Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范文祥
dc.contributor.authorHsin-Liang Chenen
dc.contributor.author陳信良zh_TW
dc.date.accessioned2021-06-12T18:00:05Z-
dc.date.available2011-02-18
dc.date.copyright2008-02-18
dc.date.issued2008
dc.date.submitted2008-01-28
dc.identifier.citation[1] F. B. Dias et al., J. Phys. Chem. B. 110, 19329 (2006).
[2] C. W. Chang et al., J. Am. Chem. Soc. 126, 10109 (2004).
[3] M. Hultell, and S. Stafstrom, Phys. Rev. B. 75, 104304 (2007).
[4] S. Mazumdar and M. Chandross, Photophysics of conjugated polymers and fullerenes, chapter 14.
[5] S. Karabunarliev, E. R. Bittner, and M. Baumgarten, J. Chem. Phys. 114, 5863 (2001).
[6] R. H. Gee, and R. H. Boyd, J. Chem. Phys. 101, 8028 (1994).
[7] S. N. Yaliraki, and R. J. Silbey, J. Chem. Phys. 104, 1245 (1996).
[8] M. A. Elbayoum, and F. M. A. Halim, J. Chem. Phys. 48, 2536 (1968).
[9] K. Brunner et al., J. Phys. Chem. B 104, 3781 (2000).
[10] A. S. S. Tretiak, R. L. Martin, and A. R. Bishop, Phys. Rev. Lett. 89, 097402 (2002).
[11] S. T. Ignacio Franco, J. Am. Chem. Soc. 126, 12130 (2004).
[12] J. Song et al., Appl. Phys. Lett. 89, 071917 (2006).
[13] P. F. Barbara, S. D. Rand, and P. M. Rentzepis, J. Am. Chem. Soc. 103, 2156 (1981).
[14] G. Lanzani et al., Phys. Rev. B. 51, 13770 (1995).
[15] K. S. Wong, H. Wang, and G. Lanzani, Chem. Phys. Lett. 288, 59 (1998).
[16] S. Westenhoff et al., Phy. Rev. Lett. 97, 166804 (2006).
[17] J. Z. Zhang et al., J. Chem. Phys. 106, 3710 (1997).
[18] N. T. Hunt, and S. R. Meech, Chem. Phys. Lett. 400, 368 (2004).
[19] F. B. Dias et al., J. Chem. Phys. 118, 7119 (2003).
[20] F. M. B. D. Helen L. Vaughan, Andrew P. Monkman, J. Chem. Phys. 122, 014902 (2005).
[21] S. I. Hintschich, F. B. Dias, and A. P. Monkman, Phys. Rev. B. 74, 045210 (2006).
[22] A. P. Monkman et al., Phys. Rev. Lett. 86, 1358 (2001).
[23] A. J. Cadby, Lane, P. A., Mellor, H., Martin, S. J., Grell, M., Giebeler, C., Bradley, D. D. C., Phys. Rev. B. 62, 15604 (2000).
[24] A. C. S. S. H. Chen, C. H. Su., Macromolecules 38, 379 (2005).
[25] B. T. W. Chunwaschirasiri, D. L. Huber, and M. J. Winokur, Phys. Rev. Lett. 94, 107402 (2005).
[26] K. T. Wong et al., J. Am. Chem. Soc. 124, 11576 (2002).
[27] S. E. Barslavsky, Heibel, G. E., Chem. Rev. 92, 1381 (1992).
[28] C. B. Anfinsen, Science 181, 223 (1973).
[29] B. Gruenewald et al., Biophys. Chem. 9, 137 (1979).
[30] S. Williams et al., Biochemistry 35, 691 (1996).
[31] P. A. Thompson, W. A. Eaton, and J. Hofrichter, Biochemistry 36, 9200 (1997).
[32] V. Munoz et al., Nature 390, 196 (1997).
[33] O. Bieri, and T. Kiefhaber, J. Biol. Chem. 380, 923 (1999).
[34] D. J. Brockwell, D. A. Smith, and S. E. Radford, Curr. Opin. Struc. Biol. 10, 16 (2000).
[35] H. Roder, and M. C. R. Shastry, Curr. Opin. Struc. Biol. 9, 620 (1999).
[36] W. A. Eaton et al., Structure 4, 1133 (1996).
[37] W. A. Eaton et al., Curr. Opin. Struc. Biol. 7, 10 (1997).
[38] M. C. R. Shastry, and H. Roder, Nat. Struct. Biol. 5, 385 (1998).
[39] M. C. R. Shastry, S. D. Luck, and H. Roder, Biophys. J. 74, 2714 (1998).
[40] S. H. Park, M. C. R. Shastry, and H. Roder, Nat. Struct. Biol. 6, 943 (1999).
[41] C. K. Chan et al., Proc. Natl. Acad. Sci. 94, 1779 (1997).
[42] S. Akiyama et al., Nat. Struct. Biol. 7, 514 (2000).
[43] M. Jacob et al., Biochemistry 38, 2882 (1999).
[44] C. K. Chan, J. Hofrichter, and W. A. Eaton, Science 274, 628 (1996).
[45] C. M. Jones et al., Proc. Natl. Acad. Sci. 90, 11860 (1993).
[46] T. Pascher et al., Science 271, 1558 (1996).
[47] R. M. Ballew, J. Sabelko, and M. Gruebele, Nat. Struct. Biol. 3, 923 (1996).
[48] J. B. Callis, Gouterma.M, and W. W. Parson, Biochim. Biophys. Acta. 267, 348 (1972).
[49] W. A. Eaton et al., Structure 4, 1133 (1996).
[50] J. R. Small, Method Enzymol. 210, 505 (1992).
[51] J. R. Small, L. J. Libertini, and E. W. Small, Biophys. Chem. 42, 29 (1992).
[52] I. Michler, and S. E. Braslavsky, Photochem. Photobiol. 74, 624 (2001).
[53] M. Terazima, Hirota, N., J. Phys. Chem. 96, 7147 (1992).
[54] K. T. Wong et al., Org. Lett. 8, 1415 (2006).
[55] J. S. de Melo et al., Chem. Phys. Lett. 388, 236 (2004).
[56] J. S. de Melo et al., Chem. Phys. 330, 449 (2006).
[57] S. R. Yeh, and D. E. Falvey, J. Photoch. Photobiol. A 87, 13 (1995).
[58] Y. F. Huang et al., J. Phys. Chem. B. 108, 9619 (2004).
[59] S. M. Fonseca et al., J. Phys. Chem. B. 110, 8278 (2006).
[60] J. S. de Melo et al., J. Chem. Phys. 111, 5427 (1999).
[61] H. D. Burrows et al., Chem. Phys. 285, 3 (2002).
[62] L. P. Candeias et al., J. Phys. Chem. B. 104, 8366 (2000).
[63] H. D. Burrows et al., J. Chem. Phys. 115, 9601 (2001).
[64] S. M. King et al., J. Chem. Phys. 124, 4903 (2006).
[65] I. D. W. Samuel, G. Rumbles, and C. J. Collison, Phys. Rev. B. 52, 11573 (1995).
[66] R. J. Englman, J. Mol. Phys. 18, 145 (1970).
[67] R. A. Marcus, J. Chem. Phys. 24, 966 (1956).
[68] R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960).
[69] T. Fo¨rster, Ann. Phys. (Leipzig) 2, 35 (1948).
[70] R. Chang et al., Chem. Phys. Lett. 317, 142 (2000).
[71] A. P. Monkman et al., Phys. Rev. Lett. 86, 1358 (2001).
[72] C. Ridley et al., Chem. Phys. Lett. 418, 137 (2006).
[73] Y. F. Huang, Chen, H. L., Ting, J. W., Liao, C. S., Larsen, R. W. and Fann, W., J. Phys. Chem. B. 108, 9619 (2004).
[74] J. H. Jo et al., Chem-Eur. J. 10, 2681 (2004).
[75] D. Wasserberg et al., Chem. Phys. Lett. 411, 273 (2005).
[76] M. Arif, C. Volz, and S. Guha, Phys. Rev. Lett. 96, 025503 (2006).
[77] C. Volz, M. Arif, and S. Guha, J. Chem. Phys. 126, 064905 (2007).
[78] G. Fytas et al., Macromolecules 35, 481 (2002).
[79] D. Beljonne et al., Proc. Natl. Acad. Sci. 99, 10982 (2002).
[80] J. E. F. P. Papanek et al., Phys. Rev. B. 50, 15668 (1994).
[81] J. Rissler, Chem. Phys. Lett. 395, 92 (2004).
[82] R. P. Y. Chen et al., Proc. Natl. Acad. Sci. 101, 7305 (2004).
[83] R. M. B. dos Santos, A. L. C. Lagoa, and J. A. M. Simoes, J. Chem. Thermodyn. 31, 1483 (1999).
[84] T. H. Masahide Terazima, Noboru Hirota., J. Phys. Chem. 97, 13668 (1993).
[85] S. G. B. Tanto, C. M. Martin, U. Scherf, M. J. Winokur, Macromolecules 37, 9438 (2004).
[86] M. Ariu et al., J. Phys. Condens. Mat. 14, 9975 (2002).
[87] H. Ihee et al., Science 309, 1223 (2005).
[88] S. R. Yeh, Falvey, D. E., J. Photochem. Photobiol. A: Chem. 87, 13 (1995).
[89] M. S. A. Abdou, Orfino, F. P., Son, Y., Holdcroft, S., J. Am. Chem. Soc. 119, 4518 (1997).
[90] T. Q. Nguyen, Doan, V., Schwartz, B. J., J. Chem. Phys. 110, 4068 (1999).
[91] R. Chang, Hsu et al., Phys. Lett. 317, 142 (2000).
[92] H. D. Burrows et al., J. Chem. Phys. 115, 9601 (2001).
[93] R. D. McCullough et al., J. Org. Chem. 58, 904 (1993).
[94] G. Rumbles et al., Synth. Met. 76, 47 (1996).
[95] H. Meier, U. Stalmach, and H. Kolshorn, Acta. Polymerica. 48, 379 (1997).
[96] H. Nakanishi et al., J. Org. Chem. 63, 8632 (1998).
[97] T. Izumi et al., J. Am. Chem. Soc, 125, 5286 (2003).
[98] A. P. Monkman et al., Phys. Rev Lett. 86, 1358 (2001).
[99] R. A. J. Janssen, Sariciftci, N. S., Heeger, A. J., J. Chem. Phys. 100, 8641 (1994).
[100] J. S. de Melo et al., J. Chem. Phys. 118, 1550 (2003).
[101] L. Pauling, and R. B. Corey, Proc. Natl. Acad. Sci. 37, 235 (1951).
[102] L. Pauling, and R. B. Corey, Proc. Natl. Acad. Sci. 37, 251 (1951).
[103] K. Y. Kim, and C. Frieden, Protein Science 7, 1821 (1998).
[104] P. Y. Chen et al., Protein Science 10, 2063 (2001).
[105] S. Nauli, B. Kuhlman, and D. Baker, Nat. Struct. Biol. 8, 602 (2001).
[106] E. L. McCallister, E. Alm, and D. Baker, Nat. Struct. Biol. 7, 669 (2000).
[107] H. X. X. Zhou et al., Nat. Struct. Biol. 3, 446 (1996).
[108] P. Y. Chou, and G. D. Fasman, J. Mol. Biol. 115, 135 (1977).
[109] H. J. Dyson et al., J. Mol. Biol. 201, 161 (1988).
[110] H. C. Shin et al., Biochemistry 32, 6356 (1993).
[111] A. Matouschek et al., Nature 346, 440 (1990).
[112] E. De Alba, M. Rico, and M. A. Jimenez, Protein Science 8, 2234 (1999).
[113] M. RamirezAlvarado et al., J. Mol. Biol. 273, 898 (1997).
[114] H. E. Stanger, and S. H. Gellman, J. Am. Chem. Soc. 120, 4236 (1998).
[115] P. Y. Chen et al., Protein Science 10, 1794 (2001).
[116] E. deAlba, M. A. Jimenez, and M. Rico, J. Am. Chem. Soc. 119, 175 (1997).
[117] E. De Alba et al., Protein Science 8, 854 (1999).
[118] F. J. Blanco, and L. Serrano, Eur. J. Biochem. 230, 634 (1995).
[119] F. J. Blanco, G. Rivas, and L. Serrano, Nat. Struct. Biol. 1, 584 (1994).
[120] S. H. Park, M. C. R. Shastry, and H. Roder, Nat. Struct. Biol. 6, 943 (1999).
[121] S. J. Maness et al., Biophys. J. 84, 3874 (2003).
[122] Y. Xu, R. Oyola, and F. Gai, J. Am. Chem. Soc. 125, 15388 (2003).
[123] J. C. Sheehan, R. M. Wilson, and A. W. Oxford, J. Am. Chem. Soc. 93, 7222 (1971).
[124] R. S. Rock, and S. I. Chan, J. Am. Chem. Soc. 120, 10766 (1998).
[125] R. S. Rock, and S. I. Chan, J. Org. Chem. 61, 1526 (1996).
[126] M. H. B. Stowell et al., Tetrahedron Lett. 37, 307 (1996).
[127] K. C. Hansen et al., J. Am. Chem. Soc. 122, 11567 (2000).
[128] H. L. Schenck, and S. H. Gellman, J. Am. Chem. Soc. 120, 4869 (1998).
[129] A. R. Dinner, T. Lazaridis, and M. Karplus, Proc. Natil. Acad. Sci. 96, 9068 (1999).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27284-
dc.description.abstract高分子之結構變化與其發光機制、電荷傳遞、或生物高分子之功能皆有其重要的相關性。我們利用時間解析光熱測卡計,觀測高分子因光激發引發的結構改變行為與能量變化。
探討的樣品主要包含兩類:發光共軛高分子與蛋白質。在共軛高分子方面,我們比較以芴(fluorene)為單體、不同鏈長的小分子與PFO,在光激發後所產生的單體與單體間扭轉運動。並以TSBF當作標準物,因其在光激發後的能量衰減過程無伴隨單體間之扭轉運動。從這些實驗結果,我們提出四個步驟的運動模型,來解釋光激發後的扭轉運動,依此模型,單體與單體間扭轉的角度為35度。相對於PFO,另一具高規則性的共軛高分子聚3-烷基噻吩(Poly(3-dodecylthiophene))雖然似PFO的光譜變化但並沒有觀測到單體間之扭轉運動,其原因,可能為此高分子主鏈具有高規則性(>98%),以頭對尾方式進行耦合排列之共軛高分子,易到達共平面結構,加上其支鏈較長,更不利於扭轉運動。
另一方面,我們利用易光解斷鍵的化學物質,將其連結到β摺板蛋白質上,固定β摺板的初始結構,利用光熱測卡計量測β摺板因光解斷鍵物質受破壞而引發的構形再折疊運動,經由替換β摺板轉折處的氨基酸,我們歸結出轉折處的氨基酸在蛋白質折疊上扮演一個重要的角色。
zh_TW
dc.description.abstractConformations play important roles in electronic properties of conjugated polymers, and functionalities of bio-molecules. Studies on conformational changes upon electronically excited or performing functions always inspire scientists. Changes in photophysics of these macro-molecules, such as Stokes shifts, spectrum and etc. are sensitive to conformational changes, and serve as appropriate indicators. In this thesis, we apply time-resolved photothermal spectroscopy to focus on two kinds of macromolecules: proteins and conjugate polymers.
In the first part, photothermal techniques are used to visualize the photo induced backbone torsional motion and the corresponding energy flows of polyfluorene (PFO) and poly(3-dodecylthiophene) (P3DT). Systematically comparing photo-excited twisting motions among PFO with different numbers of monomer units has been done in this work. Based on the fact that the photo induced torsional motion can not be detected directly, Ter(9,9'-spirobifluorene) (TSBF) is adopted as a reference for comparison. A four-state model is proposed to correlate the observed energy flow change and volume expansion to photo-induced twisting motions according to the experimental results. The torsional angle can be accordingly estimated. On photo-excited PFO reveals ~ 35° twisting motions between monomer units while P3DT is quite rigid and does not show apparent backbone changes though it has similar spectrum dynamics to PFO. One of the reasons is that high regioregularity (>98%) and long effective conjugated length result in highly coplanar conformations of P3DT. In addition, the long side chain group of P3DT might also block the torsional motion.
In the study on proteins, we focus on kinetics of conformational refolding. It is strongly related to the functions of protein molecules. We use photolysis cages labeled on β-sheet peptides to force deformations of peptides at initial state. By combining laser flash photolysis of cages with photoacoustic calorimetry, we study the effects of different turns on the kinetics of β-hairpin upon refolding in nanosecond timescale. Our observations suggest that the turn formation of β-sheet is vital in directing protein conformational searching at the first place of refolding.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T18:00:05Z (GMT). No. of bitstreams: 1
ntu-97-D91222015-1.pdf: 2427795 bytes, checksum: f75316d6e49eec3172053568180125be (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1. Introduction 1
1.1. Photo-induced Conformational Change 2
1.2. Torsional Motion of Conjugation Polymer 4
1.3. Protein Folding Problem 7
2. Experiment Methods and Apparatus 10
2.1. Photothermal Calorimetry 11
2.1.1. Time-resolved Photoacoustic Calorimetry (PAC) 11
2.1.2. Time-resolved Photothermal Beam Diffraction (PBD) 13
2.2. Streak Camera 15
2.3. Intensifier Charge-Coupled Device 16
3. The Photophysics of PVDOP and TSBF 18
3.1. Materials 19
3.2. Results and Discussion 20
3.2.1. Steady-state Absorption and Emission Spectra 20
3.2.2. Time-resolved Photothermal Calorimetry Spectra 25
3.3. Conclusion 37
4. The Torsional Motion in Polyfluorene 38
4.1. Materials 39
4.2. Apparatus 39
4.3. Results and Discussion 40
4.3.1. Steady-state Absorption and Photoluminescence spectra 40
4.3.2. Time-resolved Photoluminescence Spectra 42
4.3.3. Time-resolved Photothermal Spectra 51
4.3.4. Four-stage Model 61
4.4. Conclusion 65
5. Direct Measurement of the Triplet State Quantum Yield of Poly (3-dodecylthiophene) in Solution 66
5.1. Experiments 67
5.2. Results and Discussion 68
5.3. Conclusion 76
6. Protein Folding in β Sheets with Different Turn Sequence 78
6.1. Motivation79
6.2. Methods83
6.3. Results85
6.3.1. Examining the Structural Alteration of the Ppeptides after Cyclization by CD Spectroscopy 85
6.3.2. Refolding Kinetics of the Peptides by Photoacoustic Calorimetry 88
6.4. Discussion92
6.5. Conclusion 95
Reference 96
dc.language.isoen
dc.subject單體間之扭轉運動zh_TW
dc.subject高分子結構變化zh_TW
dc.subject光熱測卡計zh_TW
dc.subject芴zh_TW
dc.subjectβ摺板zh_TW
dc.subjectβ-hairpinen
dc.subjectPhotothermal calorimetryen
dc.subjectFluoreneen
dc.subjectConformational changeen
dc.subjectTorsional motionen
dc.title光熱測卡計在蛋白質折疊與共軛高分子光物理上的應用zh_TW
dc.titleApplication of Time-resolved Photothermal Calorimetry on Protein Folding and Photophysics of Conjugated Polymeren
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee曹培熙,白小明,蘇安仲,許昭萍,陳佩燁
dc.subject.keyword高分子結構變化,光熱測卡計,芴,β摺板,單體間之扭轉運動,zh_TW
dc.subject.keywordConformational change,Photothermal calorimetry,Fluorene,β-hairpin,Torsional motion,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2008-01-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved