Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27233
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor葉秀慧
dc.contributor.authorChing-Ju Changen
dc.contributor.author張靜如zh_TW
dc.date.accessioned2021-06-12T17:58:39Z-
dc.date.available2018-12-31
dc.date.copyright2008-02-20
dc.date.issued2008
dc.date.submitted2008-01-29
dc.identifier.citation[1] P. Tiollais, C. Pourcel, and A. Dejean, 'The hepatitis B virus,' Nature, vol. 317, pp. 489-95, Oct 10-16 1985.
[2] W. Szmuness, C. E. Stevens, E. J. Harley, E. A. Zang, P. E. Taylor, and H. J. Alter, 'The immune response of healthy adults to a reduced dose of hepatitis B vaccine,' J Med Virol, vol. 8, pp. 123-9, 1981.
[3] C. Seeger, D. Ganem, and H. E. Varmus, 'Biochemical and genetic evidence for the hepatitis B virus replication strategy,' Science, vol. 232, pp. 477-84, Apr 25 1986.
[4] T. Maruyama, S. Iino, K. Koike, K. Yasuda, and D. R. Milich, 'Serology of acute exacerbation in chronic hepatitis B virus infection,' Gastroenterology, vol. 105, pp. 1141-51, Oct 1993.
[5] O. Jean-Jean, M. Levrero, H. Will, M. Perricaudet, and J. M. Rossignol, 'Expression mechanism of the hepatitis B virus (HBV) C gene and biosynthesis of HBe antigen,' Virology, vol. 170, pp. 99-106, May 1989.
[6] S. M. Oberhaus and J. E. Newbold, 'Detection of an RNase H activity associated with hepadnaviruses,' J Virol, vol. 69, pp. 5697-704, Sep 1995.
[7] H. Nakatake, O. Chisaka, S. Yamamoto, K. Matsubara, and R. Koshy, 'Effect of X protein on transactivation of hepatitis B virus promoters and on viral replication,' Virology, vol. 195, pp. 305-14, Aug 1993.
[8] D. S. Chen, 'Public health measures to control hepatitis B virus infection in the developing countries of the Asia-Pacific region,' J Gastroenterol Hepatol, vol. 15 Suppl, pp. E7-10, May 2000.
[9] K. Huang and S. Lin, 'Nationwide vaccination: a success story in Taiwan,' Vaccine, vol. 18 Suppl 1, pp. S35-8, Feb 18 2000.
[10] A. J. Zuckerman, 'More than third of world's population has been infected with hepatitis B virus,' BMJ, vol. 318, p. 1213, May 1 1999.
[11] J. E. Maynard, 'Hepatitis B: global importance and need for control,' Vaccine, vol. 8 Suppl, pp. S18-20; discussion S21-3, Mar 1990.
[12] H. S. Margolis, M. J. Alter, and S. C. Hadler, 'Hepatitis B: evolving epidemiology and implications for control,' Semin Liver Dis, vol. 11, pp. 84-92, May 1991.
[13] M. Dehesa-Violante and R. Nunez-Nateras, 'Epidemiology of hepatitis virus B and C,' Arch Med Res, vol. 38, pp. 606-11, Aug 2007.
[14] I. Merican, R. Guan, D. Amarapuka, M. J. Alexander, A. Chutaputti, R. N. Chien, S. S. Hasnian, N. Leung, L. Lesmana, P. H. Phiet, H. M. Sjalfoellah Noer, J. Sollano, H. S. Sun, and D. Z. Xu, 'Chronic hepatitis B virus infection in Asian countries,' J Gastroenterol Hepatol, vol. 15, pp. 1356-61, Dec 2000.
[15] R. P. Beasley, L. Y. Hwang, C. C. Lin, and C. S. Chien, 'Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan,' Lancet, vol. 2, pp. 1129-33, Nov 21 1981.
[16] M. W. Yu, S. H. Yeh, P. J. Chen, Y. F. Liaw, C. L. Lin, C. J. Liu, W. L. Shih, J. H. Kao, D. S. Chen, and C. J. Chen, 'Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men,' J Natl Cancer Inst, vol. 97, pp. 265-72, Feb 16 2005.
[17] R. P. Beasley and L. Y. Hwang, 'Hepatocellular carcinoma and hepatitis B virus,' Semin Liver Dis, vol. 4, pp. 113-21, May 1984.
[18] K. Matsubara and T. Tokino, 'Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis,' Mol Biol Med, vol. 7, pp. 243-60, Jun 1990.
[19] B. L. Slagle, Y. Z. Zhou, and J. S. Butel, 'Hepatitis B virus integration event in human chromosome 17p near the p53 gene identifies the region of the chromosome commonly deleted in virus-positive hepatocellular carcinomas,' Cancer Res, vol. 51, pp. 49-54, Jan 1 1991.
[20] T. Moroy, A. Marchio, J. Etiemble, C. Trepo, P. Tiollais, and M. A. Buendia, 'Rearrangement and enhanced expression of c-myc in hepatocellular carcinoma of hepatitis virus infected woodchucks,' Nature, vol. 324, pp. 276-9, Nov 20-26 1986.
[21] F. V. Chisari, P. Filippi, J. Buras, A. McLachlan, H. Popper, C. A. Pinkert, R. D. Palmiter, and R. L. Brinster, 'Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice,' Proc Natl Acad Sci U S A, vol. 84, pp. 6909-13, Oct 1987.
[22] F. V. Chisari, 'Hepatitis B virus gene expression in transgenic mice,' Mol Biol Med, vol. 6, pp. 143-9, Apr 1989.
[23] W. H. Caselmann, 'Transactivation of cellular gene expression by hepatitis B viral proteins: a possible molecular mechanism of hepatocarcinogenesis,' J Hepatol, vol. 22, pp. 34-7, 1995.
[24] M. W. Yu, Y. C. Yang, S. Y. Yang, S. W. Cheng, Y. F. Liaw, S. M. Lin, and C. J. Chen, 'Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men,' J Natl Cancer Inst, vol. 93, pp. 1644-51, Nov 7 2001.
[25] M. W. Yu, S. W. Cheng, M. W. Lin, S. Y. Yang, Y. F. Liaw, H. C. Chang, T. J. Hsiao, S. M. Lin, S. D. Lee, P. J. Chen, C. J. Liu, and C. J. Chen, 'Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma,' J Natl Cancer Inst, vol. 92, pp. 2023-8, Dec 20 2000.
[26] S. E. Rundlett, X. P. Wu, and R. L. Miesfeld, 'Functional characterizations of the androgen receptor confirm that the molecular basis of androgen action is transcriptional regulation,' Mol Endocrinol, vol. 4, pp. 708-14, May 1990.
[27] H. P. Gerber, K. Seipel, O. Georgiev, M. Hofferer, M. Hug, S. Rusconi, and W. Schaffner, 'Transcriptional activation modulated by homopolymeric glutamine and proline stretches,' Science, vol. 263, pp. 808-11, Feb 11 1994.
[28] H. S. Chen, S. Kaneko, R. Girones, R. W. Anderson, W. E. Hornbuckle, B. C. Tennant, P. J. Cote, J. L. Gerin, R. H. Purcell, and R. H. Miller, 'The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks,' J Virol, vol. 67, pp. 1218-26, Mar 1993.
[29] J. A. Kemppainen, M. V. Lane, M. Sar, and E. M. Wilson, 'Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones,' J Biol Chem, vol. 267, pp. 968-74, Jan 15 1992.
[30] J. Benn, F. Su, M. Doria, and R. J. Schneider, 'Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases,' J Virol, vol. 70, pp. 4978-85, Aug 1996.
[31] H. F. Maguire, J. P. Hoeffler, and A. Siddiqui, 'HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions,' Science, vol. 252, pp. 842-4, May 10 1991.
[32] I. Haviv, M. Shamay, G. Doitsh, and Y. Shaul, 'Hepatitis B virus pX targets TFIIB in transcription coactivation,' Mol Cell Biol, vol. 18, pp. 1562-9, Mar 1998.
[33] S. Takada, N. Kaneniwa, N. Tsuchida, and K. Koike, 'Hepatitis B virus X gene expression is activated by X protein but repressed by p53 tumor suppressor gene product in the transient expression system,' Virology, vol. 216, pp. 80-9, Feb 1 1996.
[34] D. F. Spandau and C. H. Lee, 'trans-activation of viral enhancers by the hepatitis B virus X protein,' J Virol, vol. 62, pp. 427-34, Feb 1988.
[35] M. Levrero, C. Balsano, G. Natoli, M. L. Avantaggiati, and E. Elfassi, 'Hepatitis B virus X protein transactivates the long terminal repeats of human immunodeficiency virus types 1 and 2,' J Virol, vol. 64, pp. 3082-6, Jun 1990.
[36] C. Balsano, M. L. Avantaggiati, G. Natoli, E. De Marzio, H. Will, M. Perricaudet, and M. Levrero, 'Full-length and truncated versions of the hepatitis B virus (HBV) X protein (pX) transactivate the cmyc protooncogene at the transcriptional level,' Biochem Biophys Res Commun, vol. 176, pp. 985-92, May 15 1991.
[37] J. S. Twu, M. Y. Lai, D. S. Chen, and W. S. Robinson, 'Activation of protooncogene c-jun by the X protein of hepatitis B virus,' Virology, vol. 192, pp. 346-50, Jan 1993.
[38] J. Han, H. Y. Yoo, B. H. Choi, and H. M. Rho, 'Selective transcriptional regulations in the human liver cell by hepatitis B viral X protein,' Biochem Biophys Res Commun, vol. 272, pp. 525-30, Jun 7 2000.
[39] B. Aufiero and R. J. Schneider, 'The hepatitis B virus X-gene product trans-activates both RNA polymerase II and III promoters,' EMBO J, vol. 9, pp. 497-504, Feb 1990.
[40] Z. Zhang, N. Torii, A. Furusaka, N. Malayaman, Z. Hu, and T. J. Liang, 'Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex,' J Biol Chem, vol. 275, pp. 15157-65, May 19 2000.
[41] Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, 'Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex,' J Virol, vol. 73, pp. 7231-40, Sep 1999.
[42] A. S. Kekule, U. Lauer, L. Weiss, B. Luber, and P. H. Hofschneider, 'Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway,' Nature, vol. 361, pp. 742-5, Feb 25 1993.
[43] S. Murakami, J. Cheong, S. Ohno, K. Matsushima, and S. Kaneko, 'Transactivation of human hepatitis B virus X protein, HBx, operates through a mechanism distinct from protein kinase C and okadaic acid activation pathways,' Virology, vol. 199, pp. 243-6, Feb 15 1994.
[44] J. Benn and R. J. Schneider, 'Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade,' Proc Natl Acad Sci U S A, vol. 91, pp. 10350-4, Oct 25 1994.
[45] N. P. Klein and R. J. Schneider, 'Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras,' Mol Cell Biol, vol. 17, pp. 6427-36, Nov 1997.
[46] N. P. Klein, M. J. Bouchard, L. H. Wang, C. Kobarg, and R. J. Schneider, 'Src kinases involved in hepatitis B virus replication,' EMBO J, vol. 18, pp. 5019-27, Sep 15 1999.
[47] M. J. Bouchard, L. H. Wang, and R. J. Schneider, 'Calcium signaling by HBx protein in hepatitis B virus DNA replication,' Science, vol. 294, pp. 2376-8, Dec 14 2001.
[48] C. Tarn, S. Lee, Y. Hu, C. Ashendel, and O. M. Andrisani, 'Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes,' J Biol Chem, vol. 276, pp. 34671-80, Sep 14 2001.
[49] Y. H. Lee and Y. Yun, 'HBx protein of hepatitis B virus activates Jak1-STAT signaling,' J Biol Chem, vol. 273, pp. 25510-5, Sep 25 1998.
[50] E. Lara-Pezzi, S. Roche, O. M. Andrisani, F. Sanchez-Madrid, and M. Lopez-Cabrera, 'The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner,' Oncogene, vol. 20, pp. 3323-31, Jun 7 2001.
[51] Y. Shirakata, M. Kawada, Y. Fujiki, H. Sano, M. Oda, K. Yaginuma, M. Kobayashi, and K. Koike, 'The X gene of hepatitis B virus induced growth stimulation and tumorigenic transformation of mouse NIH3T3 cells,' Jpn J Cancer Res, vol. 80, pp. 617-21, Jul 1989.
[52] M. Seifer and W. H. Gerlich, 'Increased growth of permanent mouse fibroblasts in soft agar after transfection with hepatitis B virus DNA,' Arch Virol, vol. 126, pp. 119-28, 1992.
[53] D. Y. Yu, H. B. Moon, J. K. Son, S. Jeong, S. L. Yu, H. Yoon, Y. M. Han, C. S. Lee, J. S. Park, C. H. Lee, B. H. Hyun, S. Murakami, and K. K. Lee, 'Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein,' J Hepatol, vol. 31, pp. 123-32, Jul 1999.
[54] B. K. Wu, C. C. Li, H. J. Chen, J. L. Chang, K. S. Jeng, C. K. Chou, M. T. Hsu, and T. F. Tsai, 'Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice,' Biochem Biophys Res Commun, vol. 340, pp. 916-28, Feb 17 2006.
[55] O. Terradillos, O. Billet, C. A. Renard, R. Levy, T. Molina, P. Briand, and M. A. Buendia, 'The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice,' Oncogene, vol. 14, pp. 395-404, Jan 30 1997.
[56] C. R. Madden, M. J. Finegold, and B. L. Slagle, 'Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions,' J Virol, vol. 75, pp. 3851-8, Apr 2001.
[57] B. L. Slagle, T. H. Lee, D. Medina, M. J. Finegold, and J. S. Butel, 'Increased sensitivity to the hepatocarcinogen diethylnitrosamine in transgenic mice carrying the hepatitis B virus X gene,' Mol Carcinog, vol. 15, pp. 261-9, Apr 1996.
[58] K. Reifenberg, J. Lohler, H. P. Pudollek, E. Schmitteckert, G. Spindler, J. Kock, and H. J. Schlicht, 'Long-term expression of the hepatitis B virus core-e- and X-proteins does not cause pathologic changes in transgenic mice,' J Hepatol, vol. 26, pp. 119-30, Jan 1997.
[59] C. M. Kim, K. Koike, I. Saito, T. Miyamura, and G. Jay, 'HBx gene of hepatitis B virus induces liver cancer in transgenic mice,' Nature, vol. 351, pp. 317-20, May 23 1991.
[60] K. Koike, K. Moriya, S. Iino, H. Yotsuyanagi, Y. Endo, T. Miyamura, and K. Kurokawa, 'High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice,' Hepatology, vol. 19, pp. 810-9, Apr 1994.
[61] N. Nagasue, A. Ito, H. Yukaya, and Y. Ogawa, 'Androgen receptors in hepatocellular carcinoma and surrounding parenchyma,' Gastroenterology, vol. 89, pp. 643-7, Sep 1985.
[62] N. Nagasue and H. Kohno, 'Hepatocellular carcinoma and sex hormones,' HPB Surg, vol. 6, pp. 1-6, 1992.
[63] N. Nagasue, A. Yamanoi, H. Kohno, T. Kimoto, Y. Chang, H. Taniura, M. Uchida, and T. Nakamura, 'Androgen receptor in cirrhotic liver, adenomatous hyperplastic nodule and hepatocellular carcinoma in the human,' Hepatogastroenterology, vol. 39, pp. 455-60, Oct 1992.
[64] P. K. Eagon, M. S. Elm, M. J. Epley, H. Shinozuka, and K. N. Rao, 'Sex steroid metabolism and receptor status in hepatic hyperplasia and cancer in rats,' Gastroenterology, vol. 110, pp. 1199-207, Apr 1996.
[65] S. D. Vesselinovitch, L. Itze, N. Mihailovich, and K. V. Rao, 'Modifying role of partial hepatectomy and gonadectomy in ethylnitrosourea-induced hepatocarcinogenesis,' Cancer Res, vol. 40, pp. 1538-42, May 1980.
[66] Y. C. Toh, 'Effect of neonatal castration on liver tumor induction by N-2-fluorenylacetamide in suckling BALB/c mice,' Carcinogenesis, vol. 2, pp. 1219-21, 1981.
[67] M. R. Moore, N. R. Drinkwater, E. C. Miller, J. A. Miller, and H. C. Pitot, 'Quantitative analysis of the time-dependent development of glucose-6-phosphatase-deficient foci in the livers of mice treated neonatally with diethylnitrosamine,' Cancer Res, vol. 41, pp. 1585-93, May 1981.
[68] C. M. Lee, S. N. Lu, C. S. Changchien, C. T. Yeh, T. T. Hsu, J. H. Tang, J. H. Wang, D. Y. Lin, C. L. Chen, and W. J. Chen, 'Age, gender, and local geographic variations of viral etiology of hepatocellular carcinoma in a hyperendemic area for hepatitis B virus infection,' Cancer, vol. 86, pp. 1143-50, Oct 1 1999.
[69] Y. Shiratori, S. Shiina, M. Imamura, N. Kato, F. Kanai, T. Okudaira, T. Teratani, G. Tohgo, N. Toda, M. Ohashi, and et al., 'Characteristic difference of hepatocellular carcinoma between hepatitis B- and C- viral infection in Japan,' Hepatology, vol. 22, pp. 1027-33, Oct 1995.
[70] C. M. Chiu, S. H. Yeh, P. J. Chen, T. J. Kuo, C. J. Chang, W. J. Yang, and D. S. Chen, 'Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level,' Proc Natl Acad Sci U S A, vol. 104, pp. 2571-8, Feb 20 2007.
[71] H. Faus and B. Haendler, 'Post-translational modifications of steroid receptors,' Biomed Pharmacother, vol. 60, pp. 520-8, Nov 2006.
[72] J. Prescott and G. A. Coetzee, 'Molecular chaperones throughout the life cycle of the androgen receptor,' Cancer Lett, vol. 231, pp. 12-9, Jan 8 2006.
[73] S. Kousteni, T. Bellido, L. I. Plotkin, C. A. O'Brien, D. L. Bodenner, L. Han, K. Han, G. B. DiGregorio, J. A. Katzenellenbogen, B. S. Katzenellenbogen, P. K. Roberson, R. S. Weinstein, R. L. Jilka, and S. C. Manolagas, 'Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity,' Cell, vol. 104, pp. 719-30, Mar 9 2001.
[74] E. Langley, Z. X. Zhou, and E. M. Wilson, 'Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer,' J Biol Chem, vol. 270, pp. 29983-90, Dec 15 1995.
[75] E. Langley, J. A. Kemppainen, and E. M. Wilson, 'Intermolecular NH2-/carboxyl-terminal interactions in androgen receptor dimerization revealed by mutations that cause androgen insensitivity,' J Biol Chem, vol. 273, pp. 92-101, Jan 2 1998.
[76] Z. X. Zhou, M. V. Lane, J. A. Kemppainen, F. S. French, and E. M. Wilson, 'Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability,' Mol Endocrinol, vol. 9, pp. 208-18, Feb 1995.
[77] B. He and E. M. Wilson, 'The NH(2)-terminal and carboxyl-terminal interaction in the human androgen receptor,' Mol Genet Metab, vol. 75, pp. 293-8, Apr 2002.
[78] B. He, J. A. Kemppainen, and E. M. Wilson, 'FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor,' J Biol Chem, vol. 275, pp. 22986-94, Jul 28 2000.
[79] B. He, N. T. Bowen, J. T. Minges, and E. M. Wilson, 'Androgen-induced NH2- and COOH-terminal Interaction Inhibits p160 coactivator recruitment by activation function 2,' J Biol Chem, vol. 276, pp. 42293-301, Nov 9 2001.
[80] M. Saitoh, R. Takayanagi, K. Goto, A. Fukamizu, A. Tomura, T. Yanase, and H. Nawata, 'The presence of both the amino- and carboxyl-terminal domains in the AR is essential for the completion of a transcriptionally active form with coactivators and intranuclear compartmentalization common to the steroid hormone receptors: a three-dimensional imaging study,' Mol Endocrinol, vol. 16, pp. 694-706, Apr 2002.
[81] J. Li, J. Fu, C. Toumazou, H. G. Yoon, and J. Wong, 'A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin,' Mol Endocrinol, vol. 20, pp. 776-85, Apr 2006.
[82] B. He, J. A. Kemppainen, J. J. Voegel, H. Gronemeyer, and E. M. Wilson, 'Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain,' J Biol Chem, vol. 274, pp. 37219-25, Dec 24 1999.
[83] D. P. Edwards, 'The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors,' J Mammary Gland Biol Neoplasia, vol. 5, pp. 307-24, Jul 2000.
[84] H. C. Shen, G. Buchanan, L. M. Butler, J. Prescott, M. Henderson, W. D. Tilley, and G. A. Coetzee, 'GRIP1 mediates the interaction between the amino- and carboxyl-termini of the androgen receptor,' Biol Chem, vol. 386, pp. 69-74, Jan 2005.
[85] A. Bubulya, S. Y. Chen, C. J. Fisher, Z. Zheng, X. Q. Shen, and L. Shemshedini, 'c-Jun potentiates the functional interaction between the amino and carboxyl termini of the androgen receptor,' J Biol Chem, vol. 276, pp. 44704-11, Nov 30 2001.
[86] S. Bai, B. He, and E. M. Wilson, 'Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction,' Mol Cell Biol, vol. 25, pp. 1238-57, Feb 2005.
[87] L. Wang, C. L. Hsu, and C. Chang, 'Androgen receptor corepressors: an overview,' Prostate, vol. 63, pp. 117-30, May 1 2005.
[88] C. J. Loy, K. S. Sim, and E. L. Yong, 'Filamin-A fragment localizes to the nucleus to regulate androgen receptor and coactivator functions,' Proc Natl Acad Sci U S A, vol. 100, pp. 4562-7, Apr 15 2003.
[89] G. Liao, L. Y. Chen, A. Zhang, A. Godavarthy, F. Xia, J. C. Ghosh, H. Li, and J. D. Chen, 'Regulation of androgen receptor activity by the nuclear receptor corepressor SMRT,' J Biol Chem, vol. 278, pp. 5052-61, Feb 14 2003.
[90] L. Wang, C. L. Hsu, J. Ni, P. H. Wang, S. Yeh, P. Keng, and C. Chang, 'Human checkpoint protein hRad9 functions as a negative coregulator to repress androgen receptor transactivation in prostate cancer cells,' Mol Cell Biol, vol. 24, pp. 2202-13, Mar 2004.
[91] J. L. Shenk, C. J. Fisher, S. Y. Chen, X. F. Zhou, K. Tillman, and L. Shemshedini, 'p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction,' J Biol Chem, vol. 276, pp. 38472-9, Oct 19 2001.
[92] L. Wang, H. K. Lin, Y. C. Hu, S. Xie, L. Yang, and C. Chang, 'Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells,' J Biol Chem, vol. 279, pp. 32444-52, Jul 30 2004.
[93] K. Hughes, E. Nikolakaki, S. E. Plyte, N. F. Totty, and J. R. Woodgett, 'Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation,' EMBO J, vol. 12, pp. 803-8, Feb 1993.
[94] A. Cole, S. Frame, and P. Cohen, 'Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event,' Biochem J, vol. 377, pp. 249-55, Jan 1 2004.
[95] D. A. Cross, D. R. Alessi, P. Cohen, M. Andjelkovich, and B. A. Hemmings, 'Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B,' Nature, vol. 378, pp. 785-9, Dec 21-28 1995.
[96] R. S. Jope and G. V. Johnson, 'The glamour and gloom of glycogen synthase kinase-3,' Trends Biochem Sci, vol. 29, pp. 95-102, Feb 2004.
[97] X. Fang, S. X. Yu, Y. Lu, R. C. Bast, Jr., J. R. Woodgett, and G. B. Mills, 'Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A,' Proc Natl Acad Sci U S A, vol. 97, pp. 11960-5, Oct 24 2000.
[98] M. Li, X. Wang, M. K. Meintzer, T. Laessig, M. J. Birnbaum, and K. A. Heidenreich, 'Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta,' Mol Cell Biol, vol. 20, pp. 9356-63, Dec 2000.
[99] X. Fang, S. Yu, J. L. Tanyi, Y. Lu, J. R. Woodgett, and G. B. Mills, 'Convergence of multiple signaling cascades at glycogen synthase kinase 3: Edg receptor-mediated phosphorylation and inactivation by lysophosphatidic acid through a protein kinase C-dependent intracellular pathway,' Mol Cell Biol, vol. 22, pp. 2099-110, Apr 2002.
[100] C. Sutherland, I. A. Leighton, and P. Cohen, 'Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling,' Biochem J, vol. 296 ( Pt 1), pp. 15-9, Nov 15 1993.
[101] M. A. Buendia, 'Genetics of hepatocellular carcinoma,' Semin Cancer Biol, vol. 10, pp. 185-200, Jun 2000.
[102] A. de La Coste, B. Romagnolo, P. Billuart, C. A. Renard, M. A. Buendia, O. Soubrane, M. Fabre, J. Chelly, C. Beldjord, A. Kahn, and C. Perret, 'Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas,' Proc Natl Acad Sci U S A, vol. 95, pp. 8847-51, Jul 21 1998.
[103] T. Suzuki, H. Yano, Y. Nakashima, O. Nakashima, and M. Kojiro, 'Beta-catenin expression in hepatocellular carcinoma: a possible participation of beta-catenin in the dedifferentiation process,' J Gastroenterol Hepatol, vol. 17, pp. 994-1000, Sep 2002.
[104] C. M. Wong, S. T. Fan, and I. O. Ng, 'beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance,' Cancer, vol. 92, pp. 136-45, Jul 1 2001.
[105] Q. Ding, W. Xia, J. C. Liu, J. Y. Yang, D. F. Lee, J. Xia, G. Bartholomeusz, Y. Li, Y. Pan, Z. Li, R. C. Bargou, J. Qin, C. C. Lai, F. J. Tsai, C. H. Tsai, and M. C. Hung, 'Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin,' Mol Cell, vol. 19, pp. 159-70, Jul 22 2005.
[106] J. Cui, X. Zhou, Y. Liu, Z. Tang, and M. Romeih, 'Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes,' J Gastroenterol Hepatol, vol. 18, pp. 280-7, Mar 2003.
[107] C. Desbois-Mouthon, M. J. Blivet-Van Eggelpoel, E. Beurel, M. Boissan, R. Delelo, A. Cadoret, and J. Capeau, 'Dysregulation of glycogen synthase kinase-3beta signaling in hepatocellular carcinoma cells,' Hepatology, vol. 36, pp. 1528-36, Dec 2002.
[108] K. C. Ban, H. Singh, R. Krishnan, and H. F. Seow, 'GSK-3beta phosphorylation and alteration of beta-catenin in hepatocellular carcinoma,' Cancer Lett, vol. 199, pp. 201-8, Sep 25 2003.
[109] W. Xue, L. Zender, C. Miething, R. A. Dickins, E. Hernando, V. Krizhanovsky, C. Cordon-Cardo, and S. W. Lowe, 'Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas,' Nature, vol. 445, pp. 656-60, Feb 8 2007.
[110] J. C. Sheu, G. T. Huang, P. H. Lee, J. C. Chung, H. C. Chou, M. Y. Lai, J. T. Wang, H. S. Lee, L. N. Shih, P. M. Yang, and et al., 'Mutation of p53 gene in hepatocellular carcinoma in Taiwan,' Cancer Res, vol. 52, pp. 6098-100, Nov 1 1992.
[111] R. M. Lunn, Y. J. Zhang, L. Y. Wang, C. J. Chen, P. H. Lee, C. S. Lee, W. Y. Tsai, and R. M. Santella, 'p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan,' Cancer Res, vol. 57, pp. 3471-7, Aug 15 1997.
[112] W. Beerheide, Y. J. Tan, E. Teng, A. E. Ting, A. Jedpiyawongse, and P. Srivatanakul, 'Downregulation of proapoptotic proteins Bax and Bcl-X(S) in p53 overexpressing hepatocellular carcinomas,' Biochem Biophys Res Commun, vol. 273, pp. 54-61, Jun 24 2000.
[113] G. A. Turenne and B. D. Price, 'Glycogen synthase kinase3 beta phosphorylates serine 33 of p53 and activates p53's transcriptional activity,' BMC Cell Biol, vol. 2, p. 12, 2001.
[114] P. Watcharasit, G. N. Bijur, L. Song, J. Zhu, X. Chen, and R. S. Jope, 'Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53,' J Biol Chem, vol. 278, pp. 48872-9, Dec 5 2003.
[115] G. N. Bijur and R. S. Jope, 'Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta,' J Biol Chem, vol. 276, pp. 37436-42, Oct 5 2001.
[116] P. Watcharasit, G. N. Bijur, J. W. Zmijewski, L. Song, A. Zmijewska, X. Chen, G. V. Johnson, and R. S. Jope, 'Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage,' Proc Natl Acad Sci U S A, vol. 99, pp. 7951-5, Jun 11 2002.
[117] P. Sabbatini and F. McCormick, 'Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis,' J Biol Chem, vol. 274, pp. 24263-9, Aug 20 1999.
[118] Y. Mitsuuchi, S. W. Johnson, M. Selvakumaran, S. J. Williams, T. C. Hamilton, and J. R. Testa, 'The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel,' Cancer Res, vol. 60, pp. 5390-4, Oct 1 2000.
[119] A. Yamaguchi, M. Tamatani, H. Matsuzaki, K. Namikawa, H. Kiyama, M. P. Vitek, N. Mitsuda, and M. Tohyama, 'Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53,' J Biol Chem, vol. 276, pp. 5256-64, Feb 16 2001.
[120] E. Sadot, B. Geiger, M. Oren, and A. Ben-Ze'ev, 'Down-regulation of beta-catenin by activated p53,' Mol Cell Biol, vol. 21, pp. 6768-81, Oct 2001.
[121] R. P. de Groot, J. Auwerx, M. Bourouis, and P. Sassone-Corsi, 'Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy,' Oncogene, vol. 8, pp. 841-7, Apr 1993.
[122] P. Li, S. V. Nicosia, and W. Bai, 'Antagonism between PTEN/MMAC1/TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells,' J Biol Chem, vol. 276, pp. 20444-50, Jun 8 2001.
[123] Y. Wen, M. C. Hu, K. Makino, B. Spohn, G. Bartholomeusz, D. H. Yan, and M. C. Hung, 'HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway,' Cancer Res, vol. 60, pp. 6841-5, Dec 15 2000.
[124] M. Sharma, W. W. Chuang, and Z. Sun, 'Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation,' J Biol Chem, vol. 277, pp. 30935-41, Aug 23 2002.
[125] A. Migliaccio, G. Castoria, M. Di Domenico, A. de Falco, A. Bilancio, M. Lombardi, M. V. Barone, D. Ametrano, M. S. Zannini, C. Abbondanza, and F. Auricchio, 'Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation,' EMBO J, vol. 19, pp. 5406-17, Oct 16 2000.
[126] M. Sun, L. Yang, R. I. Feldman, X. M. Sun, K. N. Bhalla, R. Jove, S. V. Nicosia, and J. Q. Cheng, 'Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85alpha, androgen receptor, and Src,' J Biol Chem, vol. 278, pp. 42992-3000, Oct 31 2003.
[127] D. A. Benitez, E. Pozo-Guisado, M. Clementi, E. Castellon, and P. M. Fernandez-Salguero, 'Non-genomic action of resveratrol on androgen and oestrogen receptors in prostate cancer: modulation of the phosphoinositide 3-kinase pathway,' Br J Cancer, vol. 96, pp. 1595-604, May 21 2007.
[128] Y. I. Lee, S. Kang-Park, and S. I. Do, 'The hepatitis B virus-X protein activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade,' J Biol Chem, vol. 276, pp. 16969-77, May 18 2001.
[129] M. J. Bouchard and R. J. Schneider, 'The enigmatic X gene of hepatitis B virus,' J Virol, vol. 78, pp. 12725-34, Dec 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27233-
dc.description.abstract肝癌(Hepatocellular cacinoma)為台灣最常見的惡性腫瘤,在造成肝癌的危險因子中又以B型肝炎病毒(HBV)的感染最為重要,但HBV導致癌症發生過程可能的分子機轉到目前仍不清楚,而HBV引起的肝癌病例有個顯著的特徵是在性別上的偏好性,男性的罹病率相較於女性約高三~七倍左右。本實驗室先前研究中就已發現HBx具有正向調控男性荷爾蒙受體(androgen receptor)對帶有ARE(androgen-response element)基因的轉錄活性,而這可能是HBV相關肝癌好發於男性的可能機制。
在探討HBx促進男性荷爾蒙受體轉錄活化分子機制的研究中,我們著重在調控AR轉錄活性重要的兩步驟:AR N/C interaction及AR NTD活性。我們發現HBx可透過這兩個步驟來促進AR轉錄活性,分別藉由調控細胞中c-Src與GSK-3β的活性,我們首先證實了c-Src kinase活性在HBx促進AR NTD活性過程中扮演重要的角色,所以本研究接著想進一步探討HBx造成AR N/C interaction增加的機制為何。過去分別有文獻指出HBx可活化Erk kinase使GSK-3β活性受到抑制,且於prostate cancer cell中GSK-3β具有抑制AR N/C interaction的功能,因此我們假設於肝細胞中HBx或許可透過抑制GSK-3β的活性來造成AR N/C interaction的上升。這部分的研究成果大致簡述如下: (1)我們利用mammalian two-hybrid assay的方法證實了GSK-3β確實於肝細胞中在AR N/C interaction調控中扮演負調控的角色。 (2)在HepG2細胞株中,HBx的表現並不足以抑制GSK-3β,必須在AR與HBx的協同作用下,經AR ligand刺激下GSK-3β活性才受到抑制,GSK-3β活性遭抑制後AR N/C interaction就會增加,進而轉錄活化promoter帶有ARE的基因。 (3)針對GSK-3β調控的下游分子中最關鍵的β-catenin,我們進一步探討GSK-3β調控AR N/C interaction機制裡是否β-catenin有參與,實驗結果說明了GSK-3β並非藉由抑制β-catenin的活性來調控AR N/C interaction。 (4)最後,我們在分別證實了AR N/C interaction與AR NTD活性各自有GSK-3β與c-Src調控之後,想釐清這兩個步驟影響AR轉錄活性的程度,結果發現到HBx活化AR的轉錄活性主要就是藉由AR N/C interaction及AR NTD活性兩步驟加以調控,因此確立了GSK-3β與c-Src在HBx活化AR轉錄活性過程中的重要樞紐性質。
另一方面,被認為與HCC形成有關的抑癌基因p53,過去也有研究指出AR具有負調控AR N/C interaction的功能,所以我們假設p53在HBx促進AR轉錄活性增加的過程中,可能也是重要的負調控者。關於這部份的研究成果則簡述如下: (1) p53可透過抑制AR N/C interaction及AR NTD活性在HBx促進AR轉錄活性增加過程中扮演負調控者的角色。 (2) R249S突變的p53會失去抑制AR轉錄活性的功能。 (3)我們證實了GSK-3β的活性對於p53調控AR N/C interaction是重要的,但p53抑制AR轉錄活性不僅只倚賴GSK-3β的調控路徑。
在本研究中,我們證實了AR N/C interaction與AR NTD活性兩步驟是主要決定HBx 促進AR轉錄活性的關鍵,也針對AR N/C interaction的兩個負調控者GSK-3β及p53做了較深入的探討,希望藉由對HBx促進AR轉錄活化的負調控機制的了解,知曉如何阻礙細胞癌化的過程,而本研究結果可做為將來HBV相關男性肝癌治療上的參考。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-12T17:58:39Z (GMT). No. of bitstreams: 1
ntu-97-R94445132-1.pdf: 1481969 bytes, checksum: bca9e910ffad987855de85be32d418f5 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………… i
中文摘要…………………………………………………………………………...… ii
英文摘要…………………………………………………………………………….. iv
序論…………………………………………………………………..…………….. 1
B型肝炎病毒與B型肝炎的發生 ………………………………………...… 1
B型肝炎與肝癌(HCC)形成之關係 ………………………………………… 1
B型肝炎病毒引起之肝癌有性別偏好性 …………………………………... 3
B型肝炎病毒X蛋白質(HBx)的功能與轉活化能力 ………………………. 3
HBx引發肝癌發生之動物模式研究 ……………………………………….. 5
男性荷爾蒙受體與肝癌形成的相關性 …………………………………….. 6
男性荷爾蒙受體之結構與功能 …………………………………………….. 7
男性荷爾蒙受體N端與C端間的交互作用及其調控 …………………….. 8
GSK-3β kinase特性及其調控方式 ………………………………………... 10
GSK-3β與肝癌發展過程的關係 ………………………………………….. 11
p53與肝癌發展過程的關係 …………………………………………….… 12
p53與GSK-3β之間可互相活化 …………………………………………. 13
研究目的 ………………………………………………………………………… 15
材料與方法 ……………………………………………………………………… 17
結果 …………………………………………………………………………….... 24
第一部份:探討GSK-3β在HBx促進AR轉錄活性過程中的角色
1. 探討HBx是否會經由影響AR NTD活化及AR N/C interaction兩步
驟促進AR的轉錄活性 ………..…………………………………..... 24
2. 探討GSK-3β是否可以調控HBx所促進的AR N/C interaction步驟... 25
3. 探討GSK-3β的活性在肝癌細胞株中是否會受HBx或是AR與HBx
協同活化的訊息傳導路徑所影響 ………………………...………… 26
4. 探討GSK-3β影響AR N/C interaction的可能機制 ………….……. 28
5. 探討AR轉錄活性的調控是否主要經由GSK-3β及c-Src分別調控
AR N/C interaction及AR NTD的活性 ………..……..……………… 30
6. 探討結合針對AR N/C interaction與AR NTD活性調節者的抑制劑,
對AR轉錄活性的影響 …………………..……………………....….. 32
第二部份:探討p53在HBx促進AR轉錄活性過程中的角色
1. 探討p53是否調控AR的轉錄活性,而R249S突變是否造成此調控
功能喪失 ……..………………………………………….………….... 34
2. 探討p53調控AR轉錄活性是否與影響AR N/C interaction有關 ….. 35
3. 探討p53是否調控AR NTD的活性 ………………………………… 37
4. 探討p53調控AR轉錄活性的可能機制 ……………………….…… 38
討論 …………………………………………………………………………........ 39
參考文獻 ………………………………………………………………..…..…… 47
圖附錄 ………………………………………………………………………….... 59
dc.language.isozh-TW
dc.titleB型肝炎病毒X蛋白質所促進男性荷爾蒙轉錄活性機制中GSK-3β與p53負向調控角色之研究zh_TW
dc.titleMechanism of HBx-enhanced AR transactivation:GSK-3β and p53 as two negative regulatorsen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳培哲,施修明
dc.subject.keyword男性荷爾蒙受體,B型肝炎病毒,zh_TW
dc.subject.keywordAR,HBx,GSK-3β,p53,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2008-01-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
1.45 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved