請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27287完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范文祥(w. s. Fann) | |
| dc.contributor.author | Po-Keng Lin | en |
| dc.contributor.author | 林伯耕 | zh_TW |
| dc.date.accessioned | 2021-06-12T18:00:11Z | - |
| dc.date.available | 2009-02-18 | |
| dc.date.copyright | 2008-02-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-29 | |
| dc.identifier.citation | [1] Thorsen, T., S. J. Maerkl, and S. R. Quake. Microfluidic large-scale integration.
Science 298 580-584 (2002). [2] Schasfoort, R. B. M., S. Schlautmann, L. Hendrikse, and A. van den Berg. Field-effect flow control for microfabricated fluidic networks. Science 286 942-945 (1999). [3] Lee, C. C., G. D. Sui, A. Elizarov, C. Y. J. Shu, Y. S. Shin, A. N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H. C. Kolb, O. N. Witte, N. Satyamurthy, J. R. Heath, M. E. Phelps, S. R. Quake, and H. R. Tseng. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310 1793-1796 (2005). [4] Stroock, A. D., S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides. Chaotic mixer for microchannels. Science 295 647-651 (2002). [5] Chan, E. M., A. P. Alivisatos, and R. A. Mathies. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. Journal of the American Chemical Society 127 13854-13861 (2005). [6] Prakash, M., and N. Gershenfeld. Microfluidic bubble logic. Science 315 832-835 (2007). [7] Huang, L. R., E. C. Cox, R. H. Austin, and J. C. Sturm. Continuous particle separation through deterministic lateral displacement. Science 304 987-990 (2004). [8] Huang, L. R., J. O. Tegenfeldt, J. J. Kraeft, J. C. Sturm, R. H. Austin, and E. C. Cox. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nature Biotechnology 20 1048-1051 (2002). [9] Huang, L. R., P. Silberzan, J. O. Tegenfeldt, E. C. Cox, J. C. Sturm, R. H. Austin, and H. Craighead. Role of molecular size in ratchet fractionation. Physical Review Letters 89 178301-178304 (2002). [10] Pollack, L., M. W. Tate, A. C. Finnefrock, C. Kalidas, S. Trotter, N. C. Darnton, L. Lurio, R. H. Austin, C. A. Batt, S. M. Gruner, and S. G. J. Mochrie. Time resolved collapse of a folding protein observed with small angle x-ray scattering. Physical Review Letters 86 4962-4965 (2001). [11] Tegenfeldt, J. O., O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox. Near-field scanner for moving molecules. Physical Review Letters 86 1378-1381 (2001). [12] Smeets, R. M. M., U. F. Keyser, D. Krapf, M. Y. Wu, N. H. Dekker, and C. Dekker. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters 6 89-95 (2006). [13] Tegenfeldt, J. O., C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm. Micro- and nanofluidics for DNA analysis. Analytical and Bioanalytical Chemistry 378 1678-1692 (2004). [14] Heyden., F. V. D. Pressure Driven Transport in Nanofluidic Channels. (Thesis) Technische Universiteit Delft (2006). [15] Tegenfeldt, J. O., C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin. The dynamics of genomic-length DNA molecules in 100-nm channels. Proceedings of the National Academy of Sciences of the United States of America 101 10979-10983 (2004). [16] Reisner, W., K. J. Morton, R. Riehn, Y. M. Wang, Z. N. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin. Statics and dynamics of single DNA molecules confined in nanochannels. Physical Review Letters 94 196101 (2005). [17] Mannion, J. T., C. H. Reccius, J. D. Cross, and H. G. Craighead. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophysical Journal 90 4538-4545 (2006). [18] Wang, Y. M., J. O. Tegenfeldt, W. Reisner, R. Riehn, X. J. Guan, L. Guo, I. Golding, E. C. Cox, J. Sturm, and R. H. Austin. Single-molecule studies of repressor-DNA interactions show long-range interactions. Proceedings of the National Academy of Sciences of the United States of America 102 9796-9801 (2005). [19] Riehn, R., M. C. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin. Restriction mapping in nanofluidic devices. Proceedings of the National Academy of Sciences of the United States of America 102 10012-10016 (2005). [20] Reccius, C. H., J. T. Mannion, J. D. Cross, and H. G. Craighead. Compression and free expansion of single DNA molecules in nanochannels. Physical Review Letters 95 268101 (2005). [21] Cao, H., J. O. Tegenfeldt, R. H. Austin, and S. Y. Chou. Gradient nanostructures for interfacing microfluidics and nanofluidics. Applied Physics Letters 81 3058-3060 (2002). [22] Walter Reisner, Jason P. Beech, Niels B. Larsen, Henrik Flyvbjerg, Anders Kristensen, and a. J. O. Tegenfeldt. Nanoconfinement-Enhanced Conformational Response of Single DNA Molecules to Changes in Ionic Environment. Physical Review Letters 99 058302 (2007). [23] Bakajin, O. B., T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, and E. C. Cox. Electrohydrodynamic stretching of DNA in confined environments. Physical Review Letters 80 2737-2740 (1998). [24] Balducci, A., P. Mao, J. Y. Han, and P. S. Doyle. Double-stranded DNA diffusion in slitlike nanochannels. Macromolecules 39 6273-6281 (2006). [25] Hsieh, C. C., A. Balducci, and P. S. Doyle. An experimental study of DNA rotational relaxation time in nanoslits. Macromolecules 40 5196-5205 (2007). [26] Perkins, T. T., S. R. Quake, D. E. Smith, and S. Chu. Relaxation of a Single DNA Molecule Observed by Optical Microscopy. Science 264 822-826 (1994). [27] Stein, D., F. H. J. van der Heyden, W. J. A. Koopmans, and C. Dekker. Pressure-driven transport of confined DNA polymers in fluidic channels. Proceedings of the National Academy of Sciences of the United States of America 103 15853-15858 (2006). [28] Fu, J. P., R. B. Schoch, A. L. Stevens, S. R. Tannenbaum, and J. Y. Han. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nature Nanotechnology 2 121-128 (2007). [29] Lin, P. K., C. C. Fu, Y. L. Chen, Y. R. Chen, P. K. Wei, C. H. Kuan, and W. S. Fann. Static conformation and dynamics of single DNA molecules confined in nanoslits. Physical Review E 76 011806 (2007). [30] Po-keng Lin, C. J.-F., Chi-Cheng Fu, Y.-L. Chen, and W. S. Fann. Statics and Dynamics of DNA in Nanoslits: Dependence on topology and degree of confinement (in preparation). [31]Po-Keng Lin, C.-C. F., Y.-L. Chen, Keng-hui Lin, K-C Lee, Pei-Kuen Wei, Woei-Wu Pai, Pei-Hsi Tsao, and W. S. Fann. QuasiOne-Dimensional Trapping and Transport of Single DNA in Two-Dimensional Nanofluidic Channel. (in preparation). [32]Gennes, P.-G. d. Scaling concepts in polymer physics Cornell University Press, New York. (1976). [33] Edwards, M. D. a. S. F. The theory of polymer dynamics. Oxford University Press, New York (1986). [34] Khokhlov, A. Y. G. a. A. R. Statistical physics of macromolecules American Institute of Physics, New York (1994). [35] Hiromi Yamakawa, H. a. R. Modern theory of polymer solutions. Harper & Row, New York (1971). [36] Teraoka, I. Polymer Solutions: An Introduction to Physical Properties John Wiley & Sons, New York ((002). [37] Colby, M. R. a. R. H. Polymer Physics. Oxford University Press, New York (2003). [38] See, M. D. a. H. Introduction to Polymer Physics Oxford University Press, New York (1996). [39] Gorbunov, A. A., and A. M. Skvortsov. Statistical Properties of Confined Macromolecules. Advances in Colloid and Interface Science 62 31-108. (1995). [40] Teraoka, I. Polymer solutions in confining geometries. Progress in Polymer Science 21 89-149 (1996). [41] http://en.wikipedia.org/wiki/Image:Random_walk_in2D_closeup.png. [42] http://math.arizona.edu/~tgk/saw/. [43] Flory, P. J. Statistical mechanics of chain molecules. Interscience Publishers, New York. (1969). [44] Rouse, P. E. A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. Journal of Chemical Physics 211272-1280 (1953). [45] Zimm, B. H. Dynamics of Polymer Molecules in Dilute Solution -Viscoelasticity, Flow Birefringence and Dielectric Loss. Journal of Chemical Physics 24 269-278 (1956). [46] Edwards, S. F., and K. F. Freed. Theory of Dynamical Viscosity of Polymer-Solutions. Journal of Chemical Physics 611189-1202 (1974). [47] Matsumoto, M., T. Sakaguchi, H. Kimura, M. Doi, K. Minagawa, Y. Matsuzawa, and K. Yoshikawa. Direct Observation of Brownian-Motion of Macromolecules by Fluorescence Microscope. Journal of Polymer Science Part B-Polymer Physics 30 779-783 (1992). [48] Smith, S. B., and A. J. Bendich. Electrophoretic Charge-Density and Persistence Length of DNA as Measured by Fluorescence Microscopy. Biopolymers 29 1167-1173 (1990). [49] Perkins, T. T., D. E. Smith, and S. Chu. Direct Observation of Tube-Like Motion of a Single Polymer-Chain. Science 264 819-822. (1994). [50] Bensimon, A., A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D. Bensimon. Alignment and Sensitive Detection of DNA by a Moving Interface. Science 265 2096-2098 (1994). [51] Smith, D. E., T. T. Perkins, and S. Chu. Dynamical scaling of DNA diffusion coefficients. Macromolecules 29 1372-1373. (1996). [52] Degennes, P. G. Coil-Stretch Transition of Dilute Flexible Polymers under Ultrahigh Velocity-Gradients. Journal of Chemical Physics 60 5030-5042 (1974). [53] Daoud, M., and P. G. Degennes. Statistics of Macromolecular Solutions Trapped in Small Pores. Journal De Physique 38 85-93 (1977). [54] Vanvliet, J. H., M. C. Luyten, and G. Tenbrinke. Scaling Behavior of Dilute Polymer-Solutions Confined between Parallel Plates. Macromolecules 25 3802-3806 (1992). [55] P. J. Flory. Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, N. Y.) (1971). [56] Schaefer, D. W., J. F. Joanny, and P. Pincus. Dynamics of Semiflexible Polymers in Solution. Macromolecules 13 1280-1289. (1980). [57] Brochard, F., and P. G. Degennes. Dynamics of Confined Polymer-Chains. Journal of Chemical Physics 67 52-56 (1977). [58] Milchev, A., and K. Binder. Dynamics of polymer chains confined in slit-like pores. Journal De Physique Ii 6 21-31(1996). [59] Brochard, F. Dynamics of Polymer-Chains Trapped in a Slit. Journal De Physique 38 1285-1291 (1977). [60] Odijk, T. On the Statistics and Dynamics of Confined or Entangled Stiff Polymers. Macromolecules 16 1340-1344 (1983). [61] Dijkstra, M., D. Frenkel, and H. N. W. Lekkerkerker. Confinement Free-Energy of Semiflexible Polymers. Physica A 193 374-393 (1993). [62] Burkhardt, T. W. Free energy of a semiflexible polymer in a tube and statistics of a randomly-accelerated particle. Journal of Physics a-Mathematical and General 30 L167-L172 (1997). [63] Jo, K., D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz. A single-molecule barcoding system using nanoslits for DNA analysis. Proceedings of the National Academy of Sciences of the United States of America 104 2673-2678 (2007). [64] Gösele, Q.-Y. T. U. SemiConductor Wafer Bonding: Science and Technology John Wiley, New York (1999). [65] Wallis, G., and Pomerant.Di. 1969. Field Assisted Glass-Metal Sealing. Journal of Applied Physics 40 3946-3949. (1969) [66] Anthony, T. R. Anodic Bonding of Imperfect Surfaces. Journal of Applied Physics 54 419-2428 (1983). [67] Madou, M. J. Fundamentals of microfabrication : the science of miniaturization. CRC Press, New York. (2002). [68] Mao, P., and J. Y. Han. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab on a Chip 5 837-844 (2005). [69] Oliver Geschke, H. K., Pieter Tellemann. Microsystem Engineering of Lab-on-a-Chip Devices Wiley-VCH Weinheim. (2003). [70] Perkins, T. T., D. E. Smith, and S. Chu. Single polymer dynamics in an elongational flow. Science 276 2016-2021 (1997). [71] Doyle, P. S., B. Ladoux, and J. L. Viovy. Dynamics of a tethered polymer in shear flow. Physical Review Letters 84 4769-4772 (2000). [72] Netzel, T. L., K. Nafisi, M. Zhao, J. R. Lenhard, and I. Johnson. Base-content dependence of emission enhancements, quantum yields, and lifetimes forcyanine dyes bound to double-strand DNA: Photophysical properties of monomeric and bichromophoric DNA stains. Journal of Physical Chemistry 99 17936-17947. (1995). [73] http://probes.invitrogen.com/servlets/spectra?fileid=3601dna. [74] http://probes.invitrogen.com/servlets/spectra?fileid=3600dna. [75] Makita, N., M. Ullner, and K. Yoshikawa. Conformational change of giant DNA with added salt as revealed by single molecular observation. Macromolecules 39 6200-6206. (2006). [76] Perkins, T. T., D. E. Smith, R. G. Larson, and S. Chu. Stretching of a Single Tethered Polymer in a Uniform-Flow. Science 268 83-87. (1995). [77] Baumann, C. G., S. B. Smith, V. A. Bloomfield, and C. Bustamante. Ionic effects on the elasticity of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America 94 6185-6190. (1997). [78] Cocco, S., J. F. Marko, R. Monasson, A. Sarkar, and J. Yan. Force-extension behavior of folding polymers. European Physical Journal E 10 249-263 (2003). [79] Marko, J. F., and E. D. Siggia. Stretching DNA. Macromolecules 28 759-8770. (1995). [80] Balducci, A., Mao, P., Han, J. and Doyle, P.S. Double-Stranded DNA Diffusion in Slit-like Nanochannels. Macromolecules 39 6273-6281 (2006). [81] Aronovitz, J. A., and D. R. Nelson. Universal Features of Polymer Shapes. Journal De Physique 47 1445-1456 (1986). [82] Rudnick, J., and G. Gaspari. The Shapes of Random-Walks. Science 237 384-389 (1987). [83] Fu, J. P., J. Yoo, and J. Y. Han. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Physical Review Letters 97 018103 (2006). [84] Radler, J. O., I. Koltover, T. Salditt, and C. R. Safinya. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275 810-814. (1997). [85] Salditt, T., I. Koltover, J. O. Radler, and C. R. Safinya. Two-dimensional smectic ordering of linear DNA chains in self-assembled DNA-cationic liposome mixtures. Physical Review Letters 79 2582-2585 ( 1997). [86] Maier, B., and J. O. Radler. Conformation and self-diffusion of single DNA molecules confined to two dimensions. Physical Review Letters 82 1911-1914 (1999). [87] Maier, B., and J. O. Radler. DNA on fluid membranes: A model polymer in two dimensions. Macromolecules 33 7185-7194 (2000). [88] Maier, B., and J. O. Radler. Shape of self-avoiding walks in two dimensions. Macromolecules 34 5723-5724 (2001). [89] Sukhishvili, S. A., Y. Chen, J. D. Muller, E. Gratton, K. S. Schweizer, and S. Granick. Materials science - Diffusion of a polymer 'pancake'. Nature 406 146-146 (2000). [90] Robertson, R. M., S. Laib, and D. E. Smith. Diffusion of isolated DNA molecules: Dependence on length and topology. Proceedings of the National Academy of Sciences of the United States of America 103 7310-7314 (2006). [91] Chen, Y. L., M. D. Graham, J. J. de Pablo, G. C. Randall, M. Gupta, and P. S. Doyle. Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels. Physical Review E 70 060901(R) (2004). [92] Kuhn. W.Kolloid-z 68 2. (1934). [93] Gaspari, G., J. Rudnick, and A. Beldjenna. The Shapes of Open and Closed Random-Walks - a 1/D Expansion. Journal of Physics a-Mathematical and General 20 3393-3414 (1987). [94] Sciutto, S. J. Study of the Shape of Random-Walks. Journal of Physics a-Mathematical and General 27 7015-7034 (1994). [95] Bishop, M., and J. P. J. Michels. Scaling in Two-Dimensional Linear and Ring Polymers. Journal of Chemical Physics 85 1074-1076 (1986). [96] Bishop, M., and J. P. J. Michels. The Shape of Two-Dimensional Polymers. Journal of Chemical Physics 83 4791-4792 (1985). [97] Bishop, M., and C. J. Saltiel. The Shapes of Two-Dimensional, 4-Dimensional, and 5-Dimensional Linear and Ring Polymers. Journal of Chemical Physics 85 6728-6731 (1986). [98] Sciutto, S. J. Study of the Shape of Random-Walks .2. Inertia Moment Ratios and the 2-Dimensional Asphericity. Journal of Physics a-Mathematical and General 28 3667-3679 (1995). [99] Sciutto, S. J. The shape of self-avoiding walks. Journal of Physics a-Mathematical and General 29 5455-5473 (1996). [100] Haber, C., S. A. Ruiz, and D. Wirtz. Shape anisotropy of a single random-walk polymer. Proceedings of the National Academy of Sciences of the United States of America 97 10792-10795 (2000). [101] Yoshikawa, K., M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov. Large discrete transition in a single DNA molecule appears continuous in the ensemble. Physical Review Letters 76 3029-3031 (1996). [102] Frenkel, D., and B. Smit. Understanding Molecular Simulations: From Algorithms to Applications. Academic Press, San Diego. (2001). [103] Edwards, M. D. a. S. F. The Theory of Polymers Dynamics (1986). [104] Espejo, R. T., E. S. Canelo, and Sinsheim.Rl. DNA of Bacteriophage Pm2 - a Closed Circular Double-Stranded Molecule. Proceedings of the National Academy of Sciences of the United States of America 63 1164-1168 (1969). [105] Arsuaga, J., M. Vazquez, S. Trigueros, D. Sumners, and J. Roca. Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proceedings of the National Academy of Sciences of the United States of America 99 5373-5377 (2002). [106] Robertson, R. M., and D. E. Smith. Strong effects of molecular topology on diffusion of entangled DNA molecules. Proceedings of the National Academy of Sciences of the United States of America 104 4824-4827 (2007). [107] Riehn, R., R. H. Austin, and J. C. Sturm. A nanofluidic railroad switch for DNA. Nano Letters 6 1973-1976 (2006). [108] Chen, J. Z. Y., and D. E. Sullivan. Free energy of a wormlike polymer chain confined in a slit: Crossover between two scaling regimes. Macromolecules 39 7769-7773 (2006). [109] Zimm, B. H., and W. H. Stockmayer. The Dimensions of Chain Molecules Containing Branches and Rings. Journal of Chemical Physics 17 1301-1314. (1949). [110] Bloomfie.V, and B. H. Zimm. Viscosity Sedimentation Et Cetera of Ring- and Straight-Chain Polymers in Dilute Solution. Journal of Chemical Physics 44 315-323 (1966). [111] Yamakawa, H. Modern Theory of polymer solutions. Harper & Row, New York. (1971). [112] Maury-Evertsz, J. R., and G. E. Lopez. Studies on the behavior of nanoconfined homopolymers with cyclic chain architecture. Journal of Chemical Physics 123 (2005). [113] Romiszowski, P., and A. Sikorski. Monte Carlo simulations of star-branched polymers confined between two walls. Journal of Chemical Physics 116 1731-1736 (2002). [114] Jagodzinski, O., E. Eisenriegler, and K. Kremer. Universal Shape Properties of Open and Closed Polymer-Chains - Renormalization-Group Analysis and Monte-Carlo Experiments. Journal De Physique I 2 2243-2279 (1992). [115] Kepler, G. M., and S. Fraden. 1994. Attractive Potential between ConfineColloids at Low Ionic-Strength. Physical Review Letters 73 356-359. [116] Crocker, J. C., and D. G. Grier. When like charges attract: The effects of geometrical confinement on long-range colloidal interactions. Physical Review Letters 77 1897-1900 (1996). [117] Odijk, T. DNA confined in nanochannels: Hairpin tightening by entropic depletion. Journal of Chemical Physics 125 204904- 204912 (2006). [118] Lin, P.-K. F., Chi-Cheng; Chen, Y.-L.; Fann, W. S. Self-trapping and stretching of DNA using single nano-height micropillar. APS meeting, March, 2007. http://meetings.aps.org/link/BAPS.2007.MAR.H34.12. [119] Krishnan, M., I. Monch, and P. Schwille. Spontaneous stretching of DNA in a two-dimensional nanoslit. Nano Letters 7 1270-1275 (2007). [120] Hochrein, M. B., J. A. Leierseder, L. Golubovic, and J. O. Radler. DNA localization and stretching on periodically microstructured lipid membranes. Physical Review Letters 96 038103 (2006). [121] Randall, G. C., and P. S. Doyle. Electrophoretic collision of a DNA molecule with an insulating post. Physical Review Letters 93 058102 (2004). [122] Behrens, S. H., and D. G. Grier. The charge of glass and silica surfaces. Journal of Chemical Physics 115 6716-6721 (2001). [123] Baumgartl, J., J. L. Arauz-Lara, and C. Bechinger. Like-charge attraction in confinement: myth or truth? Soft Matter 2 631-635 (2006). [124] Li, A. Z., L. J. Qi, H. H. Shih, and K. A. Marx. Trivalent counterion condensation on DNA measured by pulse gel electrophoresis. Biopolymers 38 367-376 (1996). [125] Dempsey, D. P. a. B. Buffers for pH and Metal Ion Control Chapman and Hall, London (1974). [126] Bishop, M., and C. J. Saltiel. Polymer Shapes in 2, 4, and 5 Dimensions. Journal of Chemical Physics 88 3976-3980 (1988). [127] Skolnick, J., and M. Fixman. Electrostatic Persistence Length of a Wormlike Polyelectrolyte. Macromolecules 10 944-948 (1977). [128] Korda, P. T., M. B. Taylor, and D. G. Grier. Kinetically locked-in colloidal transport in an array of optical tweezers. Physical Review Letters 89 128301 (2002). [129] Lacasta, A. M., J. M. Sancho, A. H. Romero, and K. Lindenberg. Sorting on periodic surfaces. Physical Review Letters 94 160601 (2005). [130] Roichman, Y., V. Wong, and D. G. Grier. Colloidal transport through optical tweezer arrays. Physical Review E 75 011407 (2007). [131] Gopinathan, A., and D. G. Grier. Statistically locked-in transport through periodic potential landscapes. Physical Review Letters 92 130602 (2004). 132] Degennes, P. G. Dynamics of Entangled Polymer-Solutions .1. Rouse Model. Macromolecules 9 587-593 (1976). [133] Degennes, P. G. Reptation of a Polymer Chain in Presence of Fixed Obstacles. Journal of Chemical Physics 55 572-578 (1971). [134] Smith, D. E., T. T. Perkins, and S. Chu. Self-Diffusion of an Entangled DNA Molecule by Reptation. Physical Review Letters 75 4146-4149 (1995). [135] Zhang, L. F., and S. Granick. Slaved diffusion in phospholipid bilayers. Proceedings of the National Academy of Sciences of the United States of America 102 118-9121 (2005). [136] Desai, T. G., P. Keblinski, S. K. Kumar, and S. Granick. Molecular-dynamics simulations of the transport properties of a single polymer chain in two dimensions. Journal of Chemical Physics 124 084904 (2006). [137] J. Israelachvili. Intermolecular and Surface Forces. (Academic Press, London, (1985). [138] Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 44 269-282 (1997). [139] Stevens, M. J. Bundle binding in polyelectrolyte solutions. Physical Review Letters 82 101-104 (1999). [140] Shklovskii, B. I. Wigner crystal model of counterion induced bundle formation of rodlike polyelectrolytes. Physical Review Letters 82 3268-3271 (1999). [141] Bloomfield, V. A. Condensation of DNA by Multivalent Cations- Considerations on Mechanism. Biopolymers 31 1471-1481 (1991). [142] Bloomfield, V. A. DNA condensation. Current Opinion in Structural Biology 6 334-341 (1996). [143] Koltover, I., K. Wagner, and C. R. Safinya. DNA condensation in two dimensions. Proceedings of the National Academy of Sciences of the United States of America 97 14046-14051 (2000). [144] Tang, J. X., and P. A. Janmey. The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. Journal of Biological Chemistry 271 8556-8563 (1996). [145] Butler, J. C., T. Angelini, J. X. Tang, and G. C. L. Wong. Ion multivalence and like-charge polyelectrolyte attraction. Physical Review Letters 91 028301 (2003). [146] Odriozola, G., F. Jimenez-Angeles, and M. Lozada-Cassou. Effect of confinement on the interaction between two like-charged rods. Physical Review Letters 97 018102 (2006). [147] Han, Y. L., and D. G. Grier. Confinement-induced colloidal attractions in equilibrium. Physical Review Letters 91 (2003). [148] Chen, W., S. S. Tan, T. K. Ng, W. T. Ford, and P. Tong. Long-ranged attraction between charged polystyrene spheres at aqueous interfaces. Physical Review Letters 95 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27287 | - |
| dc.description.abstract | 本論文聚焦在探索被奈米流道拘限的單一生物分子物理,目標在於發展新穎奈米尺度系統的生物檢測分析技術。標準的微製成技術可以製造出數十奈米級的狹縫型奈米流道,這個尺度已小於雙股螺旋DNA的本徵長度(~ 50奈米)。奈米流體元件具有在奈米尺度下精準操控生物分子的動態構型與傳輸。本研究結果顯示構型因空間限制的熵變化與DNA和奈米流道邊界的交互作用主導著受拘限雙股螺旋DNA分子的靜力與動力學特性。本研究使用全視野螢光顯微鏡觀測DNA分子的構型、形狀、鍊擴散能力與鍊長鬆弛行為,結果並與尺度理論預測作比較。
我們系統性的研究DNA分子拘限在尺度趨近Kuhn長度(~ 100奈米)的狹縫型流道的鍊長相依特性。在本實驗中使用長度界於4微米至75微米的螢光標定單一DNA分子。從測量二維的鍊迴旋半徑分布發現DNA分子展現高度的非等向性的形狀(甚至是環形的DNA也具備此特性)且此特性與鍊長無關。在我們的量測中顯示DNA 的形狀特性藉於二維與三維系統之間。鍊伸長量與迴旋半徑的靜力學尺度律為 <r | zh_TW |
| dc.description.abstract | ,Rg> ~ L^ν,我們觀察到 νr | zh_TW |
| dc.description.abstract | = 0.65 ± 0.02 與 νRg = 0.68 ± 0.05。這些值靠近三維與二維理論預測的平均值。鍊伸長量與轉動量的鬆弛時間尺度分析結果界於Rouse模型 (良溶劑,奈米狹縫) 與Zimm 模型 (良溶劑,本體溶液) 之間。我們證明被拘束在高度靠近Kuhn長度的奈米狹縫下的DNA分子構型與鍊鬆弛展現著準二維的行為。
本論文系統性的研究 λ-DNA 拘限在奈米狹縫下,範圍從中拘束(h = 780奈米 ~ λ-DNA 在本體溶液中的迴旋半徑) 至強拘束範圍 (h = 20奈米 << 雙股螺旋DNA的本徵長度) 的拓墣相依性。線型與鬆弛-環形DNA的鍊長量測在狹縫高度為140奈米 (~lk) 時產生一個戲劇性的變化,DNA 的構型變化從”顆粒鍊” (de Gennes : Kuhn長度 < h < DNA 在本體溶液中的迴旋半徑) 轉變成”反射型鍊” (Odijk :h < Kuhn長度)。當降低奈米狹縫的高度可以觀察到線型與鬆弛環形 λ-DNA 的形狀特性從三維行為改變至二維行為。而環形DNA的擴散能力大於線型DNA的擴散能力,這意味著環形DNA的流體動力半徑小於線型DNA。伸長量變化的鬆弛時間的尺度分析與流道深度的相依性 (τ | zh_TW |
| dc.description.abstract | ~ h^-0.44) 並不符合de Gennes (τ | zh_TW |
| dc.description.abstract | ~ h^-1.17) 的顆粒理論。
本研究建立一種新穎的方法透過被製造於奈米狹縫中的奈米高度-障礙物可以捕獲和拉伸單一雙股螺旋DNA。DNA分子通常物理性的吸附並延展圍繞在障礙物上,這些圓柱型障礙物或是奈米狹縫的邊牆舉有與DNA相同電性的電荷。這個象相可以與預期的靜電力與空乏作用所造成的現象做比較。DNA 的捕獲現象僅發生在奈米狹縫高度小於雙股DNA的Kuhn長度。被吸附的DNA鍊伸長靜尺度律與鍊長的相依性為 <rnear> ~ N^0.81,這個結果靠近一維方形通道拘束的鍊長相依性 理論值。在準二維奈米狹縫中的牆-捕獲DNA展現著準一維的構型與動力學特性。被奈米狹縫中的柱狀體捕獲的DNA可以透過直流電場壓縮或解壓縮DNA的構型,DNA在圓柱陣列間的傳輸特性展現著捕獲-逃脫的機制。 | zh_TW |
| dc.description.abstract | This thesis focuses on the exploration of individual confined polymer physics that arise in nanofluidic channel with the goal to developing novel diagnostic bioanalysis technology in such nanoscale systems. Standard microfabrication technologies can fabricate slit-like nanofluidic channels with dimension down to few tens nanometers. This is below the persistence length of double-strand DNA (ds-DNA) p~50 nm. The technique provides to precisely manipulate the dynamics, conformation and transport of biomolecules in nanoconfinement. As a result of restricted conformation entropy and DNA-wall interaction that can govern the static and dynamics properties of confined single ds-DNA. The conformation, shape, chain diffusivity and chain relaxation are characterized using fluorescence wide-field microscopy and compared with scaling theoretical predictions.
The chain length dependence of DNA properties confined in nanoslit with dimension close to the Kuhn length lk (~ 100 nm) is systematically investigated. Fluorescently labeled single DNA molecules with contour lengths L ranges from 4 to 75 microns are used in the experiments. The distributions of the chain radius of gyration and the two-dimensional asphericity are measured. It is found that the DNA molecules exhibit highly anisotropic shape even for circular-form and the mean asphericity is chain length independence. The shape anisotropy of DNA in our measurements is between three dimensional (3d) and two dimensional (2d). The static scaling law of the chain extension and the radius of gyration <r | en |
| dc.description.abstract | ,Rg> ~ L^ν are observed with νr | en |
| dc.description.abstract | = 0.65 ± 0.02 and νRg = 0.68 ± 0.05. These results are close to the average value between two (νr, Rg = 0.75) and three (νr, Rg = 0.6) dimensional self avoiding walk theoretical value. The scaling of the extensional and rotational relaxation time are between Rouse, good solvent and Zimm, good solvent dynamics in nanoslits and the bulk solution, respectively. We show that the conformation and chain relaxation of DNA confined in a slit close to the Kuhn length lk exhibit the quasi-two dimensional behaviors.
The topological dependence ofλ-DNA (48.5kbp) confined in nanoslit ranging from moderate confinement (channel height h = 780 nm ~ radius of gyration of λ-DNA in bulk solution) to strong confinement (h = 20 nm << p) are systematically investigated. There is a drastic change of measured extension of linear rl and relaxed-circular rc of λ-DNA at h = 140 nm ~ lk. The conformation change from“blob-chain” (de Gennes regime : lk < h < Rg,bulk) to “reflecting chain” (Odijk regime : h < lk). The shape properties of both linear and relaxed circular λ-DNA, which the behaviors change from 3d to 2d with decreasing channel height, are observed. The diffusivity of relaxed circular DNA is larger than linear DNA in nanoslit, which implies the hydrodynamic radius of circular DNA is smaller than linear DNA. Scaling of extensional relaxation time with channel height (τ | en |
| dc.description.abstract | ~ h^-0.44) does not agree with de Gennes blob theory (τ | en |
| dc.description.abstract | ~ h^-1.17), which is strictly applicable when slit height is larger than the Kuhn length.
A novel method to trap and stretch individual ds-DNA molecules using nano-height obstacles in the nanoslit channel is demonstrated. The DNA molecules are unusually physically adsorbed and extend around obstacles such as cylindrical posts or sidewalls of the same charge, in contrast to the expected behavior based on electrostatic and depletion interactions. This trapping occurs only when h is less than lk of ds-DNA. The static scaling law of the chain extension for adsorbed DNA of length N follows a power law <rnear> ~ N^0.81, close to the N dependence in one dimensional square channel confinement. The wall-trapped DNA appears to have one dimensional conformation and dynamics in the nanoslit that is quasi-two dimensional. The conformation of DNA trapped around the posts can be compressed and decompressed using DC electric field and the transport of DNA between post arrays exhibits the trapping-escaping behavior. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T18:00:11Z (GMT). No. of bitstreams: 1 ntu-97-D91222016-1.pdf: 5915416 bytes, checksum: 91ba02e1a204ed602b2d281510ff3d55 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Contents
Chapter 1 Introduction and Background 1 1.1 Micro/Nanofludics 1 1.2 Confined Biomolecules in Nanofludics 3 1.2.1 Nanochannels 3 1.2.2 Nanoslits 5 1.2.3 Nanofilters 7 1.2 Outline of This Thesis 8 Chapter 2 Theoretical Concepts 10 2.1 The Statics of Polymer Chains in Bulk Solutions 10 2.1.1 Model of Polymer Chains 10 2.1.2 The Freely-Joined Chain Model 11 2.1.3 The Real Chain Model 13 2.1.4 The Worm-Like Chain Model 14 2.1.5 The Free Energy of Polymer Chain 15 2.2 The Dynamics of Polymer Chains 17 2.2.1 Diffusion of Particles 17 2.2.2 Hydrodynamic Interaction Between the Brownian Particles 18 2.2.3 Polymer Chain Dynamics in Bulk Solutions 19 2.2.4 The Rouse Model 20 2.2.5 The Zimm Model 21 2.2.6 DNA as A Model Polymer 23 2.3 Individual DNA in Confined Solution 24 2.3.1 In the weak confinement: de Gennes’ de Gennes’ blob theory 24 2.3.2 In the Strong Confinement: Odijk Theory 26 Chapter 3 Experimental Technique 27 3.1 Fabrication of Nanofludic Device 27 3.1.1 The Photolithography 27 3.2 DNA Labeling and Preparation 38 3.2.1 Fluorescent Stains of YOYO-1 and TOTO-1 38 3.2.2 DNA Preparation 38 3.2.3 The Protocol of DNA Labeling 39 3.3 Imaging DNA in Confined Solutions 41 3.3.1 The Setup of the Florescence Wide-Field Microscope 41 3.3.2 The Analysis of DNA image 42 Chapter 4 Chain Length Dependence of ds-DNA Confined in Nanoslits 48 4.1 Introduction 48 4.2 Experimental Methods 49 4.3 Results and Discussions 50 4.3.1 Shape of DNA in Quasi-2d Nanoslit 50 4.3.2 Static Scaling Analysis of DNA in Quasi-2d Nanoslit 54 4.3.3 Dynamic Analysis of DNA in Quasi-2d Nanoslit 56 4.4 Summary 59 Chapter 5 Topological and Spatial Dependence of ds-DNA Confined in Nanoslits 60 5.1 Introduction60 5.2 Experimental Methods 63 5.3 Results and Discussions 63 5.3.1 The Topological Dependence of DNA Shape 63 5.3.2 The Topological Dependence of DNA Extension 65 5.3.3 The Topological Dependence of DNA Diffusivity 66 5.3.4 The Topological Dependence of DNA Relaxation 67 5.4 Summary 68 Chapter 6 Confinement-Induced Attractions Between ds-DNA and Nanoslit Sidewall 69 6.1 Introduction 69 6.2 Experimental Methods 70 6.2.1 Fabrication of Nanofluidic Devices 70 6.2.2 DNA preparation 72 6.2.3 Fluorescence microscopy 72 6.3 Results and Discussions 73 6.3.1. The Channel Height Dependences of DNA Trapping by Nanoslit Sidewall. 73 6.3.2. Manipulating the Motion of Trapped DNA Using Electric Field 81 6.4 Summary 84 Chapter 7 Tube-Like Motion of ds-DNA Confined in Nano-Height Post Arrays 85 7.1 Introduction 85 7.2 Experimental Methods 86 7.3 Results and Discussions 86 7.4 Summary 88 Chapter 8 Summary and Future Outlook 89 8.1 Conclusion 89 8.2 Future Outlook 89 List of publications 91 Reference 93 List of Figures Figure 1.1 The length scales of the biological building blocks and resolution of fabrication technology 2 Figure 1.2 Stretched DNA in nanochannel 4 Figure 1.3 Manipulation of DNA in nanochannel 5 Figure 1.4 DNA diffusion in nanoslit 6 Figure 1.5 Manipulation of DNA in nanoslit 7 Figure 1.6 The molecular sieving in nanofiliter arrays 8 Figure 2.1 The interactions between segments of linear long chain polymer 10 Figure 2.2 The computer generated random walks and the schematic of freely-joined chain 11 Figure 2.3 The schematic of radius of gyration and end-to-end distance of freely-joined chain 12 Figure 2.4 The conformation of ideal chain 13 Figure 2.5 The hard core potential of polymer segments 13 Figure 2.6 The computer generated self avoiding walks 14 Figure 2.7 The local conformation of worm-like chain 14 Figure 2.8 The trajectory of a Brownian particle 17 Figure 2.9 The hydrodynamic interaction of suspended particles and polymer in solutions 18 Figure 2.10 Schematic illustration of a bead spring chain extensional and rotational relaxation 19 Figure 2.11 The schematic illustration of forces acts on polymer segment 20 Figure 2.12 The schematic illustration of polymer segmental motion with hydrodynamic interaction 22 Figure 2.13 The schematics of blob and reflection chain in confined space 25 Figure 3.1 A schematic diagram of the chip design 27 Figure 3.2 The layout of Mask1 28 Figure 3.3 The layout of Mask2 29 Figure 3.4 Photoresist thicknesses of S1800 series versus spin speed 30 Figure 3.5 The etch rates of silicon nanoslits channel 32 Figure 3.6 The etch rates of glass nanoslits channel 32 Figure 3.7 Anodic bonding method 34 Figure 3.8 The cross-sectional SEM images of nanoslit 34 Figure 3.9 Principle sketch of thermal fusing bonding 35 Figure 3.10 Schematic of silicon nanoslit fabrication 36 Figure 3.11 Schematic of glass nanoslit fabrication 37 Figure 3.12 The absorption and fluorescence emission spectra of YOYO-1 and TOTO-1 bound to DNA 38 Figure 3.13 Schematic layout of optical system 41 Figure 3.14 The λ-DNA image analysis 43 Figure 3.15 Time serious fluorescence images of single T4 DNA confined in 110 nm slit 44 Figure 3.16 Diffusivity of single T4 DNA 44 Figure 3.17 Instantaneous size and shape of fluctuating T4 DNA 45 Figure 3.18 The analyzed image of T4 DNA 46 Figure 3.19 Fluctuation analyses of orientation and extension for single T4 DNA 47 Figure 4.1 The fluorescence image of T4-DNA, λ-DNA, F1-DNA, and F2-DNA, confined in the 110 nm slit 49 Figure 4.2 The shape analysis of confined DNA in 110 nm slit 53 Figure 4.3 Static scaling analysis of DNA confined in 110 nm slit 55 Figure 4.4 Diffusivity (D) vs. number of base pairs (N) of confined DNA in nm slit 56 Figure 4.5 Extensional and rotational relaxation analysis of DNA molecules 58 Figure 5.1 The fluorescent images of linear and circular λ-DNA confined in nanoslit 63 Figure 5.2 The shape properties of linear and circular λ-DNA confined in nanoslit 64 Figure 5.3 Log-Log plot of linear and circular λ-DNA extension vs. h 65 Figure 5.4 The topological dependence of DNA diffusivity 66 Figure 5.5 The extensional relaxation time analysis 67 Figure 5.6 The relaxation time of linear and circular λ-DNA vs. h 68 Figure 6.1 The design and the surface morphology of the nanofluidic chips 71 Figure 6.2 The fluorescent image of trapping DNA by nanoslit sidewall and post 74 Figure 6.3 The channel height dependence of Naonslit sidewall-trapped DNA 76 Figure 6.4 The chain length dependence of Naonslit sidewall-trapped DNA 78 Figure 6.5 Relative extension of wall-trapped λ-DNA 80 Figure 6.6 Electrical manipulation of DNA in nanoslit sidewall traps 82 Figure 6.7 Decompression process of the post-trapped λ-DNA 84 Figure 7.1The surface morphology of the high density post arrays device and the fluorescence image of multiple post-trapped T4 DNA 86 Figure 7.2 The reptation motion of DNA in high density post arrays 87 Figure 8.1 The schematic of DNA in monovalent and multivalent electrolyte solutions 90 List of Tables Table 3.1 The properties of N-type silicon and Pyrex 7740 cover glass wafer 29 Table 3.2 Wafer cleaning process 30 Table 4.1 The shape properties of DNA confined in 110 nm slit 50 Table 4.2 Radius of gyration < Rg> and scaling exponent νRg for different exposure time 55 | |
| dc.language.iso | en | |
| dc.subject | 捕獲 | zh_TW |
| dc.subject | 高分子 | zh_TW |
| dc.subject | 去氧核醣核酸 | zh_TW |
| dc.subject | 奈米流體 | zh_TW |
| dc.subject | 拘限 | zh_TW |
| dc.subject | 操控 | zh_TW |
| dc.subject | 伸展 | zh_TW |
| dc.subject | confinement | en |
| dc.subject | traps | en |
| dc.subject | stretching | en |
| dc.subject | manipulation | en |
| dc.subject | Polymer | en |
| dc.subject | DNA | en |
| dc.subject | nanofluidics | en |
| dc.title | 單一DNA分子拘限在奈米狹縫的靜力學與動力學研究 | zh_TW |
| dc.title | Statics and Dynamics of Single DNA Confined in Nanoslits | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 曹培熙(Pei-Hsi Taso),陳彥龍(Y. -L. Chen),魏培坤(Pei-Kuen Wei),林耿慧(Keng-hui Lin),白小明(White, J. D) | |
| dc.subject.keyword | 高分子,去氧核醣核酸,奈米流體,拘限,操控,伸展,捕獲, | zh_TW |
| dc.subject.keyword | Polymer,DNA,nanofluidics,confinement,manipulation,stretching,traps, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 5.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
