Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27287
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范文祥(w. s. Fann)
dc.contributor.authorPo-Keng Linen
dc.contributor.author林伯耕zh_TW
dc.date.accessioned2021-06-12T18:00:11Z-
dc.date.available2009-02-18
dc.date.copyright2008-02-18
dc.date.issued2008
dc.date.submitted2008-01-29
dc.identifier.citation[1] Thorsen, T., S. J. Maerkl, and S. R. Quake. Microfluidic large-scale integration.
Science 298 580-584 (2002).
[2] Schasfoort, R. B. M., S. Schlautmann, L. Hendrikse, and A. van den Berg.
Field-effect flow control for microfabricated fluidic networks. Science 286
942-945 (1999).
[3] Lee, C. C., G. D. Sui, A. Elizarov, C. Y. J. Shu, Y. S. Shin, A. N. Dooley, J. Huang,
A. Daridon, P. Wyatt, D. Stout, H. C. Kolb, O. N. Witte, N. Satyamurthy, J. R.
Heath, M. E. Phelps, S. R. Quake, and H. R. Tseng. Multistep synthesis of a
radiolabeled imaging probe using integrated microfluidics. Science 310
1793-1796 (2005).
[4] Stroock, A. D., S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M.
Whitesides. Chaotic mixer for microchannels. Science 295 647-651 (2002).
[5] Chan, E. M., A. P. Alivisatos, and R. A. Mathies. High-temperature microfluidic
synthesis of CdSe nanocrystals in nanoliter droplets. Journal of the American Chemical Society 127 13854-13861 (2005).
[6] Prakash, M., and N. Gershenfeld. Microfluidic bubble logic. Science 315 832-835
(2007).
[7] Huang, L. R., E. C. Cox, R. H. Austin, and J. C. Sturm. Continuous particle
separation through deterministic lateral displacement. Science 304 987-990
(2004).
[8] Huang, L. R., J. O. Tegenfeldt, J. J. Kraeft, J. C. Sturm, R. H. Austin, and E. C.
Cox. A DNA prism for high-speed continuous fractionation of large DNA
molecules. Nature Biotechnology 20 1048-1051 (2002).
[9] Huang, L. R., P. Silberzan, J. O. Tegenfeldt, E. C. Cox, J. C. Sturm, R. H. Austin,
and H. Craighead. Role of molecular size in ratchet fractionation. Physical Review
Letters 89 178301-178304 (2002).
[10] Pollack, L., M. W. Tate, A. C. Finnefrock, C. Kalidas, S. Trotter, N. C. Darnton,
L. Lurio, R. H. Austin, C. A. Batt, S. M. Gruner, and S. G. J. Mochrie.
Time resolved collapse of a folding protein observed with small angle x-ray
scattering. Physical Review Letters 86 4962-4965 (2001).
[11] Tegenfeldt, J. O., O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L.
Liou, E. Chan, T. Duke, and E. C. Cox. Near-field scanner for moving
molecules. Physical Review Letters 86 1378-1381 (2001).
[12] Smeets, R. M. M., U. F. Keyser, D. Krapf, M. Y. Wu, N. H. Dekker, and C.
Dekker. Salt dependence of ion transport and DNA translocation through
solid-state nanopores. Nano Letters 6 89-95 (2006).
[13] Tegenfeldt, J. O., C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C.
Cox, and J. C. Sturm. Micro- and nanofluidics for DNA analysis. Analytical and
Bioanalytical Chemistry 378 1678-1692 (2004).
[14] Heyden., F. V. D. Pressure Driven Transport in Nanofluidic Channels. (Thesis)
Technische Universiteit Delft (2006).
[15] Tegenfeldt, J. O., C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M.
Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin. The dynamics of
genomic-length DNA molecules in 100-nm channels. Proceedings of the
National Academy of Sciences of the United States of America 101
10979-10983 (2004).
[16] Reisner, W., K. J. Morton, R. Riehn, Y. M. Wang, Z. N. Yu, M. Rosen, J. C.
Sturm, S. Y. Chou, E. Frey, and R. H. Austin. Statics and dynamics of single
DNA molecules confined in nanochannels. Physical Review Letters 94 196101
(2005).
[17] Mannion, J. T., C. H. Reccius, J. D. Cross, and H. G. Craighead. Conformational
analysis of single DNA molecules undergoing entropically induced motion in
nanochannels. Biophysical Journal 90 4538-4545 (2006).
[18] Wang, Y. M., J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I.
Golding, E. C. Cox, J. Sturm, and R. H. Austin. Single-molecule studies of
repressor-DNA interactions show long-range interactions. Proceedings of the National Academy of Sciences of the United States of America 102 9796-9801 (2005).
[19] Riehn, R., M. C. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin.
Restriction mapping in nanofluidic devices. Proceedings of the National
Academy of Sciences of the United States of America 102 10012-10016 (2005).
[20] Reccius, C. H., J. T. Mannion, J. D. Cross, and H. G. Craighead. Compression
and free expansion of single DNA molecules in nanochannels. Physical Review
Letters 95 268101 (2005).
[21] Cao, H., J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou. Gradient nanostructures
for interfacing microfluidics and nanofluidics. Applied Physics Letters 81
3058-3060 (2002).
[22] Walter Reisner, Jason P. Beech, Niels B. Larsen, Henrik Flyvbjerg, Anders
Kristensen, and a. J. O. Tegenfeldt. Nanoconfinement-Enhanced Conformational
Response of Single DNA Molecules to Changes in Ionic Environment. Physical
Review Letters 99 058302 (2007).
[23] Bakajin, O. B., T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, and E. C.
Cox. Electrohydrodynamic stretching of DNA in confined environments.
Physical Review Letters 80 2737-2740 (1998).
[24] Balducci, A., P. Mao, J. Y. Han, and P. S. Doyle. Double-stranded DNA diffusion
in slitlike nanochannels. Macromolecules 39 6273-6281 (2006).
[25] Hsieh, C. C., A. Balducci, and P. S. Doyle. An experimental study of DNA
rotational relaxation time in nanoslits. Macromolecules 40 5196-5205 (2007).
[26] Perkins, T. T., S. R. Quake, D. E. Smith, and S. Chu. Relaxation of a Single DNA
Molecule Observed by Optical Microscopy. Science 264 822-826 (1994).
[27] Stein, D., F. H. J. van der Heyden, W. J. A. Koopmans, and C. Dekker.
Pressure-driven transport of confined DNA polymers in fluidic channels.
Proceedings of the National Academy of Sciences of the United States of America
103 15853-15858 (2006).
[28] Fu, J. P., R. B. Schoch, A. L. Stevens, S. R. Tannenbaum, and J. Y. Han. A
patterned anisotropic nanofluidic sieving structure for continuous-flow
separation of DNA and proteins. Nature Nanotechnology 2 121-128 (2007).
[29] Lin, P. K., C. C. Fu, Y. L. Chen, Y. R. Chen, P. K. Wei, C. H. Kuan, and W. S.
Fann. Static conformation and dynamics of single DNA molecules confined in
nanoslits. Physical Review E 76 011806 (2007).
[30] Po-keng Lin, C. J.-F., Chi-Cheng Fu, Y.-L. Chen, and W. S. Fann. Statics and
Dynamics of DNA in Nanoslits: Dependence on topology and degree of confinement (in preparation).
[31]Po-Keng Lin, C.-C. F., Y.-L. Chen, Keng-hui Lin, K-C Lee, Pei-Kuen Wei,
Woei-Wu Pai, Pei-Hsi Tsao, and W. S. Fann. QuasiOne-Dimensional Trapping and
Transport of Single DNA in Two-Dimensional Nanofluidic Channel. (in
preparation).
[32]Gennes, P.-G. d. Scaling concepts in polymer physics Cornell University
Press, New York. (1976).
[33] Edwards, M. D. a. S. F. The theory of polymer dynamics. Oxford University
Press, New York (1986).
[34] Khokhlov, A. Y. G. a. A. R. Statistical physics of macromolecules American
Institute of Physics, New York (1994).
[35] Hiromi Yamakawa, H. a. R. Modern theory of polymer solutions. Harper & Row,
New York (1971).
[36] Teraoka, I. Polymer Solutions: An Introduction to Physical Properties John
Wiley & Sons, New York ((002).
[37] Colby, M. R. a. R. H. Polymer Physics. Oxford University Press, New York
(2003).
[38] See, M. D. a. H. Introduction to Polymer Physics Oxford University Press, New
York (1996).
[39] Gorbunov, A. A., and A. M. Skvortsov. Statistical Properties of Confined
Macromolecules. Advances in Colloid and Interface Science 62 31-108. (1995).
[40] Teraoka, I. Polymer solutions in confining geometries. Progress in Polymer
Science 21 89-149 (1996).
[41] http://en.wikipedia.org/wiki/Image:Random_walk_in2D_closeup.png.
[42] http://math.arizona.edu/~tgk/saw/.
[43] Flory, P. J. Statistical mechanics of chain molecules. Interscience Publishers,
New York. (1969).
[44] Rouse, P. E. A Theory of the Linear Viscoelastic Properties of Dilute Solutions of
Coiling Polymers. Journal of Chemical Physics 211272-1280 (1953).
[45] Zimm, B. H. Dynamics of Polymer Molecules in Dilute Solution -Viscoelasticity,
Flow Birefringence and Dielectric Loss. Journal of Chemical Physics
24 269-278 (1956).
[46] Edwards, S. F., and K. F. Freed. Theory of Dynamical Viscosity of
Polymer-Solutions. Journal of Chemical Physics 611189-1202 (1974).
[47] Matsumoto, M., T. Sakaguchi, H. Kimura, M. Doi, K. Minagawa, Y. Matsuzawa,
and K. Yoshikawa. Direct Observation of Brownian-Motion of Macromolecules
by Fluorescence Microscope. Journal of Polymer Science Part B-Polymer Physics 30 779-783 (1992).
[48] Smith, S. B., and A. J. Bendich. Electrophoretic Charge-Density and Persistence
Length of DNA as Measured by Fluorescence Microscopy. Biopolymers 29
1167-1173 (1990).
[49] Perkins, T. T., D. E. Smith, and S. Chu. Direct Observation of Tube-Like Motion
of a Single Polymer-Chain. Science 264 819-822. (1994).
[50] Bensimon, A., A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D.
Bensimon. Alignment and Sensitive Detection of DNA by a Moving Interface.
Science 265 2096-2098 (1994).
[51] Smith, D. E., T. T. Perkins, and S. Chu. Dynamical scaling of DNA diffusion
coefficients. Macromolecules 29 1372-1373. (1996).
[52] Degennes, P. G. Coil-Stretch Transition of Dilute Flexible Polymers under
Ultrahigh Velocity-Gradients. Journal of Chemical Physics 60 5030-5042
(1974).
[53] Daoud, M., and P. G. Degennes. Statistics of Macromolecular Solutions Trapped
in Small Pores. Journal De Physique 38 85-93 (1977).
[54] Vanvliet, J. H., M. C. Luyten, and G. Tenbrinke. Scaling Behavior of Dilute
Polymer-Solutions Confined between Parallel Plates. Macromolecules 25
3802-3806 (1992).
[55] P. J. Flory. Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, N. Y.)
(1971).
[56] Schaefer, D. W., J. F. Joanny, and P. Pincus. Dynamics of Semiflexible Polymers
in Solution. Macromolecules 13 1280-1289. (1980).
[57] Brochard, F., and P. G. Degennes. Dynamics of Confined Polymer-Chains.
Journal of Chemical Physics 67 52-56 (1977).
[58] Milchev, A., and K. Binder. Dynamics of polymer chains confined in slit-like
pores. Journal De Physique Ii 6 21-31(1996).
[59] Brochard, F. Dynamics of Polymer-Chains Trapped in a Slit. Journal De
Physique 38 1285-1291 (1977).
[60] Odijk, T. On the Statistics and Dynamics of Confined or Entangled Stiff
Polymers. Macromolecules 16 1340-1344 (1983).
[61] Dijkstra, M., D. Frenkel, and H. N. W. Lekkerkerker. Confinement Free-Energy
of Semiflexible Polymers. Physica A 193 374-393 (1993).
[62] Burkhardt, T. W. Free energy of a semiflexible polymer in a tube and statistics of
a randomly-accelerated particle. Journal of Physics a-Mathematical and General
30 L167-L172 (1997).
[63] Jo, K., D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D.
Forrest, and D. C. Schwartz. A single-molecule barcoding system using nanoslits
for DNA analysis. Proceedings of the National Academy of Sciences of the
United States of America 104 2673-2678 (2007).
[64] Gösele, Q.-Y. T. U. SemiConductor Wafer Bonding: Science and Technology
John Wiley, New York (1999).
[65] Wallis, G., and Pomerant.Di. 1969. Field Assisted Glass-Metal Sealing. Journal of Applied Physics 40 3946-3949. (1969)
[66] Anthony, T. R. Anodic Bonding of Imperfect Surfaces. Journal of Applied
Physics 54 419-2428 (1983).
[67] Madou, M. J. Fundamentals of microfabrication : the science of miniaturization.
CRC Press, New York. (2002).
[68] Mao, P., and J. Y. Han. Fabrication and characterization of 20 nm planar
nanofluidic channels by glass-glass and glass-silicon bonding. Lab on a Chip 5
837-844 (2005).
[69] Oliver Geschke, H. K., Pieter Tellemann. Microsystem Engineering of
Lab-on-a-Chip Devices Wiley-VCH Weinheim. (2003).
[70] Perkins, T. T., D. E. Smith, and S. Chu. Single polymer dynamics in an
elongational flow. Science 276 2016-2021 (1997).
[71] Doyle, P. S., B. Ladoux, and J. L. Viovy. Dynamics of a tethered polymer in
shear flow. Physical Review Letters 84 4769-4772 (2000).
[72] Netzel, T. L., K. Nafisi, M. Zhao, J. R. Lenhard, and I. Johnson. Base-content
dependence of emission enhancements, quantum yields, and lifetimes forcyanine
dyes bound to double-strand DNA: Photophysical properties of monomeric and
bichromophoric DNA stains. Journal of Physical Chemistry 99 17936-17947. (1995).
[73] http://probes.invitrogen.com/servlets/spectra?fileid=3601dna.
[74] http://probes.invitrogen.com/servlets/spectra?fileid=3600dna.
[75] Makita, N., M. Ullner, and K. Yoshikawa. Conformational change of giant DNA
with added salt as revealed by single molecular observation. Macromolecules 39
6200-6206. (2006).
[76] Perkins, T. T., D. E. Smith, R. G. Larson, and S. Chu. Stretching of a Single
Tethered Polymer in a Uniform-Flow. Science 268 83-87. (1995).
[77] Baumann, C. G., S. B. Smith, V. A. Bloomfield, and C. Bustamante. Ionic effects
on the elasticity of single DNA molecules. Proceedings of the National Academy
of Sciences of the United States of America 94 6185-6190. (1997).
[78] Cocco, S., J. F. Marko, R. Monasson, A. Sarkar, and J. Yan. Force-extension
behavior of folding polymers. European Physical Journal E 10 249-263 (2003).
[79] Marko, J. F., and E. D. Siggia. Stretching DNA. Macromolecules 28 759-8770.
(1995).
[80] Balducci, A., Mao, P., Han, J. and Doyle, P.S. Double-Stranded DNA Diffusion
in Slit-like Nanochannels. Macromolecules 39 6273-6281 (2006).
[81] Aronovitz, J. A., and D. R. Nelson. Universal Features of Polymer Shapes.
Journal De Physique 47 1445-1456 (1986).
[82] Rudnick, J., and G. Gaspari. The Shapes of Random-Walks. Science 237 384-389
(1987).
[83] Fu, J. P., J. Yoo, and J. Y. Han. Molecular sieving in periodic free-energy
landscapes created by patterned nanofilter arrays. Physical Review Letters 97
018103 (2006).
[84] Radler, J. O., I. Koltover, T. Salditt, and C. R. Safinya. Structure of DNA-cationic
liposome complexes: DNA intercalation in multilamellar membranes in distinct
interhelical packing regimes. Science 275 810-814. (1997).
[85] Salditt, T., I. Koltover, J. O. Radler, and C. R. Safinya. Two-dimensional smectic
ordering of linear DNA chains in self-assembled DNA-cationic liposome
mixtures. Physical Review Letters 79 2582-2585 ( 1997).
[86] Maier, B., and J. O. Radler. Conformation and self-diffusion of single DNA
molecules confined to two dimensions. Physical Review Letters 82 1911-1914
(1999).
[87] Maier, B., and J. O. Radler. DNA on fluid membranes: A model polymer in two
dimensions. Macromolecules 33 7185-7194 (2000).
[88] Maier, B., and J. O. Radler. Shape of self-avoiding walks in two dimensions.
Macromolecules 34 5723-5724 (2001).
[89] Sukhishvili, S. A., Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S.
Granick. Materials science - Diffusion of a polymer 'pancake'. Nature
406 146-146 (2000).
[90] Robertson, R. M., S. Laib, and D. E. Smith. Diffusion of isolated DNA
molecules: Dependence on length and topology. Proceedings of the National
Academy of Sciences of the United States of America 103 7310-7314 (2006).
[91] Chen, Y. L., M. D. Graham, J. J. de Pablo, G. C. Randall, M. Gupta, and P. S.
Doyle. Conformation and dynamics of single DNA molecules in parallel-plate
slit microchannels. Physical Review E 70 060901(R) (2004).
[92] Kuhn. W.Kolloid-z 68 2. (1934).
[93] Gaspari, G., J. Rudnick, and A. Beldjenna. The Shapes of Open and Closed
Random-Walks - a 1/D Expansion. Journal of Physics a-Mathematical and
General 20 3393-3414 (1987).
[94] Sciutto, S. J. Study of the Shape of Random-Walks. Journal of Physics
a-Mathematical and General 27 7015-7034 (1994).
[95] Bishop, M., and J. P. J. Michels. Scaling in Two-Dimensional Linear and Ring
Polymers. Journal of Chemical Physics 85 1074-1076 (1986).
[96] Bishop, M., and J. P. J. Michels. The Shape of Two-Dimensional Polymers.
Journal of Chemical Physics 83 4791-4792 (1985).
[97] Bishop, M., and C. J. Saltiel. The Shapes of Two-Dimensional, 4-Dimensional,
and 5-Dimensional Linear and Ring Polymers. Journal of Chemical Physics
85 6728-6731 (1986).
[98] Sciutto, S. J. Study of the Shape of Random-Walks .2. Inertia Moment Ratios and
the 2-Dimensional Asphericity. Journal of Physics a-Mathematical and General
28 3667-3679 (1995).
[99] Sciutto, S. J. The shape of self-avoiding walks. Journal of Physics
a-Mathematical and General 29 5455-5473 (1996).
[100] Haber, C., S. A. Ruiz, and D. Wirtz. Shape anisotropy of a single random-walk
polymer. Proceedings of the National Academy of Sciences of the United States
of America 97 10792-10795 (2000).
[101] Yoshikawa, K., M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov. Large
discrete transition in a single DNA molecule appears continuous in the
ensemble. Physical Review Letters 76 3029-3031 (1996).
[102] Frenkel, D., and B. Smit. Understanding Molecular Simulations: From
Algorithms to Applications. Academic Press, San Diego. (2001).
[103] Edwards, M. D. a. S. F. The Theory of Polymers Dynamics (1986).
[104] Espejo, R. T., E. S. Canelo, and Sinsheim.Rl. DNA of Bacteriophage Pm2 - a
Closed Circular Double-Stranded Molecule. Proceedings of the National
Academy of Sciences of the United States of America 63 1164-1168 (1969).
[105] Arsuaga, J., M. Vazquez, S. Trigueros, D. Sumners, and J. Roca. Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proceedings of the National Academy of Sciences of the United States of America 99 5373-5377 (2002).
[106] Robertson, R. M., and D. E. Smith. Strong effects of molecular topology on
diffusion of entangled DNA molecules. Proceedings of the National Academy
of Sciences of the United States of America 104 4824-4827 (2007).
[107] Riehn, R., R. H. Austin, and J. C. Sturm. A nanofluidic railroad switch for DNA. Nano Letters 6 1973-1976 (2006).
[108] Chen, J. Z. Y., and D. E. Sullivan. Free energy of a wormlike polymer chain
confined in a slit: Crossover between two scaling regimes. Macromolecules 39
7769-7773 (2006).
[109] Zimm, B. H., and W. H. Stockmayer. The Dimensions of Chain Molecules
Containing Branches and Rings. Journal of Chemical Physics 17 1301-1314.
(1949).
[110] Bloomfie.V, and B. H. Zimm. Viscosity Sedimentation Et Cetera of Ring- and
Straight-Chain Polymers in Dilute Solution. Journal of Chemical Physics
44 315-323 (1966).
[111] Yamakawa, H. Modern Theory of polymer solutions. Harper & Row, New York.
(1971).
[112] Maury-Evertsz, J. R., and G. E. Lopez. Studies on the behavior of nanoconfined
homopolymers with cyclic chain architecture. Journal of Chemical Physics
123 (2005).
[113] Romiszowski, P., and A. Sikorski. Monte Carlo simulations of star-branched
polymers confined between two walls. Journal of Chemical Physics 116
1731-1736 (2002).
[114] Jagodzinski, O., E. Eisenriegler, and K. Kremer. Universal Shape Properties of
Open and Closed Polymer-Chains - Renormalization-Group Analysis and
Monte-Carlo Experiments. Journal De Physique I 2 2243-2279 (1992).
[115] Kepler, G. M., and S. Fraden. 1994. Attractive Potential between
ConfineColloids at Low Ionic-Strength. Physical Review Letters 73 356-359.
[116] Crocker, J. C., and D. G. Grier. When like charges attract: The effects of
geometrical confinement on long-range colloidal interactions. Physical Review
Letters 77 1897-1900 (1996).
[117] Odijk, T. DNA confined in nanochannels: Hairpin tightening by entropic
depletion. Journal of Chemical Physics 125 204904- 204912 (2006).
[118] Lin, P.-K. F., Chi-Cheng; Chen, Y.-L.; Fann, W. S. Self-trapping and stretching
of DNA using single nano-height micropillar. APS meeting, March, 2007.
http://meetings.aps.org/link/BAPS.2007.MAR.H34.12.
[119] Krishnan, M., I. Monch, and P. Schwille. Spontaneous stretching of DNA in a
two-dimensional nanoslit. Nano Letters 7 1270-1275 (2007).
[120] Hochrein, M. B., J. A. Leierseder, L. Golubovic, and J. O. Radler. DNA
localization and stretching on periodically microstructured lipid membranes.
Physical Review Letters 96 038103 (2006).
[121] Randall, G. C., and P. S. Doyle. Electrophoretic collision of a DNA molecule
with an insulating post. Physical Review Letters 93 058102 (2004).
[122] Behrens, S. H., and D. G. Grier. The charge of glass and silica surfaces. Journal
of Chemical Physics 115 6716-6721 (2001).
[123] Baumgartl, J., J. L. Arauz-Lara, and C. Bechinger. Like-charge attraction in
confinement: myth or truth? Soft Matter 2 631-635 (2006).
[124] Li, A. Z., L. J. Qi, H. H. Shih, and K. A. Marx. Trivalent counterion
condensation on DNA measured by pulse gel electrophoresis. Biopolymers 38
367-376 (1996).
[125] Dempsey, D. P. a. B. Buffers for pH and Metal Ion Control Chapman and Hall,
London (1974).
[126] Bishop, M., and C. J. Saltiel. Polymer Shapes in 2, 4, and 5 Dimensions.
Journal of Chemical Physics 88 3976-3980 (1988).
[127] Skolnick, J., and M. Fixman. Electrostatic Persistence Length of a Wormlike
Polyelectrolyte. Macromolecules 10 944-948 (1977).
[128] Korda, P. T., M. B. Taylor, and D. G. Grier. Kinetically locked-in colloidal
transport in an array of optical tweezers. Physical Review Letters 89 128301
(2002).
[129] Lacasta, A. M., J. M. Sancho, A. H. Romero, and K. Lindenberg. Sorting on
periodic surfaces. Physical Review Letters 94 160601 (2005).
[130] Roichman, Y., V. Wong, and D. G. Grier. Colloidal transport through optical
tweezer arrays. Physical Review E 75 011407 (2007).
[131] Gopinathan, A., and D. G. Grier. Statistically locked-in transport through
periodic potential landscapes. Physical Review Letters 92 130602 (2004).
132] Degennes, P. G. Dynamics of Entangled Polymer-Solutions .1. Rouse Model.
Macromolecules 9 587-593 (1976).
[133] Degennes, P. G. Reptation of a Polymer Chain in Presence of Fixed Obstacles.
Journal of Chemical Physics 55 572-578 (1971).
[134] Smith, D. E., T. T. Perkins, and S. Chu. Self-Diffusion of an Entangled DNA
Molecule by Reptation. Physical Review Letters 75 4146-4149 (1995).
[135] Zhang, L. F., and S. Granick. Slaved diffusion in phospholipid bilayers.
Proceedings of the National Academy of Sciences of the United States of
America 102 118-9121 (2005).
[136] Desai, T. G., P. Keblinski, S. K. Kumar, and S. Granick.
Molecular-dynamics simulations of the transport properties of a single polymer
chain in two dimensions. Journal of Chemical Physics 124 084904 (2006).
[137] J. Israelachvili. Intermolecular and Surface Forces. (Academic Press, London,
(1985).
[138] Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44
269-282 (1997).
[139] Stevens, M. J. Bundle binding in polyelectrolyte solutions. Physical Review
Letters 82 101-104 (1999).
[140] Shklovskii, B. I. Wigner crystal model of counterion induced bundle formation
of rodlike polyelectrolytes. Physical Review Letters 82 3268-3271 (1999).
[141] Bloomfield, V. A. Condensation of DNA by Multivalent Cations- Considerations on Mechanism. Biopolymers 31 1471-1481 (1991).
[142] Bloomfield, V. A. DNA condensation. Current Opinion in Structural Biology 6 334-341 (1996).
[143] Koltover, I., K. Wagner, and C. R. Safinya. DNA condensation in two dimensions. Proceedings of the National Academy of Sciences of the United States of America 97 14046-14051 (2000).
[144] Tang, J. X., and P. A. Janmey. The polyelectrolyte nature of F-actin and the
mechanism of actin bundle formation. Journal of Biological Chemistry 271
8556-8563 (1996).
[145] Butler, J. C., T. Angelini, J. X. Tang, and G. C. L. Wong. Ion multivalence and
like-charge polyelectrolyte attraction. Physical Review Letters 91 028301
(2003).
[146] Odriozola, G., F. Jimenez-Angeles, and M. Lozada-Cassou. Effect of confinement on the interaction between two like-charged rods. Physical Review Letters 97 018102 (2006).
[147] Han, Y. L., and D. G. Grier. Confinement-induced colloidal attractions in equilibrium. Physical Review Letters 91 (2003).
[148] Chen, W., S. S. Tan, T. K. Ng, W. T. Ford, and P. Tong. Long-ranged attraction
between charged polystyrene spheres at aqueous interfaces. Physical Review
Letters 95 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27287-
dc.description.abstract本論文聚焦在探索被奈米流道拘限的單一生物分子物理,目標在於發展新穎奈米尺度系統的生物檢測分析技術。標準的微製成技術可以製造出數十奈米級的狹縫型奈米流道,這個尺度已小於雙股螺旋DNA的本徵長度(~ 50奈米)。奈米流體元件具有在奈米尺度下精準操控生物分子的動態構型與傳輸。本研究結果顯示構型因空間限制的熵變化與DNA和奈米流道邊界的交互作用主導著受拘限雙股螺旋DNA分子的靜力與動力學特性。本研究使用全視野螢光顯微鏡觀測DNA分子的構型、形狀、鍊擴散能力與鍊長鬆弛行為,結果並與尺度理論預測作比較。
我們系統性的研究DNA分子拘限在尺度趨近Kuhn長度(~ 100奈米)的狹縫型流道的鍊長相依特性。在本實驗中使用長度界於4微米至75微米的螢光標定單一DNA分子。從測量二維的鍊迴旋半徑分布發現DNA分子展現高度的非等向性的形狀(甚至是環形的DNA也具備此特性)且此特性與鍊長無關。在我們的量測中顯示DNA 的形狀特性藉於二維與三維系統之間。鍊伸長量與迴旋半徑的靜力學尺度律為 <r
zh_TW
dc.description.abstract,Rg> ~ L^ν,我們觀察到 νrzh_TW
dc.description.abstract= 0.65 ± 0.02 與 νRg = 0.68 ± 0.05。這些值靠近三維與二維理論預測的平均值。鍊伸長量與轉動量的鬆弛時間尺度分析結果界於Rouse模型 (良溶劑,奈米狹縫) 與Zimm 模型 (良溶劑,本體溶液) 之間。我們證明被拘束在高度靠近Kuhn長度的奈米狹縫下的DNA分子構型與鍊鬆弛展現著準二維的行為。
本論文系統性的研究 λ-DNA 拘限在奈米狹縫下,範圍從中拘束(h = 780奈米 ~ λ-DNA 在本體溶液中的迴旋半徑) 至強拘束範圍 (h = 20奈米 << 雙股螺旋DNA的本徵長度) 的拓墣相依性。線型與鬆弛-環形DNA的鍊長量測在狹縫高度為140奈米 (~lk) 時產生一個戲劇性的變化,DNA 的構型變化從”顆粒鍊” (de Gennes : Kuhn長度 < h < DNA 在本體溶液中的迴旋半徑) 轉變成”反射型鍊” (Odijk :h < Kuhn長度)。當降低奈米狹縫的高度可以觀察到線型與鬆弛環形 λ-DNA 的形狀特性從三維行為改變至二維行為。而環形DNA的擴散能力大於線型DNA的擴散能力,這意味著環形DNA的流體動力半徑小於線型DNA。伸長量變化的鬆弛時間的尺度分析與流道深度的相依性 (τ
zh_TW
dc.description.abstract~ h^-0.44) 並不符合de Gennes (τzh_TW
dc.description.abstract~ h^-1.17) 的顆粒理論。
本研究建立一種新穎的方法透過被製造於奈米狹縫中的奈米高度-障礙物可以捕獲和拉伸單一雙股螺旋DNA。DNA分子通常物理性的吸附並延展圍繞在障礙物上,這些圓柱型障礙物或是奈米狹縫的邊牆舉有與DNA相同電性的電荷。這個象相可以與預期的靜電力與空乏作用所造成的現象做比較。DNA 的捕獲現象僅發生在奈米狹縫高度小於雙股DNA的Kuhn長度。被吸附的DNA鍊伸長靜尺度律與鍊長的相依性為 <rnear> ~ N^0.81,這個結果靠近一維方形通道拘束的鍊長相依性
理論值。在準二維奈米狹縫中的牆-捕獲DNA展現著準一維的構型與動力學特性。被奈米狹縫中的柱狀體捕獲的DNA可以透過直流電場壓縮或解壓縮DNA的構型,DNA在圓柱陣列間的傳輸特性展現著捕獲-逃脫的機制。
zh_TW
dc.description.abstractThis thesis focuses on the exploration of individual confined polymer physics that arise in nanofluidic channel with the goal to developing novel diagnostic bioanalysis technology in such nanoscale systems. Standard microfabrication technologies can fabricate slit-like nanofluidic channels with dimension down to few tens nanometers. This is below the persistence length of double-strand DNA (ds-DNA) p~50 nm. The technique provides to precisely manipulate the dynamics, conformation and transport of biomolecules in nanoconfinement. As a result of restricted conformation entropy and DNA-wall interaction that can govern the static and dynamics properties of confined single ds-DNA. The conformation, shape, chain diffusivity and chain relaxation are characterized using fluorescence wide-field microscopy and compared with scaling theoretical predictions.
The chain length dependence of DNA properties confined in nanoslit with dimension close to the Kuhn length lk (~ 100 nm) is systematically investigated. Fluorescently labeled single DNA molecules with contour lengths L ranges from 4 to 75 microns are used in the experiments. The distributions of the chain radius of gyration and the two-dimensional asphericity are measured. It is found that the DNA molecules exhibit highly anisotropic shape even for circular-form and the mean asphericity is chain length independence. The shape anisotropy of DNA in our measurements is between three dimensional (3d) and two dimensional (2d). The static scaling law of the chain extension and the radius of gyration <r
en
dc.description.abstract,Rg> ~ L^ν are observed with νren
dc.description.abstract= 0.65 ± 0.02 and νRg = 0.68 ± 0.05. These results are close to the average value between two (νr, Rg = 0.75) and three (νr, Rg = 0.6) dimensional self avoiding walk theoretical value. The scaling of the extensional and rotational relaxation time are between Rouse, good solvent and Zimm, good solvent dynamics in nanoslits and the bulk solution, respectively. We show that the conformation and chain relaxation of DNA confined in a slit close to the Kuhn length lk exhibit the quasi-two dimensional behaviors.
The topological dependence ofλ-DNA (48.5kbp) confined in nanoslit ranging from moderate confinement (channel height h = 780 nm ~ radius of gyration of λ-DNA in bulk solution) to strong confinement (h = 20 nm << p) are systematically investigated. There is a drastic change of measured extension of linear rl and relaxed-circular rc of λ-DNA at h = 140 nm ~ lk. The conformation change from“blob-chain” (de Gennes regime : lk < h < Rg,bulk) to “reflecting chain” (Odijk regime : h < lk). The shape properties of both linear and relaxed circular λ-DNA, which the behaviors change from 3d to 2d with decreasing channel height, are observed. The diffusivity of relaxed circular DNA is larger than linear DNA in nanoslit, which implies the hydrodynamic radius of circular DNA is smaller than linear DNA. Scaling of extensional relaxation time with channel height (τ
en
dc.description.abstract~ h^-0.44) does not agree with de Gennes blob theory (τen
dc.description.abstract~ h^-1.17), which is strictly applicable when slit height is larger than the Kuhn length.
A novel method to trap and stretch individual ds-DNA molecules using nano-height obstacles in the nanoslit channel is demonstrated. The DNA molecules are unusually physically adsorbed and extend around obstacles such as cylindrical posts or sidewalls of the same charge, in contrast to the expected behavior based on electrostatic and depletion interactions. This trapping occurs only when h is less than lk of ds-DNA. The static scaling law of the chain extension for adsorbed DNA of length N follows a power law <rnear> ~ N^0.81, close to the N dependence in one dimensional square channel confinement. The wall-trapped DNA appears to have one dimensional conformation and dynamics in the nanoslit that is quasi-two dimensional. The conformation of DNA trapped around the posts can be compressed and decompressed using DC electric field and the transport of DNA between post arrays exhibits the trapping-escaping behavior.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:00:11Z (GMT). No. of bitstreams: 1
ntu-97-D91222016-1.pdf: 5915416 bytes, checksum: 91ba02e1a204ed602b2d281510ff3d55 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents

Chapter 1 Introduction and Background 1
1.1 Micro/Nanofludics 1
1.2 Confined Biomolecules in Nanofludics 3
1.2.1 Nanochannels 3
1.2.2 Nanoslits 5
1.2.3 Nanofilters 7
1.2 Outline of This Thesis 8

Chapter 2 Theoretical Concepts 10
2.1 The Statics of Polymer Chains in Bulk Solutions 10
2.1.1 Model of Polymer Chains 10
2.1.2 The Freely-Joined Chain Model 11
2.1.3 The Real Chain Model 13
2.1.4 The Worm-Like Chain Model 14
2.1.5 The Free Energy of Polymer Chain 15
2.2 The Dynamics of Polymer Chains 17
2.2.1 Diffusion of Particles 17
2.2.2 Hydrodynamic Interaction Between the Brownian Particles 18
2.2.3 Polymer Chain Dynamics in Bulk Solutions 19
2.2.4 The Rouse Model 20
2.2.5 The Zimm Model 21
2.2.6 DNA as A Model Polymer 23
2.3 Individual DNA in Confined Solution 24
2.3.1 In the weak confinement: de Gennes’ de Gennes’ blob theory 24
2.3.2 In the Strong Confinement: Odijk Theory 26

Chapter 3 Experimental Technique 27
3.1 Fabrication of Nanofludic Device 27
3.1.1 The Photolithography 27
3.2 DNA Labeling and Preparation 38
3.2.1 Fluorescent Stains of YOYO-1 and TOTO-1 38
3.2.2 DNA Preparation 38
3.2.3 The Protocol of DNA Labeling 39
3.3 Imaging DNA in Confined Solutions 41
3.3.1 The Setup of the Florescence Wide-Field Microscope 41
3.3.2 The Analysis of DNA image 42

Chapter 4 Chain Length Dependence of ds-DNA Confined in Nanoslits 48
4.1 Introduction 48
4.2 Experimental Methods 49
4.3 Results and Discussions 50
4.3.1 Shape of DNA in Quasi-2d Nanoslit 50
4.3.2 Static Scaling Analysis of DNA in Quasi-2d Nanoslit 54
4.3.3 Dynamic Analysis of DNA in Quasi-2d Nanoslit 56
4.4 Summary 59

Chapter 5 Topological and Spatial Dependence of ds-DNA Confined in Nanoslits 60
5.1 Introduction60
5.2 Experimental Methods 63
5.3 Results and Discussions 63
5.3.1 The Topological Dependence of DNA Shape 63
5.3.2 The Topological Dependence of DNA Extension 65
5.3.3 The Topological Dependence of DNA Diffusivity 66
5.3.4 The Topological Dependence of DNA Relaxation 67
5.4 Summary 68

Chapter 6 Confinement-Induced Attractions Between ds-DNA and Nanoslit Sidewall 69
6.1 Introduction 69
6.2 Experimental Methods 70
6.2.1 Fabrication of Nanofluidic Devices 70
6.2.2 DNA preparation 72
6.2.3 Fluorescence microscopy 72
6.3 Results and Discussions 73
6.3.1. The Channel Height Dependences of DNA Trapping by Nanoslit Sidewall. 73
6.3.2. Manipulating the Motion of Trapped DNA Using Electric Field 81
6.4 Summary 84
Chapter 7 Tube-Like Motion of ds-DNA Confined in Nano-Height Post Arrays 85
7.1 Introduction 85
7.2 Experimental Methods 86
7.3 Results and Discussions 86
7.4 Summary 88
Chapter 8 Summary and Future Outlook 89
8.1 Conclusion 89
8.2 Future Outlook 89

List of publications 91

Reference 93

List of Figures
Figure 1.1 The length scales of the biological building blocks and resolution of
fabrication technology 2
Figure 1.2 Stretched DNA in nanochannel 4
Figure 1.3 Manipulation of DNA in nanochannel 5
Figure 1.4 DNA diffusion in nanoslit 6
Figure 1.5 Manipulation of DNA in nanoslit 7
Figure 1.6 The molecular sieving in nanofiliter arrays 8
Figure 2.1 The interactions between segments of linear long chain polymer 10
Figure 2.2 The computer generated random walks and the schematic of freely-joined chain 11
Figure 2.3 The schematic of radius of gyration and end-to-end distance of freely-joined chain 12
Figure 2.4 The conformation of ideal chain 13
Figure 2.5 The hard core potential of polymer segments 13
Figure 2.6 The computer generated self avoiding walks 14
Figure 2.7 The local conformation of worm-like chain 14
Figure 2.8 The trajectory of a Brownian particle 17
Figure 2.9 The hydrodynamic interaction of suspended particles and polymer in solutions 18
Figure 2.10 Schematic illustration of a bead spring chain extensional and rotational relaxation 19
Figure 2.11 The schematic illustration of forces acts on polymer segment 20
Figure 2.12 The schematic illustration of polymer segmental motion with hydrodynamic interaction 22
Figure 2.13 The schematics of blob and reflection chain in confined space 25
Figure 3.1 A schematic diagram of the chip design 27
Figure 3.2 The layout of Mask1 28
Figure 3.3 The layout of Mask2 29
Figure 3.4 Photoresist thicknesses of S1800 series versus spin speed 30
Figure 3.5 The etch rates of silicon nanoslits channel 32
Figure 3.6 The etch rates of glass nanoslits channel 32
Figure 3.7 Anodic bonding method 34
Figure 3.8 The cross-sectional SEM images of nanoslit 34
Figure 3.9 Principle sketch of thermal fusing bonding 35
Figure 3.10 Schematic of silicon nanoslit fabrication 36
Figure 3.11 Schematic of glass nanoslit fabrication 37
Figure 3.12 The absorption and fluorescence emission spectra of YOYO-1 and TOTO-1 bound to DNA 38
Figure 3.13 Schematic layout of optical system 41
Figure 3.14 The λ-DNA image analysis 43
Figure 3.15 Time serious fluorescence images of single T4 DNA confined in 110 nm slit 44
Figure 3.16 Diffusivity of single T4 DNA 44
Figure 3.17 Instantaneous size and shape of fluctuating T4 DNA 45
Figure 3.18 The analyzed image of T4 DNA 46
Figure 3.19 Fluctuation analyses of orientation and extension for single T4 DNA 47
Figure 4.1 The fluorescence image of T4-DNA, λ-DNA, F1-DNA, and F2-DNA, confined in the 110 nm slit 49
Figure 4.2 The shape analysis of confined DNA in 110 nm slit 53
Figure 4.3 Static scaling analysis of DNA confined in 110 nm slit 55
Figure 4.4 Diffusivity (D) vs. number of base pairs (N) of confined DNA in nm slit 56
Figure 4.5 Extensional and rotational relaxation analysis of DNA molecules 58
Figure 5.1 The fluorescent images of linear and circular λ-DNA confined in nanoslit 63
Figure 5.2 The shape properties of linear and circular λ-DNA confined in nanoslit 64
Figure 5.3 Log-Log plot of linear and circular λ-DNA extension vs. h 65
Figure 5.4 The topological dependence of DNA diffusivity 66
Figure 5.5 The extensional relaxation time analysis 67
Figure 5.6 The relaxation time of linear and circular λ-DNA vs. h 68
Figure 6.1 The design and the surface morphology of the nanofluidic chips 71
Figure 6.2 The fluorescent image of trapping DNA by nanoslit sidewall and post 74
Figure 6.3 The channel height dependence of Naonslit sidewall-trapped DNA 76
Figure 6.4 The chain length dependence of Naonslit sidewall-trapped DNA 78
Figure 6.5 Relative extension of wall-trapped λ-DNA 80
Figure 6.6 Electrical manipulation of DNA in nanoslit sidewall traps 82
Figure 6.7 Decompression process of the post-trapped λ-DNA 84
Figure 7.1The surface morphology of the high density post arrays device and the fluorescence image of multiple post-trapped T4 DNA 86
Figure 7.2 The reptation motion of DNA in high density post arrays 87
Figure 8.1 The schematic of DNA in monovalent and multivalent electrolyte solutions 90

List of Tables
Table 3.1 The properties of N-type silicon and Pyrex 7740 cover glass wafer 29
Table 3.2 Wafer cleaning process 30
Table 4.1 The shape properties of DNA confined in 110 nm slit 50
Table 4.2 Radius of gyration < Rg> and scaling exponent νRg for different exposure time 55
dc.language.isoen
dc.subject捕獲zh_TW
dc.subject高分子zh_TW
dc.subject去氧核醣核酸zh_TW
dc.subject奈米流體zh_TW
dc.subject拘限zh_TW
dc.subject操控zh_TW
dc.subject伸展zh_TW
dc.subjectconfinementen
dc.subjecttrapsen
dc.subjectstretchingen
dc.subjectmanipulationen
dc.subjectPolymeren
dc.subjectDNAen
dc.subjectnanofluidicsen
dc.title單一DNA分子拘限在奈米狹縫的靜力學與動力學研究zh_TW
dc.titleStatics and Dynamics of Single DNA Confined in Nanoslitsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee曹培熙(Pei-Hsi Taso),陳彥龍(Y. -L. Chen),魏培坤(Pei-Kuen Wei),林耿慧(Keng-hui Lin),白小明(White, J. D)
dc.subject.keyword高分子,去氧核醣核酸,奈米流體,拘限,操控,伸展,捕獲,zh_TW
dc.subject.keywordPolymer,DNA,nanofluidics,confinement,manipulation,stretching,traps,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2008-01-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
5.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved