Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌
dc.contributor.authorChung-Che Tanen
dc.contributor.author譚仲哲zh_TW
dc.date.accessioned2021-06-12T17:58:49Z-
dc.date.available2008-02-01
dc.date.copyright2008-02-01
dc.date.issued2008
dc.date.submitted2008-01-29
dc.identifier.citationAarts EHL, Van Laarhoven PJM, “Statistical cooling: A general approach to combinatorial optimization problems.” Philips Journal Research, 40:193-226, 1985.
Akaike H., “A new look at the statistical model identification.” IEEE Transactions on Automatic Control, 19, 716-723, 1974.
Alcolea, A. J. Carrera, and A. Medina, “Inversion of heterogeneous parabolic-type equations using the pilot points method.” International Journal for Numerical Methods in Fluids, 51:963-980, 2006.
Aral, M. M., J. B. Guan, and M. L. Maslia, 'Identification of contaminant source location and release history in aquifers.' Journal of Hydrologic Engineering 6(3): 225-234, 2001.
Carrera, J., and S. P. Neuman, “Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information.” Water Resources Research, 22, no. 2, 199-210, 1986.
Chavent, G., M. Dupuy, and P. Lemonnier, “History matching by use of optimal control theory.” Soc. Petrol. Eng. J., 15, 74-86, 1975.
Chiang, W-H., and W. Kinzelbach, ”3D-Groundwater Modeling with PMWIN: A Simulation System for Modeling Groundwater Flow and Pollution.” 1st ed. 2001. Corr. 3rd printing, XIV, Springer, 346 pp, 2003.
Dirichlet G. L., “Uber die Reduction der Positeven quadratischen Formen mit drei unbestimmten ganzen Zahlen.“ Journal of fur die Reine und Angewandte Mathematik, 40, 209-227, 1850.
Director, S. W., and R. A. Rohrer, “The generalized adjoint network and network sensitivities.” IEEE Trans Circuit Theory, CT-16, 313-323, 1969.
Doherty, J., “Ground water model calibration using pilot points and regularization.“ Ground Water, 41(2), 170-177, 2003.
Dougherty, D. E., and Marryott, R. A., “Optimal groundwater management 1. Simulated Annealing.” Water Resources Research, Vol. 27, No. 10, 2493-2508, 1991.
Emsellem, Y., and G. de Marsily, “An aotumatic solution for the inverse problem.” Water Resources Research, 7, no. 5, 1264-1283, 1971.
Glover F., “A user’s guide to Tabu Search.“ Annals of Operations Research, 41, 3-28, 1993.
Glover F., and M. Laguna, “Tabu Search.“ Kluwer Academic Publishers, Boston, MA, USA, 1997.
Hannan, E. J., “The estimation of the order of an ARMA process.” Ann. Statist, 8: 1071-1081, 1980.
Harbaugh, A. W., and M. G. McDonald, “User’s documentation for MODFLOW 96 an update to the U. S. Geological Survey modular finite-difference groundwater flow model.“ U. S. Geol. Surv. Open File, 96-485, 1996.
Hertz, A., and D. De Werra, “Using Tabu search techniques for graph coloring“, Computing, 39, 345-351, 1987.
Hill, M. C., R. L. Colley, and D. W. Pollock, “A Controlled Experiment in Ground Water Flow Model Calibration.” Ground Water 36:520-535, 1998.
Hsu, R. T., “Application of parameter identification on groundwater pumpage inverse problem.” Ms Thesis Graduate Institute of Agricultural Engineering National Taiwan University, 1985.
Hurvich, C. M., and C. L. Tsai, “Regression and time series model selection in small samples.“ Biometrika, 76, 297-307, 1989.
Kashyap, R. L., “Optimal choice of AR and MR parts in autoregressive moving average models.“ IEEE Transactions on Pattern Analysis and Machine Intellengence, 4, no. 2, 99-104, 1982.
Keidser, A., D. Rosbjerg, K. H. Jensen, and K. Bitsch, “A joint kriging and zonation approach to inverse groundwater modeling, in Calibration and Reliability in Groundwater Modelling.“ IAHS Publ, 195, 171-184, 1990.
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing.” Science 220:671-680, 1983.
Kirkpatrick, S., “Optimization by simulated annealing: Quantitative Studies.” J. Stat. Phys. 34(5/6): 975-986, 1984.
Metropolis N, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, and J. Chem, “Equation of state calculations by fast computation machines.” Phys. 21:1087-1092, 1953.
Lin Y. P., Y. C. Tan, and S. Rouhani, “Identifying spatial characteristics of transmissivity using simulated annealing and kriging methods.” Environmental Geology 41: 200-208, 2001.
Malek, M., M. Guruswamy, and M. Pandya, “Serial and Paralel Simulated Annealing and Tabu Search Algorithms for the Traveling Salesman Problem.“ Annals of Operation Research, 21, 59-84, 1989.
Mayer, A. S., and C. L. Huang, “Development and application of a coupled-process parameter inversion model based on the maximum likelihood estimation method.” Advances in Water Resources, 22, no. 8: 841-853, 1999.
Mcdonald, M. G., and A. W. Harbaugh, “A modular three-dimensional finite-difference ground-water flow model.” Techniques of Water Resources Investigations, 06-A1. U.S. Geological Survey, 1988.
McLaughlin, D. and L. R. Townley, “A reassessment of the groundwater inverse problem.“ Water Resources Research, 32(5), 1131-1161., 1996.
Michalak, A. M., “Application of bayesian inference methods to inverse modeling for contaminant source identification.“ Ph.D. dissertation, Department of Civil and Environmental Engineering of Standford University, 2003.
Michalak, A. M., P. K. Kitanidis, “Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling.” Water Resources Research, 40, W08302, doi:10.1029/2004WR003214, 2004.
Morshed, J. and J. J. Kaluarachchi, “Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery.” Water Resoueces Research, 34(5): 1101-1113, 1998.
Neuman, S. P., “Adjoint-state finite element equations for parameter estimation.” In Proceddings of Third International Congress on Finite Elements in Water Resouces, University of Mississippi, 1980a.
Neuman, S. P., “A statistical approach to the inverse problem of aquifer hydrology, 3, Improved solution method and added perspective.” Water Resources Research, 16(2), 331-346, 1980b.
Okabe A, B. Boots, and K. Sugihara, “Spatial tessellations: Concepts and applications of Voronoi Diagrams.“ 1st ed., Chichester, John Wiley & Sons, 1992.
Ponnambalam, S. G., P. Aravindan, and S. V. Rajesh, “A Tabu search algorithm for job shop scheduling”. Advanced Manufacturing Technology, 2000.
RamaRao, B. S., A. M. LaVenun, G. De Marsily, and M. G. Marietta, “Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissitivy fields: 1. Theory and computational experiments.“ Water Resources Research, 31(3), 475-493, 1995.
Schürmann, J., “Pattern Classification: a unified view of statistical and neural approaches.“ John Wiley & Sons, Inc, 1996.
Selim, S. Z., and K. Alsultan, “A Simulated Annealing Algorithm for the Clustering Problem”, Pattern Recognition, Vol. 24, No. 10, 1003-1008, 1991.
Schwarz, G., “Estimating the dimension of a model.” Ann. Statist, 6: 461-464, 1978.
Skaggs, T. H. and Z. J. Kabala, “ Recovering the release history of a groundwater contaminant.” Water Resour. Res., 30(1), 71-79, 1994.
Sun, N. Z., and W. W-G Yeh, “Identification of parameter structure in groundwater inverse problem.” Water Resources Research, 21(6), 869-883, 1985.
Sun, N. Z., and W. W-G. Yeh, “Coupled inverse problem in groundwater modeling, 1, Sensitivity analysis and parameter identification.” Water Resources Research, 26(10), 2507-2525, 1990a.
Sun, N. Z., and W. W-G. Yeh, “Coupled inverse problem in groundwater modeling, 2, Identifiability and experimental design.” Water Resources Research, 26(10), 2527-2540, 1990b.
Sun, N. Z., and W. W-G. Yeh, “A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis.” Water Resources Research, 28(12), 3269-3280, 1992.
Sun, N. Z., “Inverse problems in groundwater modeling.“ Kluwer Acad., Norwell, Mass., 1994.
Sun, N. Z., S. Yang, and W. W-G. Yeh, “A proposed stepwise regression method for model structure identification.” Water Resources Research, 34(10), 2561-2572, 1998.
Sykes, J. F., J. L. Wilson, and R. W. Andrews, “Sensitivity analysis for steady state groundwater flow using adjoint operators.” Water Resources Research, 21(3), 359-371, 1985.
Thiessen, A. H., “Precipitation averages for large areas.“ Monthly Weather Review, 39, 1082-1084, 1911.
Tsai, F. T-C., N. Z. Sun, and W. W-G. Yeh, “Global-local optimization for parameter structure identification in three-dimensional groundwater modeling.“ Water Resources Research, 39(2), 1043-1056, 2003a.
Tsai, F. T-C., Sun, N. Z., and W. W-G. Yeh, “A Combinatorial Optimization Scheme for Parameter Structure Identification in Ground Water Modeling. “ Ground Water, 41(2), 156-169, 2003b.
Tsai, F. T-C., and W. W.-G. Yeh, “Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation.“ Water Resources Research, 40, W10102 doi: 10.1029/2003WR002893, 2004.
Tung, C. P., and C. A. Chou, “Application of tabu search to groundwater parameter zonation.“ Journal of American Water Resources Association, 38(4), 1115-1126, 2002.
Tung, C. P., and C. A. Chou, “Pattern classification using tabu search to identify the spatial distribution of groundwater pumping. “ Hydrogeology Journal, 12, 488-496, 2004.
Tung, C. P., C. C. Tan, and Y. P. Lin, “Improving groundwater flow modeling using optimal zoning methods. “ Environmental Geology, 44, 627-638, 2003.
Voronoi, G., “Nouvelles applications des parameters continues a la theorie des formes quadratiques. Deuxieme Memoire: Recherches sur les parallelloedres primitives. “ Journal fur die Reine und Angewandte Mathematik, 134, 198-287, 1908.
Yeh, W. W-G., and Y. S. Yoon, “Aquifer parameter identification with optimum dimension in parameterization. “ Water Resources Research, 17(3), 664-672, 1981.
Yeh, W. W-G, Y. S. Yoon, K. S. Lee, “Aquifer parameter identification with kriging and optimum parameterization.” Water Resources Research 19(1): 225-233, 1983.
Yeh, W. W-G., “Review of parameter identification procedure in groundwater hydrology: The inverse problem.“ Water Resources Research, 22(2), 95-108, 1986.
Yeh, W. W.-G., and N. Z, Sun, “Variational sensitivity analysis, data requirement, and parameter identification in a leaky aquifer system.” Water Resources Research, 26(9), 1927-1938, 1990.
Zheng, C., and P. Wang, “Parameter structure identification using tabu search and simulated annealing.” Advances in Water Resources, 19, no. 4: 215-224, 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27239-
dc.description.abstract本論文提出一整合型優選演算法應用於地下水模擬模式之參數辨識,其主要貢獻在於針對參數辨識之反向問題求解中最重要的兩項元素―參數化以及調整參數,進行最佳化處理;就參數化來說,本論文應用了三種分區方法―Voronoi diagram (VD)、multiplicatively weighted Voronoi diagram (MWVD)、以及 pattern zonation (PZ),其中並將各分區方法加入內插技巧,進行水力傳導係數空間分佈之描繪應用,而每一種分區方法皆可視為此整合型優選演算法之部份元件。另外,本論文採用模擬退火法(simulated annealing algorithm, SA)以及禁忌演算法(Tabu search, TS)進行模式中參數的最佳化調整與辨識,其中更進一步利用伴隨狀態方法(adjoint state method, ASM)以及不同模擬網格大小之技巧,配合禁忌演算法改善模式參數辨識之效能與效率。
本論文並提出三個不同的應用,以証明此整合型優選演算法之可行性。首先利用模擬退火法以及Voronoi diagram進行台北盆地地下水侷限含水層參數結構之辨識;接著利用禁忌演算法配合三種不同的分區方法應用於假設案例,驗証其可行性;最後,採用禁忌演算法,配合伴隨狀態方法及不同模擬網格大小技巧,有效率地應用於片段均質以及連續型之水力傳導係數空間分佈之辨識。此外,模式的殘差、參數不確定性、模式結構誤差以及修正型的Akaike Information Criterion等多項指標,皆為本論文應用於模式複雜度之判斷依據,以避免過度參數化之情形發生。結果顯示,不論是模擬退火法、禁忌演算法或是禁忌演算法配合伴隨狀態方法,皆能有效地進行地下水模式之參數辨識。
zh_TW
dc.description.abstractThe main contribution of this dissertation is proposing an integrated optimization algorithm for parameter structure identification in groundwater model simulation. The integrated optimization algorithm is applied to parameterization and parameter adjustment which are two essential components of solving inverse problems. As for parameterization, three zonation methods, Voronoi diagram (VD), multiplicatively weighted Voronoi diagram (MWVD), and pattern zonation (PZ), combined with the interpolation approach are presented in this dissertation to depict the spatial distribution of hydraulic conductivity. Each of these methods is able to be selected as a part of the integrated optimization algorithm. The simulated annealing algorithm (SA) and Tabu search (TS) are adopted in this dissertation to adjust the parameters. Moreover, the adjoint state method (ASM) and the coarse-fine grid search technique are allied with TS to enhance the efficiency in parameter adjustment.
Three applications are represented in this dissertation to demonstrate the integrated optimization algorithm. First, SA and VD are used to identify the parameter structure of a confined aquifer. TS and three zonation methods are then applied to the parameter identification of hypothetical cases. TS allied with ASM are adopted with the coarse-fine grid search technique to identify both synthetically discrete and continuous hydraulic conductivity distribution efficiently and effectively. Meanwhile, the residual error, parameter uncertainty, structure error, and a modified Akaike Information Criterion values are used to help the determination of the model complexity over these applications. The results indicate that all SA, TS alone, and TS allied with ASM are able to optimize the parameter structure well.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:58:49Z (GMT). No. of bitstreams: 1
ntu-97-D92622008-1.pdf: 1938545 bytes, checksum: 2eafa43a2ca86273087ee934c064a33b (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
Abstract i
Ⅰ Introduction and Background 1
1. Introduction 2
1.1 Framework 6
1.2 Scope 6
2. Background 9
2.1 Groundwater Flow Equation 9
2.2 Parameter Identification in Groundwater Model Simulation 11
2.3 Optimization Algorithm to the Inverse Problem 14
Ⅱ Parameter Structure Identification of Groundwater Modeling in Inverse Problem 17
3. Methods for Parameter Identification 18
3.1 Parameterization 18
3.1.1 Voronoi Diagram 20
3.1.2 Multiplicatively Weighted Voronoi Diagram 23
3.1.3 Pattern Zonation 24
3.2 Parameter Structure Identification Criteria 27
3.2.1 Fitting Residual Error 28
3.2.2 Parameter Uncertainty 29
3.2.3 Structure Error 30
3.2.4 Modified Akaike Information Criterion 31
4. Optimization Algorithm in Inverse Problem 32
4.1 Simulated Annealing Algorithm 32
4.2 Tabu Search 37
4.3 Adjoint State Method 43
Ⅲ Application of Integrated Optimization Algorithm for Distributed Parameter Structure Identification in Groundwater Model Simulation 48
5. An optimal procedure for identifying parameter structure and application to a confined aquifer 49
5.1 Numerical Model of the Study Area 52
5.2 Formulation of the optimal model 54
5.3 Specification of SA 55
5.4 Results and discussions 55
5.5 Comparison with hill-climbing method 61
6. Applying Zonation Methods and Tabu Search to Improve the Groundwater Modeling 63
6.1 Hypothetical Hydraulic Conductivity Field 62
6.2 Formulation of the Inverse Problem 66
6.3 Specifications of TS 68
6.4 Results and Discussion 69
6.4.1 Scenario A 70
6.4.2 Scenario B 71
6.4.3 Scenario C 72
6.4.4 Scenario D 72
7. Integrated Optimization Algorithm for Distributed Parameter Structure Identification in Groundwater Modeling 79
7.1 Hypothetical Aquifer 82
7.2 Formulation of the Optimization Model 83
7.3 Case 1: Discrete Hydraulic Conductivity Zone 84
7.3.1 Specification of TS 86
7.3.2 Parameter Identification Results 86
7.4 Case 2: Continuous Hydraulic Conductivity Distribution 93
7.4.1 Specification of TS 94
7.4.2 Parameter Identification Results 94
Ⅳ. Conclusions and Future Research Directions 101
8. Conclusions and Suggestion 102
8.1 Application to a Confined Aquifer 102
8.2 Application of Zonation Methods and Tabu Search 103
8.3 Integrated Optimization Algorithm for Distributed Parameter Structure Identification 104
8.4 Conclusions and Suggestion 105
Bibliography 107
dc.language.isoen
dc.subject模擬退火法zh_TW
dc.subject參數辨識zh_TW
dc.subject反向問題zh_TW
dc.subjectVoronoi Diagramzh_TW
dc.subject禁忌演算法zh_TW
dc.subject伴隨狀態方法zh_TW
dc.subject參數不確定性zh_TW
dc.subject結構誤差zh_TW
dc.subject修正型Akaike Information Criterionzh_TW
dc.subjectSimulated Annealing Algorithmen
dc.subjectVoronoi Diagramen
dc.subjectTabu Searchen
dc.subjectAkaike Information Criterionen
dc.subjectStructure Erroren
dc.subjectParameter Uncertaintyen
dc.subjectAdjoint State Methoden
dc.subjectInverse Problemen
dc.subjectParameter Identificationen
dc.title整合型優選演算法應用於分散式地下水模式之參數結構辨識zh_TW
dc.titleAn Integrated Optimization Algorithm for Distributed Parameter Structure Identification in Groundwater Model Simulationen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳主惠,譚義績,張良正,徐年盛,李明旭
dc.subject.keyword參數辨識,反向問題,Voronoi Diagram,模擬退火法,禁忌演算法,伴隨狀態方法,參數不確定性,結構誤差,修正型Akaike Information Criterion,zh_TW
dc.subject.keywordParameter Identification,Inverse Problem,Voronoi Diagram,Simulated Annealing Algorithm,Tabu Search,Adjoint State Method,Parameter Uncertainty,Structure Error,Akaike Information Criterion,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2008-01-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved