請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27217完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯逢春(Ferng-Chun Ke) | |
| dc.contributor.author | Jhen-jia Fan | en |
| dc.contributor.author | 范振家 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:58:13Z | - |
| dc.date.available | 2011-02-01 | |
| dc.date.copyright | 2008-02-01 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-29 | |
| dc.identifier.citation | [1]. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. (1965), 37:614-636
[2]. Itahana K, Campisi J, Dimri GP. Mechanisms of cell senescence in human and mouse cells. Biogerontology (2004), 5:1-10 [3]. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA (1995), 92:9363-9367 [4]. Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb-mediated heterochromatin formation and silencing of E2F target genes during cell senescence. Cell (2003), 113:703-716 [5]. Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of replicative senescence. Curr. Biol. (1999), 9:939-945. [6]. Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. (2000), 14:2015-2027. [7]. Ben-Porath I, Weinberg RA. The signals and pathways activating cell senescence. Int. J. Biochem. Cell Biol. (2005), 37:961-976. [8]. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. (1997), 88:593-602. [9]. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol. (2003), 5:741-747. [10]. Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Sun P. Sequential activation of the MEK-extracell signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol. (2002), 22:3389-3403. [11]. Dimri GP. What has senescence got to do with cancer? Cancer Cell. (2005), 7:505-512. [12]. Bischof O, Nacerddine K, Dejean A. Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cell senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol. (2005), 25:1013-1024. [13]. Wullschleger S, Loewith R, Hall M. TOR signaling in growth and metabolism. Cell. (2006), 124:471-84. [14]. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell. (2007), 12:487-502. [15]. Wullschleger S, Loewith R, Oppliger W, Hall MN. Molecular organization of target of rapamycin complex 2. J Biol Chem. (2005) 280:30697-30704. [16]. Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. (2004), 6:1122-1128 [17]. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. (2004), 14:1296-1302. [18]. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. (2004), 18:1926-1945. [19]. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. (2005), 307:1098-1101. [20]. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. (2006), 127:125-137. [21]. Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, Ru B, Pan D. Tsc tumour suppressor proteins antagonize amino-acid-TOR signaling. Nat Cell Biol. (2002), 4:699-704. [22]. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. (2003), 5:566-571. [23]. Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cell stresses. J Biol Chem. (2005), 280:18717-18727. [24]. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. (2005), 102:14238-14243. [25]. Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG Jr. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. (2004), 18:2893-2904. [26]. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A. (2005), 102:8204-8209. [27]. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. (2005), 121:179-193. [28]. Sarbassov DD, Sabatini DM. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J Biol Chem. (2005), 280:39505-39509. [29]. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. (2006), 442:779-785. [30]. Kim JE, Chen J. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci U S A. (2000), 97:14340-5. [31]. Bachmann RA, Kim JH, Wu AL, Park IH, Chen J. A nuclear transport signal in mammalian target of rapamycin is critical for its cytoplasmic signaling to S6 kinase 1. J Biol Chem. (2006), 281:7357-7363. [32]. Arsham AM, Neufeld TP. Thinking globally and acting locally with TOR. Curr Opin Cell Biol. (2006), 18:589-597. [33]. Edinger AL. Controlling cell growth and survival through regulated nutrient transporter expression. Biochem J. (2007), 406:1-12. [34]. Peng T, Golub TR, Sabatini DM. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol. (2002), 22:5575-5584. [35]. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR, translation initiation and cancer. Oncogene. (2006), 25:6416-6422. [36]. Wouters BG, van den Beucken T, Magagnin MG, Koritzinsky M, Fels D, Koumenis C. Control of the hypoxic response through regulation of mRNA translation. Semin Cell Dev Biol. (2005), 16:487-501. [37]. Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T. Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science. (1999), 283:981-985 [38]. Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signaling in animal cells. Biochem J. (2003), 373:1-18. [39]. Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. (2002), 13:2276-2288. [40]. Schieke SM, Phillips D, McCoy JP Jr, Aponte AM, Shen RF, Balaban RS, Finkel T. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem. (2006), 281:27643-27652. [41]. Teng CH., Ke FC. Cellular senescence induced by malate-asparate shuttle in human fibroblast WI38. Master Thesis, (2004), Institute of molecular and cellular biology, National Taiwan University. [42]. Lee CS., Ke FC. The inducible senescence mechanism of human fibroblast WI38 by transaminase inhibitor aminooxyacetic acid. Master Thesis, (2005), Institute of molecular and cell biology, National Taiwan University. [43]. Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes. (2001), 50:353-360. [44]. Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol. (2007), 19:223-229. [45]. Dekanty A, Lavista-Llanos S, Irisarri M, Oldham S, Wappner P. The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-alpha/Sima. J Cell Sci. (2005), 118:5431-5441. [46]. Frei C, Edgar BA. Drosophila cyclin D/Cdk4 requires Hif-1 prolyl hydroxylase to drive cell growth. Dev Cell. (2004) 6:241-251. [47]. LaNoue KF, Berkich DA, Conway M, Barber AJ, Hu LY, Taylor C, Hutson S. Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina. J Neurosci Res. (2001), 66:914-922. [48]. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. (2005), 7:77-85. [49]. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL. HIF-1 inhibits mitochondrial biogenesis and cell respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. (2007), 11:407-420. [50]. Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. (2007), 12:108-13. [51]. Aledo JC. Glutamine breakdown in rapidly dividing cells: waste or investment? Bioessays. (2004), 26:778-85 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27217 | - |
| dc.description.abstract | 細胞老化是一種細胞週期的現象,細胞老化的生物意義可能是做為個體老化的細胞基礎以及抑癌作用。鑑於粒線體在個體老化上扮演的重要角色,例如,自由基傷害累積理論等,而且粒線體所調節的營養以及代謝反應對於細胞生長週期也有決定性的影響,因此我們參考胰臟β細胞的粒線體對細胞營養狀態的感知而刺激胰島素分泌的系統,試驗 AOA 抑制 malate-aspartate shuttle 後,對細胞生長週期的反應。本實驗室過去發現AOA會誘發正常人類胚胎肺臟纖維母細胞株 WI38 細胞老化,而且 AOA 對細胞造成的老化效應可以被 5 mM αKG (α-ketoglutarate) 所阻斷,本論文進一步發現 0.3 mM 的非必需氨基酸(NEAA)亦可阻斷AOA的細胞老化效應,而且AOA所誘發的老化細胞呈現縮狹的非典型形態。我們指出此種類型的早發性細胞老化和粒線體有所相關,但與 H2O2 產生無關。AOA 作用會使得mTORC1活性消失,mTORC2的活性增加,而此種效應在 αKG 的添加後回復正常;但是 NEAA 的添加卻使得 mTORC1 的活性輕微的上升以及 mTORC2 的活性微幅的降低,且細胞的形態沒有回復正常。另外也發現到在AOA處理下,細胞內的 mTOR 會在細胞質內相對累積。同樣的,mTORC1 活性的消失也反應在受到 mTOR 所正向調控 HIF-1α 轉譯方面。除了 HIF-1α 轉譯受到 mTORC1 的正向調節外,其 HIF-1α 的堆積也受到 hydroxylase 對其做的 hydroxylation 之影響。然而,此 hydroxylase 屬於需要 αKG 做為輔受質的 dioxygenase,而且從果蠅的研究中發現,此 hydroxylase 會促進細胞生長週期的運轉。因為 αKG 的添加對AOA效應之阻斷,我們推測 AOA 對細胞老化的誘發來自於粒線體內 αKG 的不足,進而抑制細胞內此 hydroxylase 原本具有促進細胞生長的角色,最後導致細胞邁向老化階段。本研究透過在 AOA 所誘發老化以及可被 αKG 或 NEAA 添加後而阻斷其老化之系統中所得的結果顯示,粒線體可能透過調節 mTORCs 活性影響細胞生長週期,並且可能成為誘發細胞老化的根源。在個體的老化的粒線體理論,提供了有別於自由基傷害累積理論的新觀點。 | zh_TW |
| dc.description.abstract | It is known that mitochondria play an important role in organism aging, such as free radical damage theory. Mitochondria also play a critical role in integrating nutrient information and metabolic activity during cell growth. In order to study the mitochondrial role in cell senescence, we refer to mitochondria as a nutrient sensor in pancreatic β cells, and have established a cell senescence system induced by aminooxyacetate (AOA) inhibition of mitochondrial malate-aspartate shuttle in normal human embryonic lung fibroblasts WI38, and we showed that α-ketoglutarate (αKG) blocked AOA-induced cell senescence.
In this study, we further demonstrate that non-essential amino acid (NEAA) also blocked the AOA-induced cell senescence, but the cells still displayed an atypical (non-spreading) senescent morphology. This premature senescence is related to mitochondrial function, and independent of peroxide production. Interestingly, we observed that AOA treatment resulted in a dramatic reduction of mTORC1 activity, and the simultaneous appearance of mTORC2 hyperactivity. αKG blocked the AOA-induced imbalance of mTORC1 and mTORC2 activity. Although similar effect as αKG blockade, NEAA effect on mTORC1 and mTORC2 was relatively weaker. We also observed mTOR predominantly localized in the cytoplasm under AOA treatment. Decreasing αKG could lead to inactivation of the αKG-dependent dioxygenases, including PHD (prolyl-4-hydroxylase-domain protein). PHD regulates the stabilization of HIF-1αand promotes cell growth in the fly. Because αKG blocks AOA effect, we speculated that AOA-induced cell senescence was resulted from mitochondrial αKG insufficiency that subsequently inhibited the positive role of the hydroxylase in cell growth cycle, and eventually led to cell senescence. Taken together, our results demonstrate αKG and NEAA blocked AOA-induced senescence and relative activity shift between mTORC1 and mTORC2 in normal human embryonic fibroblasts. This suggests that mitochondria could control cell growth cycle via regulation of mTORCs activity, and this could be the key that trigger cell senescence. Furthermore, our studies provide a normal viewpoint regarding mitochondrial role in organism aging besides the theory of accumulation of free radical-induced damage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:58:13Z (GMT). No. of bitstreams: 1 ntu-97-R94b43014-1.pdf: 3413351 bytes, checksum: 2dea8de185cb3be1c7e11df9f97ee929 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥i
誌謝‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ii 摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ iii Abstracts‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥iv Table of Contents‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥a List of Figures‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥c List of appendixes ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥d Abbreviations ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ e Introduction‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1 Materials and Methods‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10 Results‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 15 Discussion‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥21 Figures ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥26 References‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥39 Appendixes‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥44 | |
| dc.language.iso | en | |
| dc.subject | 早發性細胞老化 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 細胞生長週期 | zh_TW |
| dc.subject | 營養感知 | zh_TW |
| dc.subject | premature cell senescence | en |
| dc.subject | AOA | en |
| dc.subject | mTOR | en |
| dc.subject | αKG- and Fe(II)-dependent dioxygenases | en |
| dc.subject | mitochondria | en |
| dc.subject | cell growth cycle | en |
| dc.subject | nutrient sensing | en |
| dc.title | mTORCs 參與 aminooxyacetate 抑制粒線體之 malate-aspartate shuttle 所引發的早發性細胞老化 | zh_TW |
| dc.title | Involvement of mTORCs in premature cell senescence induced by aminooxyacetate inhibition of mitochondrial malate-aspartate shuttle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃火鍊(Fore-Lien Huang),黃娟娟(Jiuan-Jiuan Huang),黃銓珍(Chang-Jen Huang),李明亭(Ming-Ting Lee),蕭培文(Pei-Wen Hsiao) | |
| dc.subject.keyword | 粒線體,細胞生長週期,營養感知,早發性細胞老化, | zh_TW |
| dc.subject.keyword | AOA,mTOR,αKG- and Fe(II)-dependent dioxygenases,mitochondria,cell growth cycle,nutrient sensing,premature cell senescence, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
