young, Formulas for Stress and Strain, Third Edition, McGraw-Hill, New York, 1982 [51] S. T. Peters, W. D. Humphery and R. F. Foral, Filament Winding Composite Structure Fabrication, SAMPE International Office, 1991 [52]廖大偉, “壓力容器繞線成型技術”,中山科學研究院新新雙月刊,第23卷第1期,51~61頁,1995 [53]廖大偉, “複合材料高壓氣瓶最佳化設計”,中山科學研究院新新雙月刊,第30卷第1期,71~76頁,2002 [54] J. S. Park , C. S. Hong, C. C. Kim, and C. U. Kim, “Analysis of Filament Wound Composite Structures Considering the Change of Winding Angle through Thickness Direction”, Composite Structure, Vol. 55, pp.63~71, 2002 [55]萬瑞華, “複合材料發射管研製”,中山科學研究院新新雙月刊,第30卷第1期,76~82頁,2002 [56] P. B. Gning, M. Tarfaoui, F. Collombet and P. Davies, “Prediction of Damage in Composite Cylinders after Impact”, Journal of Composite Materials, Vol. 39, pp.917~928, 2005 [57] H. E. Soliman and R. K. Kapania, “Probability of Fatigue of Composite Cylinders Subjected to Axisymmetrical Loading”, AIAA Journal, Vol. 43, pp.1342~1348, 2005 [58] C. W. Kong , J. H. Jang, Y. S. Jang and Y. M Yi, “Design of Composite Pressure Vessel with Metallic and Plastic Liners”, Key Engineering Materials, Vol. 261, pp.1505~1510, 2004 [59]黃萬成,林益昌,邱垂鈺,高銘健, “疊層圓柱殼承受局部載重之設計模擬”,中華民國第13屆全國力學會議,論文集839~844頁,1989 [60] J. D. Mathias, “Appling a Genetic Algorithm to the Optimization of Composite Patches”, Computers and Structures, Vol. 84, pp.823~834, 2006 [61] American National Standard for Basic Requirements for Compressed Natural Gas Vehicle (NGV) Fuel Containers, 1992 [62] J. T. Evans and A. G. Gibson, “Composite Angle-Ply Laminates and Netting Analysis”, Proceedings of Royal Society of London Series A, Vol. 458, pp.3079~3088, 2002 [63] A. Puck and H. Schurmann, “Failure Analysis of FRP Laminates by Physically-Based Phenomenological Models”, Composites Science and Technology, Vol. 62, pp.1633~1662, 2002 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27288 | - |
dc.description.abstract | 纖維強化疊層板是由許多單層組成,其最佳設計是在選取使用單層的數目與各層的角度,以獲得最佳的強度、勁度或其它力學性質,受限於製作工藝水準及使用機具的精度,複合材料疊層板的實際製作厚度與各層角度與設計值會有誤差,材料性質的變異性也大於金屬材料,使得實際的複合材料結構特性與設計預期的理想狀況會有一些差異。機率法及反最佳設計法為常用於處理複合材料厚度、角度及材料性質不確定性的強健最佳設計方法,但機率法須有很多原始資料,反最佳設計法需要大量的數值運算而只運用於設計變數較少的強健最佳設計問題。
本論文提出新的強健最佳設計方法,所提方法藉著含設計變數及非設計變數的不確定量及原限制條件對不確定量的靈敏度之修正限制條件,將不確定性的影響直接以近似解處理,使靈敏度除作為設計改良方向的參考依據外,並作為以近似解求解反最佳設計次問題的媒介,所提出的方法因只有最佳設計次問題須以數值法求解,可降低數值運算時間,而運用於較複雜問題的強健最佳設計上。文中提出僅處理設計變數不確定性,與同時考慮設計變數及非設計變數不確定性的強健最佳設計方法,並以具解析解的複合材料樑結構確認所提方法的正確性。再將其運用於結構較複雜及設計變數較多的複合材料結構的強健最佳設計,包括含圓孔及不含圓孔疊層板的強度與勁度之最佳設計、疊層板的熱挫曲最佳設計與具金屬內襯的複合材料圓筒結構之強健最佳設計。 強健最佳設計結果顯示,單層厚度與角度不確定性及材料性質不確定性對複合材料的最佳設計的影響量隨考慮問題而有顯著差異,材料性質不確定性對複合材料疊層板開孔附近的應力之影響特別顯著,而單層厚度不確定性對複合材料疊層板的熱挫曲之影響很大。對使用次數較少而採用塑性設計的具金屬內襯複合材料圓筒結構而言,金屬內襯的厚度愈小,複合材料圓筒結構的最佳重量愈小,故在製作工藝允許的情形下,金屬內襯的厚度愈小愈好;若使用次數較多而採用彈性設計時,金屬內襯的最佳厚度不是發生在0的狀況。 | zh_TW |
dc.description.abstract | Fiber reinforced composite material is composed of many plies. The problem of optimal design of composite structure is to select the proper ply arrangements so as to achieve the highest performance for the specified requirement of strength, stiffness or other mechanical properties. Due to the uncertainties in material properties and the variations of ply thickness and ply orientation in manufacturing, the practical design properties can be different from what the designers predict. Robust optimal design techniques such as anti-optimization method and probabilistic optimal method are frequently used to deal with the optimal design problems of composite structures with uncertainties, however the traditional anti-optimization method is time consuming, and the accurate probability distribution needed for probabilistic optimal method is not easy to obtain.
An innovative method of optimization considering design-variable uncertainties, such as ply thickness and orientation uncertainties, and non-design-variable uncertainties such as material property uncertainties is proposed. By including the sensitivities and uncertainties in the modified constraints, a robust optimum design problem is formulated. Besides being used to determine the most appropriate direction in the optimization algorithm, the sensitivities in the modified constraints are also served as the media to evaluate the effects of manufacturing uncertainties. In the proposed approach the numerical method is still needed for the optimization sub-problem, however the anti-optimization sub-problem is analytically rather than numerically solved. It is therefore more efficient in computing time than traditional anti-optimization technique where both optimization sub-problem and anti-optimization sub-problem are numerically solved. A beam-like composite laminate with analytical solution was used to verify the accuracy of the proposed method. The proposed method was then used to perform the robust optimal design of complex laminate structures including holed and non-holed laminate with stress and stiffness constraints, laminate with thermal buckling constraint, and fiber reinforcement composite cylinder with metallic liner subjected to uniform pressure and local loads. The influences of ply thickness and orientation uncertainties and material property uncertainties on optimal weight were surveyed. The most significant effect of material uncertainty is found for the holed laminate plate, and the most significant effect of ply uncertainty is occurred for laminate plate with thermal buckling constraint. Thickness and allowable strain of metallic liner are the other two factors affecting the optimal weight of the fiber reinforcement composite cylinder with metallic liner. If the allowable strain of composite layer is less than that of the metallic liner, the metallic liner should be kept as small as possible to obtain an optimal design, and the optimal thickness of metallic liner occurs at a particular value other than very close to zero if the allowable strain of composite layer is larger than that of the metallic liner. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T18:00:12Z (GMT). No. of bitstreams: 1 ntu-97-D90522011-1.pdf: 1253336 bytes, checksum: a654e5eeb2f9bebbd60916e197c70b88 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要 I
英文摘要 II 目錄 III 符號說明 V 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景及動機 1 1.2 相關研究回顧 2 1.3 研究目的及方法 5 1.4 本文架構 6 第二章 疊層板及傳統最佳設計理論 8 2.1 正交材料於平面應力狀況下的應力應變關係 8 2.2 古典疊層板理論 13 2.3 最大應變破壞準則 18 2.4 Tsai-Wu破壞準則 20 2.5 傳統的最佳設計方程式 21 2.6傳統的最佳設計方程式之數值解 23 2.6.1 簡介 23 2.6.2 修正可行方向運算法 28 2.6.3 搜尋方向 28 2.6.4 一維搜尋 33 2.6.5 收斂判斷 34 2.7 靈敏度計算 35 2.8 連續線性規劃及連續二次規劃 37 第三章 新的強健最佳設計方法 40 3.1 含設計變數不確定性的強健最佳設計方程式 40 3.2 同時含設計變數及非設計變數不確定性的強健最佳設計方程式 43 3.3 程式的執行 46 3.4 驗證例 47 3.4.1 含設計變數不確定性的強健最佳設計新方法之驗證 47 3.4.2 考慮設計變數及非設計變數不確定性的強健最佳設計新方法之驗證 54 3.5 小結 58 第四章 複合材料疊層板的強健最佳設計 59 4.1 考慮設計變數不確定性的疊層板之強健最佳設計 59 4.2 同時考慮設計變數及非設計變數不確定性的疊層板之強健最佳設計 69 4.3 具熱挫曲限制條件的疊層板強健最佳設計 75 4.4 小結 79 第五章 具金屬內襯的複合材料圓筒結構之強健最佳設計 80 5.1 引言 80 5.2 問題描述及最佳設計方程式 83 5.3 模式驗證 87 5.4 最佳設計結果 91 5.5 小結 99 第六章 結論與展望 101 參考文獻 104 附錄一 含設計變數不確定性的強健最佳設計之MSC/NASTRAN輸入檔 110 附錄二 同時含設計變數及非設計變數不確定性的強健最佳設計之MSC/NASTRAN輸入檔 118 作者簡歷 126 | |
dc.language.iso | zh-TW | |
dc.title | 含不確定性的複合材料結構之強健最佳設計研究 | zh_TW |
dc.title | Robust Optimal Designs of Fiber Reinforced Composite Structures with Uncertainties | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李雅榮,林其禹,康淵,尹慶中,鍾添東 | |
dc.subject.keyword | 複合材料,最佳設計,疊層板,不確定性, | zh_TW |
dc.subject.keyword | Composite material,optimal design,laminate plate,uncertainty, | en |
dc.relation.page | 126 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-01-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。