Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許圳塗 博士(Dr. Chou Tou Shii)
dc.contributor.authorChong-Gin Sunen
dc.contributor.author孫崇欽zh_TW
dc.date.accessioned2021-06-12T17:57:56Z-
dc.date.available2008-02-01
dc.date.copyright2008-02-01
dc.date.issued2008
dc.date.submitted2008-01-30
dc.identifier.citation呂政璋. 2001. 香蕉AAB cv. Raja胚性細胞極化與非極化生長之調控與質量化體胚生產。國立台灣大學園藝學研究所碩士論文.
李淑真、林昌黎、許圳塗。 1998 。百香果 ( Passiflora edulis Sims ) 胚乳培養不定芽再生及三倍體植建立。中國園藝44: 413-428.
卓麗貞. 1990. 香蕉體胚形成及發芽的影響因子. 國立台灣大學園藝學研究所碩士論文.
胡適宜. 1990. 被子植物胚胎學. p171-190. 曉園出版社. 台北.
馬溯軒、許圳塗. 1972. 香蕉幼莖切頂組織培養應用於不定芽誘發之研究. 中國園藝. 18: 135-142.
馬溯軒、許圳塗. 1974. 香蕉不定芽之組織培養育成幼苗之研究. 中國園藝. 20:6-12.
馬溯軒. 1991. 園藝作物組織培養之應用研討會專集. 台北市.
黃怡菁. 1994. 香蕉細胞懸浮培養及原生質體培養體胚誘導研究. 國立台灣大學園藝學研究所博士論文.
黃鈴如. 2003. 石蒜胚乳組織程序性凋零及其挽救培養與再生. 國立台灣大學園藝學研究所碩士論文.
邱輝龍. 2005. 台灣芭蕉[Musa formosana(Warb.) Hayata]種原之蒐集、評估與遺傳歧異度分析. 國立台灣大學園藝學研究所博士論文.
郭俊緯. 2003. 香蕉體胚衍生胚性細胞懸浮培養、胚性細胞極性誘導與體胚發生. 國立台灣大學園藝學研究所碩士論文.
郭孄婷. 2006. 三倍體香蕉懸浮細胞培養及體胚發生. 國立台灣大學園藝學研究所碩士論文.
劉秋芳. 1999. 二倍體香蕉胚乳培養器官再生及體胚發生之研究. 國立台灣大學園藝學研究所碩士論文.
蔡淑華. 1998. 植物組織切片技術綱要. 茂昌股份有限公司. 台北.
鐘明娟. 2001. 二倍體拔蕉胚乳組織衍生胚性細胞懸浮培養及胚發生與多倍體植株之建立. 國立台灣大學園藝學研究所碩士論文.
Assani, A., D. Chanbane, R. Haïcour, F. Bakry, G. Wenzed, and B. Foroughï-Wehr. 2005 Protoplast Fusion in Banana (Musa spp.) Comparison of chemical ( PEG Polyethylene Glycol) and electrical procedure. Plant C. T. O. C. 83: 145-151.
Becraft, P. W. 2001. Cell fate specification in the cereal endosperm. Sem. Cell Dev. Biol. 12: 387-394.
Bharathan, G. 1996. Reproductive development and nuclear DNA content in angiosperms. Amer. J. Bot. 83:440-451.
Chaturvedi, R., M.K. Razdan, and S.S. Bhojwani. 2003. An efficient protocol for the production of triploid plants from endosperm callus of neem, Azadirachta indica A. Juss. J. Plant Physiol. 160: 557-564.
Chen, R.Z., G.G. Li, and L.Y. Zhang. 1991. Callus induction and triploid plant regeneration from endosperm of ‘Hongjiang’ sweet orange . Acta Bot. Sin. 33: 848-854.
Chung, J.P., C.C. Lu, and C.T. Shii. 2002. The acid growth model and pH-directed triple functions in embryogenic cell suspension culture of banana Musa AAA and AAB genomic groups. IAPIC . p.148.
Crespel, L., S. Ricci, and S. Gudin. 2006. The production of 2n pollen in rose. Euphytica. 151: 155-164
Demidova, E.V., O.V. Reshetnyak, A.V. Oreshnikov, and A.M. Nosov. 2006. Growth and biosynthetic characteristics of ginseng (Panax japonicus var. repens) deep-Tank cell culture in bioreactors. Russ. J. Plant Physio. 53: 134–140.
Dickman, M.B. and J.C. Reed. 2004. Paradigms of programmed cell death in animals and plants, p.26 -43. In: J. Gary, Programmed cell death in plants. Blackwell Publishing Ltd. USA.
Emari, M., H. Sakahira, and S. Nagata. 1998. A caspase-activated DNase that degrades DNA during apoptosis and its inhibitor 1CDA. Nature. 391:43-50
Fukuda, H. 1998. Developmentally programmed cell death in plant: death of xylem cells as a paradigm, P:113-127. In: T. Yamada, and Y. Hashimoto (Eds.), Apoptosis: Its role and mechanism, buainess Center for Academic Societies Japan, Tokyo, Japan.
Fredman, W.E. and S.K. Floyd. 2001. The origin of flowering plant and their reproductive biology- a tale of two phylogenies. Evol. 55: 217-231.
Fras, A. and J. Maluszynska. 2004. The correlation between the chromosome variation in callus and genotype of explants of Arabidopsis thaliana. Genetica 121: 145–154.
Fras, A., A.J. Juchimiuk, A.D. Siwinska, and A.J. Maluszynska. 2007. Cytological events in explants of Arabidopsis thaliana during early callogenesis. Plant Cell Rep. 26:1933–1939
Gallie, D.R. and T. E. Young. 2004. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol. Gen. Genom. 271: 267-281.
Goralski, G., M. Popielarska, H. Slesak, D. Siwinska, and M. Batycka. 2005. Organogenesis in endosperm of Actinidia deliciosa cv. Hayward cultured in vitro. Acta Biol. Cra. Ser. Bot. 47: 121-128.
Greenberg, J.T. 1997. Programmed cell death in plant-pathogen interactions. Ann. Rev. Plant Physiol. Plant Mol. Biol 48: 525-545.
Greenwood, J.S., M. Helm, and C. Gietl. 2005. Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Plant Biol. 102: 2238-243.
Gunawardena, A., K. Sault, P. Donnelly, J.S. Greenwood and N.G. Dengler. 2005. Programmed cell death and leaf morphogenesis in Monstera obliqua (Araceae). Planta 221: 607-618.
Jauhar, P.P. 2007. Meiotic restitution in wheat polyhaploids (Amphihaploids): A potent evolutionary force. J. Heredity 98: 188-193.
Kerr, J.F.R. and B.V. Harmon. 1991. Definition and incidence of apoptosis: an historical perspective. In: Apoptosis: The Molecular Basis of Cell Death. D. Tomei and F. Cope, eds. Cold Spring Harbor Laboratory Press, New York. pp. 5-29.
Lai, Y.C. and L.F.O. Chen. 2002. Flow cytometic analysis of nuclear cell cycle phases in relation to plant regeneration in Petunia hybrida. J. Genet. Mol. Biol. 13:13-20.
Lee1, R.H. and S.C.G. Chen. 2002. Programmed cell death during rice leaf senescence is nonapoptotic. New Phytol. 155:25-32.
Li, R., S.Y. Lan, and Z.X. Xu. 2004. Programmed cell death in wheat during starch endosperm development. J. Plant Physiol. Mol. Biol. 30:183-188.
Lockshin, R.A. and Z. Zakeri. 2001. Programmed cell death and apoptosis: origins of the theory. Nature Rev. 2: 545-550.
Lockshin, R.A. and C.M. Williams. 1964. Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J. Insect Physiol. 10: 643-649.
Lopes, M.A. and B. A. Larkins 1993. Endosperm origin, development, and function. Plant Cell. 5: 1383–1399.
Mittler, R. and V. Shulaev. 2004. Programmed cell death in plant: future perspectives, applications, and methods, p.251 -264. In: J. Gary, Programmed cell death in plants. Blackwell Publishing Ltd. USA.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497
Pennell, R.I. and C. Lamb. 1997. Programmed cell death in plants. Plant Cell 9:1157-1168.
Popielarska, M., H. Slesak, and G. Goralski. 2006. Histological and SEM studies on organogenesis in endosperm-derived callus of kiwifruit (Actinidia deliciosa cv. Hayward). Acta Bio. Craco. Seri. Bot. 48: 97-104.
Rodrigo, B.G., M. Chad, R. Munikote, and T. Jaap. 2006. Nitrous oxide ( N2O) induces 2n gametes in sterile F-1 hybrids between Oriental x Asiatic lily (Lilium) hybrids and leads to intergenomic recombination. Euphytica, 148: 303-309.
Santa, C.C., L.R. Hanai, M.C. Dornelas, A.M. Viana, and E.I.S. Floh. 2004. SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. ( Lauraceae). Plant C. T. O. C. 79: 53-61.
Sakahira, H., M. Emari, and S. Nagata. 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391: 96-99.
Satsangi, A. and R.H.Y. Mohan. 1965. A continuously frowing tissue culture from the mature endosperm of Ricinus communis L. Phytomor. 15: 26-30.
Schmid, M., D. Simpson, and C. Gietl. 1999. Programmed cell death in castor bean endosperm is associated with accumulation and release of a cysteine endopeptidase from ricinosomes. Plant Biol. 96:14159-14164.
Sehgal, C.B. 1974. Growth of barley and wheat endosperm in cultures. Cur. Sci. 43: 38-40.
Sun, Y.L., Y. Zhao, C.X. Liu and Z.H. Zhai. 1999. Cytochrome c can induce programmed cell death in plant cells. Acta Bot. Sin. 41: 379-383.
Strasser, A., L. O’Conner, and V.M. Dixit. 2000. Apoptosis signaling. Annu. Rev. Biochem. 69:217-245.
Straus, J. 1954. Maize endosperm tissue grown in vitro—II. Morphology and cytology. Amer. J. Bot. 41: 833-839.
Shii, C. T., J. P. Chung and T. L. Chang. 2001. The development regulation related extracellular pH and growth phase changes in embryogenic cell suspension culture of triploid banana. Intl. Symp. Biotech. of Trop. and Subtropical Species. Abs: 12. Acad. Sinica.
Silkova, O., A. Shchapova, and V. Shumny, 2007. Role of rye chromosome 2R from wheat-rye substitution line 2R(2D)1 (Triticum aestivum L. cv. Saratovskaya 29-Secale cereale L. cv. Onokhoiskaya) in genetic regulation of meiotic restitution in wheat-rye polyhaploids. Russian J. Genetics. 43: 805-814.
Skulachev, V. P. 2006. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11: 473-485.
Sreenivasulu, N., V. Radchuk, M. Strickert, O. Miersch, W. Weschke, and U. Wobus. 2006. Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA regulated maturation in developing barley seeds. Plant J. 47: 310-327.
Titov, S., S.K. Bhowmik, A. Mandal, Md. S. Alam, and S. N. Uddin, 2006. Control of phenolic compound secretion and effect of growth regulators for organ formation from Musa spp. cv. Kanthali floral bud explants. Amer. J. Biochem. Biotech. 2 : 97-104,
Thornberry, N.A. and Y. Lazebnik. 1998. Caspase: enemies within. Science. 281: 1312-1216.
Thomas, T.D., A. K. Bhatnagar, and S.S. Bhojwani. 2000. Production of triploid plant of mulberry ( Morus alba L) by endosperm culture. Plant Cell Rep. 19: 395-399.
Torello, W.A., R. Rufner, and A.G. Symington. 1985. The ontogeny of somatic embryos from long term cellus cultures of red fescue. Hort Science 20: 938-942.
Virolainen, E., O. Blokhina, and K. Fagerstedt. 2002. Ca2+-induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann. Bot. 90:509-561.
Walia, N., A. Kaur, and S. B. Babbar. 2007. Proliferation and differentiation from endosperms of Carthamus tinctorius. Biolo. Plantar. 51: 749-753.
Wijsman, J.H., R.R. Jonker, R. Keijzer, C.J.H.V.D. Velde, C.J. Cornelisse, and J.H.V. Dierendonck. 1993. A new method to detect apoptosis in paraffin sections: In situ end-labeling of fragmented DNA. J. Histochem. Cytochem. 41: 7-12.
Wredle, U., B. Walles, and I. Hakman. 2001. DNA fragmentation and nuclear degradation during programmed cell death in the suspensor and endosperm of Vicia faba. Int. J. Plant Sci. 162: 1053-1063.
Yamada, T., I. Kazuo., K. Motoki, and V. D. Wouter G. 2007. Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers. Plant Cell Rep. 26: 823-835.
Yoshinaga, K., S.I. Armuar, Y. Niwa, N. Tsutsumi, H. Uchimiya, and K.Y. Maki. 2005. Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann. Bot 96: 337-342.
Young, T.E. and D.R. Gallie. 1999. Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol. Biol. 39:915-926.
Young, T.E. and D.R. Gallie. 2000a. Programmed cell death during endosperm development. Plant Mol. Biol. 44: 283-301.
Young, T.E. and D.R. Gallie. 2000b. Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol. Biol. 42:397-414.
Young, T.E., D.R. Gallie, and D.A. DeMason. 1997. Ethylene mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol. 115:737-715.
Zhao, J. and J.C. Cheng. 1992. Cytohistological study on somatic embryogenesis in Asparagus Officinalis L. Acta Bot. Sin. 34: 491-495.
Zottini, M., E. Barizza, F. Bastianelli, F. Carimi, and F. L. Schiavo. 2006. Growth and senescence of medicago truncatula cultured cells are associated with characteristic mitochondrial morphology. New Phytol. 172: 239-247.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27206-
dc.description.abstract參試兩倍體香蕉2n = 22,包括拔蕉(Musa balbisiana)及台灣芭蕉(M. formosana),其中以拔蕉作為胚乳程序性細胞死亡( programmed cell death, PCD)時程之試驗材料,並取用二品種之胚乳於體外培養誘導癒合組織、建立懸浮系統及再生植株。探討胚乳發育過程中細胞膜通透性變化及核基因組段節之標誌,與程序性細胞死亡及體外培養再生能力之相關性。同時測試影響胚乳癒合組織發生之相關因子,並於胚乳衍生之懸浮細胞平板前藉由再生培養基及pH緩衝液之預處理提升平板後大量同步化體胚發生,並且利用流式細胞儀檢測不同培養階段由胚乳衍生之癒合組織所獲得之體胚苗之相對DNA含量變化。
拔蕉胚乳發育過程依胚乳形態可分為四個時期,即為液狀期、膠狀期、固化期及粉狀期。初生胚乳呈游離核型發育,因此早期液狀胚乳期其胚乳形態呈游離胚乳核,九月授粉之拔蕉胚乳以0.1% Evans blue染色觀察細胞膜通透性變化,於授粉後50天內之液狀期胚乳,僅胚乳外圍組織呈色,液狀胚乳因無細胞膜無法染色。授粉50天後因胚乳組織由外向中央細胞化,繞著中腔之最內層細胞膜分化仍未完全,故可被染色並可觀察到有一藍色環形成,此與細胞死亡無關。胚乳細胞化後之膠狀期無法被染色並於進入固化期,則再度由外向心呈色。DNA電泳分析結果顯示當胚乳發育至固化期(約授粉後72天後)有DNA降解條帶出現,而與Evans blue染色結果相呼應,推測為程序性細胞死亡所致。
拔蕉膠狀期胚乳接種含有2,4-D、cytokinins之 MS培養基能被導向逆分化形成癒合組織,以含有2,4-D 1mg/L、BA 0.5 mg/L、TDZ 2 mg/L及GA 0.5 mg/L之生長調節劑組合獲得37.5%癒合組織發生率較佳。以九月開花授粉之拔蕉參試不同發育期胚乳組織當培植體,結果顯示液狀期並無逆分化能力,癒合組織發生頻率隨膠狀期生長而增加,至中期約53%發生率( 授粉後64天),固化期約授粉後75天則發生率急降為2-12 %,此乃與胚乳細胞凋亡有關。同配方培養基添加麥芽粹取物200mg/L能促進癒合組織發生,但添加檸檬酸抗氧化物1-5 mg/L則無促進癒合組織形成效果。台灣芭蕉膠狀中期胚乳接種MS培養基,添加2,4-D 1.0mg/L、BA 0.5 mg/L、TDZ 0.1 mg/L、GA 1.0 mg/L培養30天觀察,癒合組織發生率為35.0%。GA濃度增加會延遲胚性癒合組織的形成,且台灣芭蕉胚乳培養獲得胚性癒合組織時間較拔蕉長,約需三個月。
台灣芭蕉胚乳癒合組織接種於SH3 ( SH salt + 2ip 0.2mg/L+ kinetin 0.1mg/L+ zeatin 0.05mg/L+α-biotin 1mg/L+glutamine 100mg/L + Proline 230mg/L+ Lactose 10mg/L+ Malt-extreat 100mg/L+ sucrose 45g/L+ gelrite 2.5g/L) 再生培養基,培養45天會有體胚再生。而拔蕉再生之體胚則已發育成芽並有根的伸長。
懸浮細胞建立,以拔蕉胚乳衍生之胚性癒合組織接種於TB5培養基,其配方為2,4-D 1.0 mg/L、glutamine 100 mg/L、biotin 1.0 mg/L、malt extract 100 mg/L以及sucrose 45 g/L,胚性細胞增生情況良好,繼代增生培養約3個月可得較均質懸浮細胞。台灣芭蕉胚乳胚性癒合組織之懸浮細胞培養系統建立,初期培養以TB5培養液,二星期繼代一次有較多細胞團釋放,但增殖速率較同期培養之拔蕉胚乳細胞慢。
取均質拔蕉胚乳懸浮細胞液,將細胞大小分為<60, 60-30 及>30目之細胞團,稀釋成30倍取1c.c.PCV平板培養於修正SH3培養基,培養60天後,接種 30-60目之細胞團,平均可再生1285體胚,且<60目細胞團則有1533體胚。而且在水晶洋菜介質培養下,其平板效率高於濾紙棉花墊。
拔蕉胚乳衍生懸浮胚性細胞平板前,以TB5在振盪培養14天中,SH3處理胞外PH值雖呈波動性,大都維持在PH 4.55-5.48,而SH3 + MES 10g/L,其胞外pH值維持穩定5.35-5.63範圍,兩者處理皆可使前胚性細胞導向前胚發生,並進一步發育為球胚期。TB5培養液其胞外pH則漸調降至pH 3.95-4.43,補充MES初期雖能維持在5.67-4.58,但後期則調降4.16-4.45,兩種培養皆未有正常前胚發生。以SH3及SH3添加MES 10 g/L有較多體胚且體胚發育迅速,其平板效率較TB5預處理佳。
以乳白色大約0.8mm大小者之拔蕉胚乳再生體胚進行胚苗轉換,接種於1/2MS + NAA 0.1 mg/L下,可有較好之發根率及發芽率為81.0 %及75.9 %。添加低濃度生長素亦有利體胚苗、葉片生長及形成優良根系。添加GA 0.5mg/L並無助胚苗轉換及小植株建立,且易使地上部莖葉發生異常脫色及突長。取台灣芭蕉胚乳再生已發芽之體胚,接種於濾紙橋添加1/2MS+ NAA 0.1 mg/L液態培養基中培養一個月,發根較固態培養基快且正常。接種於同配方液態培養基懸浮培養一個月,能誘導發根但有部份褐化及畸形根產生。
流式細胞儀分析胚乳衍生之癒合組織、體胚、懸浮細胞及小植株其核DNA含量,經與二倍體植株葉片比較,知拔蕉胚乳衍生細胞系相對基因組大小比值為1.74-1.01之間,以比值為1.53之細胞系與雞血核( DNA content=2.5 pg)比對,可換算出DNA含量約為 1.58 pg。由於胚乳衍生癒合組織及再生小植株核型表現不穩定,因此未來需進一步篩選出同質之三倍體株。
zh_TW
dc.description.abstractDiploid bananas (2n=22) Musa balbisiana and M. formosana were used, for studying programmed cell death (PCD), rescuing culture, and regeneration in endosperm tissue.
The developmental stages of endosperm in M. balbisiana could be categoried into liquid stage(1-50 days after pollination, DAP), glutinous stage(62-70 DAP), solid stage(74-83 DAP) and starchy stage (>83DAP). The initiation of PCD in developing endosperm was studied using Evans blue staining method and DNA fragmentation markers. We demonstrated that dense blue staining took place in late glutinous stage about 72 DAP, that was also coincided with the timing of genomic DNA degradation by electrophoresis, about 74 DAP during fall season.
The various development stage endosperm were excised and cultured on MS medium supplemented containing 1mg/L 2,4-D, 0.5 mg/L BA, 2 mg/L TDZ and 0.5 mg/L GA. Callus formation rate in glutinous stage 64 DAP was 53%. Callus formation decreased in solid stage( 74 DAP) due to PCD. The addition of 200 mg/L malt extract increased callus formation. Glutinous endosperm of M. formosana cultured on MS medium containing 1.0mg/L 2,4-D, 0.5 mg/L BA, 0.1 mg/L TDZ, 1.0 mg/L GA showed higher callus formation rate, about 35.0 %. Increasing GA concentration delayed the embryogenic callus formation. The endosperm-derived embryogenic callus of M. formosana were recorded 3 months after cultivation, which is longer than what is recorded in M. balbisiana. The endosperm-derived callus of M. formosana formed adventitious bud and embryoids on SH3 medium.
The endosperm-derived calli of M. balbisiana and M. formosana were inoculated on TB5 liquid medium containing 1.0 mg/L 2,4-D, 100 mg/L glutamine, 1.0 mg/L biotin and 100 mg/L malt extract with110rpm shaking. Homogenous cell population of M. balbisiana were obtained after 3 months in suspension cell culture, while homogenous suspension cell of M. formosana were obtained after 4 months in suspension culture.
The size of suspension cell cluster was separated with <60, 60-30 and >30 meshes and were diluted 1/30 c.c PCV proceeding to plat on SH3 modified medium. The size classes cell clusters of 30-60 and <60 mesh respectively generated 1285 and 1533 embryoids/0.033 ml PCV in 60 DAC. Cell clusters on gelrite semisolid medium had greater plating efficiency than that on paper cushion enriched with liquid medium.
Before plating, the suspension prembryogenic cells of M. balbisiana were subcultured on TB5, SH3 medium with or without was consistent 10 g/L MES. That the extracellular pH of SH3 was remaining in the rage of 4.55-5.48 and SH3 + MES solution between 5.35 and 5.56 during 14 subculture period. Furthermore, two pretreated cells regenerated larger and higher quality of somatic embryos on plating medium than those on TB5 or TB5+MES pretreated.
Somatic embryos inoculated with 1/2MS solid medium adding 0.1 mg/L NAA induced 81.0% and 75.9% of rooting and shooting respectively. The plantlets grew well in medium added auxin. However the plantlets had exceptional discoloration and elongation on medium adding GA. Endosperm-derived adventitious buds of M. formosana inoculated on paper bridge adding 1/2MS and 0.1 mg/L NAA liquid medium induce rooting sooner than that in agar medium. The plantlets were transplanted into soilless mix, and obtain more than 90% survival.
Endosperm- derived calli, adventitious buds, suspension cells, and plantlets of M. balbisiana were analyzed by flow cell cytometry for measurement of nuclear DNA content which were range 1.74-1.01 times of diploid bananas. The endosperm-derived calli or plantlets exhibit karyotype instability. It is required to select the homogenous triploids in future.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:57:56Z (GMT). No. of bitstreams: 1
ntu-97-R94628127-1.pdf: 43486559 bytes, checksum: 9546006d513336e148235231a00e8d88 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents縮寫字 ( Abbreviations)…………………………………………… I
中文摘要……………………………………………………………… II
英文摘要…………………………………………………………………V
前言 ( Introduction)…………………………………………………1
前人研究( Literature Review)………………………………………2
(一)、胚乳起源與發育類型……………………………………………2
(二)、細胞凋亡(apoptosis)及程序性細胞死亡(programmed cell death)……………………………………………………………………………3
(三)、胚乳組織程序性細胞凋零………………………………………5
(A). 胚乳PCD類型及研究方法…………………………… 5
(B). Ethylene調控胚乳細胞程序性死亡…………………8
(四)、胚乳培養再生條件及其途徑……………………………………8
(五)、香蕉細胞培養pH調控之極化誘導…………………………… 10
(六)、胚乳培養與多倍體化途徑(pathways of polyploidization)………………………………………………………………………… 12
(七)、多倍體植株鑑定方法………………………………………… 13
材料與方法(Materials and Methods)………………………………14
一、參試材料………………………………………………………… 14
二、香蕉授粉及胚乳發育期間程序性死亡時程之調查…………… 14
三、二倍體拔蕉及其台灣芭蕉胚乳培養誘導癒合組織發生能力試驗……………………………………………………………………… 15
四、胚乳胚性懸浮細胞培養與建立………………………………… 17
五、平板培養與擬胚之誘導………………………………………… 17
六、生長調節劑對擬胚發芽及發根之影響………………………… 18
七、石臘切片觀察…………………………………………………… 19
八、小植株之建立…………………………………………………… 19
九、胚乳再生植株之檢定…………………………………………… 20結果( Results)……………………………………………………… 21
一、香蕉授粉及胚乳發育期間程序性死亡時程之調察…………… 21
1. 二倍體拔蕉種子發育時程之形態.................21
2. 胚乳發育期間細胞膜通透性變化之調查…………… 21
3. 胚乳程序性死亡之DNA裂解分析………………………22
二、二倍體拔蕉胚乳胚性癒合組織之誘導………………………… 22
1. 逆分化培養基及胚乳接種方式試驗………………… 22
2. 二倍體拔蕉胚乳不同發育階段與再生能力之關係… 24
3. Citric acid及麥芽萃取物對胚乳癒合組織發生率試
驗……………………………………………………… 24
4. 癒合組織繼代後生長情況…………………………… 24
5. 拔蕉及台灣芭蕉胚乳癒合組織誘導再分化之觀察… 25
三、胚乳胚性懸浮細胞試驗與建立………………………………… 25
1. 拔蕉癒合組織於TB5及其修正培養基之培養情況……25
2. 台灣芭蕉胚乳衍生胚性懸浮細胞之建立…………… 26
四、平板培養與擬胚之誘導………………………………………… 27
1. 不同介質對胚乳衍生胚性細胞分化之影響………… 27
2. SH3修正培養基誘導拔蕉胚乳衍生胚性細胞分化之效
力評估………………………………………………… 27
3. pH緩衝物質及再生培養基預處理對平板體胚誘導之影
響……………………………………………………… 28
五、不同生長調節劑組合對胚苗轉化之影響……………………… 29
1. 拔蕉胚乳胚苗轉換…………………………………… 29
2. 台灣芭蕉胚乳再生瓶苗之建立……………………… 30
六、胚乳衍生之癒合組織及其再生植株檢定……………………… 31
流式細胞儀分析……………………………………………31
討論( Discussion) ………………………………………………… 93
一. 二倍體香蕉胚乳發育及細胞膜通透性變化…………………… 93
二. DNA裂解分析指示胚乳程序性細胞死亡…………………………94
三. 香蕉胚乳培養癒合組織發生及誘導再生…………………… 94
(1) 生長調節劑對胚乳癒合組織發生之影響……………94
(2) 接種方式對癒合組織發生之影響……………………96
(3) 香蕉胚乳接種時期與癒合組織誘導率之關係………97
(4) Citric acid及麥芽萃取物對胚乳癒合組織發生率之
影響……………………………………………………98
(5) 癒合組織繼代後生長情況觀察………………………98
四. 再生培養基對香蕉胚乳癒合組織之影響……………………… 99
五. 香蕉胚乳懸浮細胞之建立………………………………………100
六. 再生培養基及pH緩衝液預處理對平板效力之影響……………101
(1) 預處理對極化生長誘導之效果…………………… 101
(2) 預處理對平板效力之探討………………………… 102
七. 胚乳再生植株之建立……………………………………………102
八. 流式細胞儀DNA含量分析……………………………………… 103

引用文獻 ( References) ………………………………………… 105
dc.language.isozh-TW
dc.title二倍體香蕉胚乳組織程序性細胞凋零及其體外培養與再生zh_TW
dc.titleProgrammed cell death and in vitro culture for regeneration in endosperm tissue of diploid bananas
(Musa balbisiana and M. formosana)
en
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李金龍 博士(Dr. Ching-Lung Lee),黃怡菁 博士(Dr. I-Ching Huang),黃鵬林 博士(Dr. Pung-Ling Huang),李國譚 博士(Dr. Kuo-Tan Li)
dc.subject.keyword香蕉,胚乳,程序性細胞凋零,DNA裂解,體外培養再生,懸浮培養,zh_TW
dc.subject.keywordBanana,programmed cell death,DNA fragmentation,in vitro culture,suspension culture,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2008-01-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
42.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved