請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27191完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張明富 | |
| dc.contributor.author | Ting-Chun Yu | en |
| dc.contributor.author | 游婷珺 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:57:33Z | - |
| dc.date.available | 2008-02-20 | |
| dc.date.copyright | 2008-02-20 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-30 | |
| dc.identifier.citation | 參 考 文 獻
1. Groneberg, D.A., et al., Severe acute respiratory syndrome: global initiatives for disease diagnosis. QJM, 2003. 96(11): p. 845-52. 2. Yeh, S.H., et al., Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: molecular epidemiology and genome evolution. Proc Natl Acad Sci U S A, 2004. 101(8): p. 2542-7. 3. Marra, M.A., et al., The Genome sequence of the SARS-associated coronavirus. Science, 2003. 300(5624): p. 1399-404. 4. Lee, N., et al., A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med, 2003. 348(20): p. 1986-94. 5. Peiris, J.S., et al., Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003. 361(9366): p. 1319-25. 6. Kuiken, T., et al., Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, 2003. 362(9380): p. 263-70. 7. Weiss, S.R. and S. Navas-Martin, Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev, 2005. 69(4): p. 635-64. 8. Drosten, C., et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 2003. 348(20): p. 1967-76. 9. Ksiazek, T.G., et al., A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 2003. 348(20): p. 1953-66. 10. Guan, Y., et al., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003. 302(5643): p. 276-8. 11. Lau, S.K., et al., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A, 2005. 102(39): p. 14040-5. 12. Rota, P.A., et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003. 300(5624): p. 1394-9. 13. Leung, W.K., et al., Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology, 2003. 125(4): p. 1011-7. 14. Stadler, K., et al., SARS--beginning to understand a new virus. Nat Rev Microbiol, 2003. 1(3): p. 209-18. 15. Ziebuhr, J., Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol, 2004. 7(4): p. 412-9. 16. Thiel, V., et al., Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol, 2003. 84(Pt 9): p. 2305-15. 17. Li, W., et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003. 426(6965): p. 450-4. 18. Lio, P. and N. Goldman, Phylogenomics and bioinformatics of SARS-CoV. Trends Microbiol, 2004. 12(3): p. 106-11. 19. Jeffers, S.A., et al., CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A, 2004. 101(44): p. 15748-53. 20. Li, W., et al., Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J, 2005. 24(8): p. 1634-43. 21. Babcock, G.J., et al., Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol, 2004. 78(9): p. 4552-60. 22. Wong, S.K., et al., A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem, 2004. 279(5): p. 3197-201. 23. Sui, J., et al., Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A, 2004. 101(8): p. 2536-41. 24. Yang, Z.Y., et al., A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 2004. 428(6982): p. 561-4. 25. Ying, W., et al., Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus. Proteomics, 2004. 4(2): p. 492-504. 26. An, S., et al., Induction of apoptosis in murine coronavirus-infected cultured cells and demonstration of E protein as an apoptosis inducer. J Virol, 1999. 73(9): p. 7853-9. 27. Mortola, E. and P. Roy, Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett, 2004. 576(1-2): p. 174-8. 28. He, R., et al., Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res, 2004. 105(2): p. 121-5. 29. Hsieh, P.K., et al., Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J Virol, 2005. 79(22): p. 13848-55. 30. Surjit, M., et al., The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem J, 2004. 383(Pt 1): p. 13-8. 31. He, R., et al., Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun, 2003. 311(4): p. 870-6. 32. Luo, C., et al., Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun, 2004. 321(3): p. 557-65. 33. Surjit, M., et al., The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem, 2006. 281(16): p. 10669-81. 34. Yount, B., et al., Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol, 2005. 79(23): p. 14909-22. 35. Yu, C.J., et al., Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett, 2004. 565(1-3): p. 111-6. 36. Tan, Y.J., et al., A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J Virol, 2004. 78(13): p. 6723-34. 37. Zeng, R., et al., Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. J Mol Biol, 2004. 341(1): p. 271-9. 38. Shen, S., et al., The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem Biophys Res Commun, 2005. 330(1): p. 286-92. 39. Law, P.T., et al., The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol, 2005. 86(Pt 7): p. 1921-30. 40. Fielding, B.C., et al., Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. J Virol, 2004. 78(14): p. 7311-8. 41. Fielding, B.C., et al., Severe acute respiratory syndrome coronavirus protein 7a interacts with hSGT. Biochem Biophys Res Commun, 2006. 343(4): p. 1201-8. 42. Huang, C., et al., Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J Virol, 2006. 80(15): p. 7287-94. 43. Tan, Y.J., et al., Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J Virol, 2004. 78(24): p. 14043-7. 44. Keng, C.T., et al., The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells. Virology, 2006. 354(1): p. 132-42. 45. Law, P.Y., et al., Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. FEBS Lett, 2006. 580(15): p. 3643-8. 46. Jonassen, C.M., T.O. Jonassen, and B. Grinde, A common RNA motif in the 3' end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. J Gen Virol, 1998. 79 ( Pt 4): p. 715-8. 47. Qinfen, Z., et al., The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol, 2004. 73(3): p. 332-7. 48. Bos, E.C., et al., The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology, 1996. 218(1): p. 52-60. 49. Vennema, H., et al., Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J, 1996. 15(8): p. 2020-8. 50. Corse, E. and C.E. Machamer, Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J Virol, 2000. 74(9): p. 4319-26. 51. Baudoux, P., et al., Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J Virol, 1998. 72(11): p. 8636-43. 52. Godeke, G.J., et al., Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein. J Virol, 2000. 74(3): p. 1566-71. 53. de Haan, C.A., et al., Coronavirus particle assembly: primary structure requirements of the membrane protein. J Virol, 1998. 72(8): p. 6838-50. 54. Raamsman, M.J., et al., Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol, 2000. 74(5): p. 2333-42. 55. Kuo, L. and P.S. Masters, The small envelope protein E is not essential for murine coronavirus replication. J Virol, 2003. 77(8): p. 4597-608. 56. French, T.J., J.J. Marshall, and P. Roy, Assembly of double-shelled, viruslike particles of bluetongue virus by the simultaneous expression of four structural proteins. J Virol, 1990. 64(12): p. 5695-700. 57. Roy, P., T. French, and B.J. Erasmus, Protective efficacy of virus-like particles for bluetongue disease. Vaccine, 1992. 10(1): p. 28-32. 58. Wang, P., et al., Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun, 2004. 315(2): p. 439-44. 59. Kuba, K., et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 2005. 11(8): p. 875-9. 60. Babcock, G.J., et al., Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol, 2004. 78(9): p. 4552-4560. 61. Xiao, X., et al., The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun, 2003. 312(4): p. 1159-64. 62. Chakraborti, S., et al., The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization. Virol J, 2005. 2: p. 73. 63. Han, D.P., M. Lohani, and M.W. Cho, Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J Virol, 2007. 81(21): p. 12029-39. 64. Marzi, A., et al., DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol, 2004. 78(21): p. 12090-5. 65. Yang, Z.Y., et al., pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol, 2004. 78(11): p. 5642-50. 66. Lin, G., et al., Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol, 2003. 77(2): p. 1337-46. 67. Hong, P.W., et al., Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J Virol, 2002. 76(24): p. 12855-65. 68. Appelmelk, B.J., et al., Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol, 2003. 170(4): p. 1635-9. 69. Feinberg, H., et al., Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science, 2001. 294(5549): p. 2163-6. 70. To, K.F. and A.W. Lo, Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol, 2004. 203(3): p. 740-3. 71. Chow, K.C., et al., Detection of severe acute respiratory syndrome-associated coronavirus in pneumocytes of the lung. Am J Clin Pathol, 2004. 121(4): p. 574-80. 72. Garg, A., et al., Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol, 2006. 177(9): p. 6192-8. 73. Ivaska, J., et al., Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res, 2007. 313(10): p. 2050-62. 74. Herrmann, H., B. Fouquet, and W.W. Franke, Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development, 1989. 105(2): p. 279-98. 75. Schaffeld, M., et al., Vimentin and desmin of a cartilaginous fish, the shark Scyliorhinus stellaris: sequence, expression patterns and in vitro assembly. Eur J Cell Biol, 2001. 80(11): p. 692-702. 76. Colucci-Guyon, E., et al., Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell, 1994. 79(4): p. 679-94. 77. Colucci-Guyon, E., et al., Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia, 1999. 25(1): p. 33-43. 78. Eckes, B., et al., Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci, 2000. 113 ( Pt 13): p. 2455-62. 79. Henrion, D., et al., Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest, 1997. 100(11): p. 2909-14. 80. Nieminen, M., et al., Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol, 2006. 8(2): p. 156-62. 81. Parry, D.A., Microdissection of the sequence and structure of intermediate filament chains. Adv Protein Chem, 2005. 70: p. 113-42. 82. Omary, M.B., et al., 'Heads and tails' of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci, 2006. 31(7): p. 383-94. 83. Eriksson, J.E., et al., Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci, 2004. 117(Pt 6): p. 919-32. 84. Eriksson, J.E., et al., Cytoskeletal integrity in interphase cells requires protein phosphatase activity. Proc Natl Acad Sci U S A, 1992. 89(22): p. 11093-7. 85. Kochin, V., S.Y. Imanishi, and J.E. Eriksson, Fast track to a phosphoprotein sketch - MALDI-TOF characterization of TLC-based tryptic phosphopeptide maps at femtomolar detection sensitivity. Proteomics, 2006. 6(21): p. 5676-82. 86. Chou, Y.H., et al., Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell, 1990. 62(6): p. 1063-71. 87. Chou, Y.H., K.L. Ngai, and R. Goldman, The regulation of intermediate filament reorganization in mitosis. p34cdc2 phosphorylates vimentin at a unique N-terminal site. J Biol Chem, 1991. 266(12): p. 7325-8. 88. Goto, H., et al., Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J Biol Chem, 1998. 273(19): p. 11728-36. 89. Goto, H., et al., Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem, 2003. 278(10): p. 8526-30. 90. Takai, Y., et al., Mitosis-specific phosphorylation of vimentin by protein kinase C coupled with reorganization of intracellular membranes. J Cell Biol, 1996. 133(1): p. 141-9. 91. Yamaguchi, T., et al., Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J Cell Biol, 2005. 171(3): p. 431-6. 92. Gard, D.L. and E. Lazarides, Cyclic AMP-modulated phosphorylation of intermediate filament proteins in cultured avian myogenic cells. Mol Cell Biol, 1982. 2(9): p. 1104-14. 93. Stefanovic, S., et al., Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J Virol, 2005. 79(18): p. 11766-75. 94. Gilbert, S., et al., Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol, 2001. 154(4): p. 763-73. 95. Toivola, D.M., et al., Keratins modulate colonocyte electrolyte transport via protein mistargeting. J. Cell Biol., 2004. 164(6): p. 911-921. 96. Runembert, I., et al., Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts. J Cell Sci, 2002. 115(Pt 4): p. 713-24. 97. Inada, H., et al., Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J Cell Biol, 2001. 155(3): p. 415-26. 98. Faigle, W., et al., Vimentin filaments in fibroblasts are a reservoir for SNAP23, a component of the membrane fusion machinery. Mol Biol Cell, 2000. 11(10): p. 3485-94. 99. Kumar, N., et al., Requirement of vimentin filament assembly for beta3-adrenergic receptor activation of ERK MAP kinase and lipolysis. J Biol Chem, 2007. 282(12): p. 9244-50. 100. Robidoux, J., et al., Maximal beta3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem, 2006. 281(49): p. 37794-802. 101. Feuk-Lagerstedt, E., et al., Lipid raft proteome of the human neutrophil azurophil granule. Proteomics, 2007. 7(2): p. 194-205. 102. Mielenz, D., et al., Lipid rafts associate with intracellular B cell receptors and exhibit a B cell stage-specific protein composition. J Immunol, 2005. 174(6): p. 3508-17. 103. Toivola, D.M., et al., Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol, 2005. 15(11): p. 608-17. 104. Coulombe, P.A. and P. Wong, Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol, 2004. 6(8): p. 699-706. 105. Bhattacharya, B., R.J. Noad, and P. Roy, Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress. Virol J, 2007. 4: p. 7-12. 106. Lake, J.A., et al., The role of Vif during HIV-1 infection: interaction with novel host cellular factors. J Clin Virol, 2003. 26(2): p. 143-52. 107. Karczewski, M.K. and K. Strebel, Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. J Virol, 1996. 70(1): p. 494-507. 108. Simon, J.H. and M.H. Malim, The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes. J Virol, 1996. 70(8): p. 5297-305. 109. Simon, J.H., et al., The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. J Virol, 1997. 71(7): p. 5259-67. 110. Henzler, T., et al., Fully functional, naturally occurring and C-terminally truncated variant human immunodeficiency virus (HIV) Vif does not bind to HIV Gag but influences intermediate filament structure. J Gen Virol, 2001. 82(Pt 3): p. 561-73. 111. Simmons, G., et al., Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A, 2004. 101(12): p. 4240-5. 112. Sha, Y., et al., A convenient cell fusion assay for the study of SARS-CoV entry and inhibition. IUBMB Life, 2006. 58(8): p. 480-6. 113. Smith, G.E., M.D. Summers, and M.J. Fraser, Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 1983. 3(12): p. 2156-65. 114. Goosen, M.F., Insect cell culture engineering: an overview. Bioprocess Technol, 1993. 17: p. 1-16. 115. Possee, R.D., Baculoviruses as expression vectors. Curr Opin Biotechnol, 1997. 8(5): p. 569-72. 116. Jarvis, D.L. and M.D. Summers, Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus-infected insect cells. Mol Cell Biol, 1989. 9(1): p. 214-23. 117. Baumert, T.F., et al., Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol, 1998. 72(5): p. 3827-36. 118. Volkman, L.E., Baculovirus bounty. Science, 1995. 269(5232): p. 1834. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27191 | - |
| dc.description.abstract | 嚴重急性呼吸道症候群 (severe acute respiratory syndrome, SARS) 在 2002 年末至 2003 年之間襲捲了數十個國家,致死率約 9.6%,嚴重急性呼吸道症候群相關之冠狀病毒(severe acute respiratory syndrome associated coronavirus, SARS-CoV)被證實與 SARS 引起之非典型肺炎有關。SARS-CoV 為一含有套膜之冠狀病毒,其基因體為一單股正向的RNA,長約 30,000 個核苷酸,具有 14 個 ORFs,主要包括四個結構性蛋白質,membrane (M)、 envelope (E)、 spike (S) 和 nucleocapsid (N) 以組成病毒顆粒,其中 spike 為一鑲嵌在膜上的蛋白質,具有和宿主細胞受體結合的功能,進而產生細胞融合的現象。本研究著重於 SARS-CoV 感染宿主時,除了目前所知的受體蛋白質ACE2 (angiotensin-converting enzyme2)、DC-SIGN (dendritic cell specific ICAM-3-grabbing nonintegrin) 和 L-SIGN (liver/lymph node-specific ICAM-3-grabbing nonintegrin; also called CD209L or DC-SIGNR) 以外,是否還有其他宿主細胞表面因子參與其中。
先前對於SARS-CoV的受體蛋白質研究,許多僅表現spike蛋白質來做實驗,而本實驗室利用較能模擬實際生理狀況的類病毒顆粒(virus-like particles, VLPs) 來作為主要實驗材料。分別含有SARS-CoV三種主要結構蛋白質E、M和S的重組桿狀病毒共同感染昆蟲細胞Sf9,此時細胞同時表現三種結構蛋白質並組裝成SARS-VLPs而釋出細胞到培養液中,從培養液中分離以及蔗糖梯度離心 (sucrose gradient centrifugation) 純化之後,利用穿透式電子顯微鏡 (transmission electron microscopy) 確認形成正確的病毒顆粒構形,利用此SARS-VLPs與具有SARS-CoV受體ACE2之細胞株共同培養,在十分鐘觀察到spike會和ACE2結合形成複合體,並且經由免疫沉澱以及質譜儀分析,得知有三個細胞蛋白質可能和病毒感染過程相關,其中包含二個細胞骨架蛋白質actin和vimentin,以及一個鈣離子依存性磷脂質結合蛋白質annexin A2。進一步的實驗發現 vimentin 蛋白質在和 SARS-VLPs 反應十分鐘,可以被 anti-ACE2抗體免疫沉澱,由共軛焦顯微鏡也觀察到 spike 及 vimentin 在細胞膜上有共位現象,證實 vimentin可能參與在SARS-CoV感染細胞時形成的 spike-ACE2 複合體當中。未來工作將會釐清vimentin在病毒感染過程中實際上扮演的角色,以及其調控機制。 | zh_TW |
| dc.description.abstract | Severe acute respiratory syndrome (SARS) which emerged in the winter of 2002 caused a mortality rate as high as 9.6%. SARS-coronavirus (SARS-CoV) is a causative agent of SARS. It is an enveloped, positive single-stranded RNA virus with an RNA genome about 30,000 nucleotides in length, which encodes 14 open reading frames. The virus particle consists of four major structural proteins: spike (S), membrane (M), envelope (E) and nucleocapsid (N). The S protein initiates virus entry by binding to cell surface receptors followed by conformational changes that lead to membrane fusion. The specific aim of this study is to identify surface molecules of host cells involved in the process of SARS-CoV infection.
Virus-like particles (VLPs) consist of three major envelope proteins E, M and S that mimic the organization and conformation of native virus particles. VLPs can undergo infection, following cell attachment and membrane fusion. In order to generate SARS-VLPs, Sf9 cells were co-infected with recombinant baculoviruses that express E, M, and S proteins. Four days post-infection, cells were lysed and SARS-VLPs were isolated from culture medium and purified by sucrose gradient centrifugation. Electron microscopic and immunogold labeling analysis of negatively stained SARS-VLPs exhibited SARS-CoV-like structures. In this study, spike protein was found to form complexes with ACE2 when SARS-VLPs were co-incubated with Vero E6 cells for 10 min. Immunoprecipitation followed by LC-MS/MS analysis identified the association of actin, vimentin and annexin A2 with ACE2. The specific interaction between ACE2 and vimentin was further confirmed by immunoprecipitation and Western blot analysis. In addition, colocalization of the spike protein of SARS-CoV and vimentin on the cell membrane was demonstrated by confocal microscopic analysis. Taken together, these results indicate that vimentin may form complexes with spike and ACE2 during virus infection. The role of vimentin involved in virus entry needs to be further studied. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:57:33Z (GMT). No. of bitstreams: 1 ntu-97-R94442025-1.pdf: 1533190 bytes, checksum: ab43e0f5098d3d90a62e0a4dd5afd854 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目 次
中文摘要 …………………………………………………Ⅰ 英文摘要 …………………………………………………Ⅱ 縮寫表 ……………………………………………………Ⅲ 緒論 ……………………………………………………… 1 材料來源 …………………………………………………17 實驗方法 …………………………………………………22 實驗結果 …………………………………………………41 討論 ………………………………………………………46 圖表 ………………………………………………………50 參考文獻 …………………………………………………65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 波形蛋白質 | zh_TW |
| dc.subject | 嚴重急性呼吸道症候群 | zh_TW |
| dc.subject | 受體 | zh_TW |
| dc.subject | 血管緊張素轉化酶 | zh_TW |
| dc.subject | receptor | en |
| dc.subject | ACE2 | en |
| dc.subject | vimentin | en |
| dc.subject | SARS | en |
| dc.title | 細胞骨架蛋白質參與血管緊張素轉化酶2依賴性嚴重急性呼吸道症候群冠狀病毒棘蛋白質之結合 | zh_TW |
| dc.title | Cytoskeletal proteins are involved in the ACE2-dependent binding of SARS-CoV spike protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李芳仁,詹迺立 | |
| dc.subject.keyword | 嚴重急性呼吸道症候群,波形蛋白質,受體,血管緊張素轉化酶,2, | zh_TW |
| dc.subject.keyword | SARS,vimentin,receptor,ACE2, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
