請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2716
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃念祖(Nien-Tsu Huang) | |
dc.contributor.author | Wei-Yu Su | en |
dc.contributor.author | 蘇威宇 | zh_TW |
dc.date.accessioned | 2021-05-13T06:48:49Z | - |
dc.date.available | 2020-08-24 | |
dc.date.available | 2021-05-13T06:48:49Z | - |
dc.date.copyright | 2017-08-24 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-20 | |
dc.identifier.citation | 文獻回顧
1. Marchington, R.F., et al., Optical injection of mammalian cells using a microfluidic platform. Biomedical Optics Express, 2010. 1(2): p. 527-536. 2. Tung, Y.-C., et al., Optofluidic Detection for Cellular Phenotyping. Lab on a chip, 2012. 12(19): p. 10.1039/c2lc40509a. 3. Quinto-Su, P.A., et al., Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab on a Chip, 2008. 8(3): p. 408-414. 4. Huang, N.-T., et al., An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab on a Chip, 2012. 12(20): p. 4093-4101. 5. Huang, N.-T., et al., Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab on a Chip, 2014. 14(7): p. 1230-1245. 6. Oh, B.-R., et al., Integrated Nanoplasmonic Sensing for Cellular Functional Immunoanalysis Using Human Blood. ACS Nano, 2014. 8(3): p. 2667-2676. 7. Huang, C.-W., et al., A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology. Lab on a Chip, 2013. 13(22): p. 4451-4459. 8. Kuan, D.-H., et al., A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes. Lab on a Chip, 2016. 16(16): p. 3105-3113. 9. Pei-Wen, Y., et al., A device design of an integrated CMOS poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples. Biosensors and Bioelectronics, 2014. 61: p. 112-118. 10. Jiang, Y., et al., Integrated Plastic Microfluidic Devices with ESI-MS for Drug Screening and Residue Analysis. Analytical Chemistry, 2001. 73(9): p. 2048-2053. 11. Prabhakar, A., et al., A novel, compact and efficient microchannel arrangement with multiple hydrodynamic effects for blood plasma separation. Microfluidics and Nanofluidics, 2015. 18(5): p. 995-1006. 12. Marchalot, J., Y. Fouillet, and J.-L. Achard, Multi-step microfluidic system for blood plasma separation: architecture and separation efficiency. Microfluidics and Nanofluidics, 2014. 17(1): p. 167-180. 13. Sollier, E., et al., Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices. Biomedical microdevices, 2010. 12(3): p. 485-497. 14. Siddhartha, T., et al., Passive blood plasma separation at the microscale: a review of design principles and microdevices. Journal of Micromechanics and Microengineering, 2015. 25(8): p. 083001. 15. Kersaudy-Kerhoas, M. and E. Sollier, Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab on a Chip, 2013. 13(17): p. 3323-3346. 16. Dimov, I.K., et al., Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab on a chip, 2011. 11(5): p. 845-850. 17. Son, J.H., et al., Hemolysis-free blood plasma separation. Lab on a Chip, 2014. 14(13): p. 2287-2292. 18. Zhang, X.-B.B., et al., Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip. Analytical chemistry, 2012. 84(8): p. 3780-3786. 19. Haeberle, S., et al., Centrifugal extraction of plasma from whole blood on a rotating disk. Lab on a Chip, 2006. 6(6): p. 776-781. 20. Kim, B., et al., Microfluidic Pipette Tip for High-Purity and High-Throughput Blood Plasma Separation from Whole Blood. Analytical Chemistry, 2017. 89(3): p. 1439-1444. 21. Lenshof, A. and T. Laurell, Continuous separation of cells and particles in microfluidic systems. Chemical Society Reviews, 2010. 39(3): p. 1203-1217. 22. Bhagat, A.A.S., et al., Microfluidics for cell separation. Medical & Biological Engineering & Computing, 2010. 48(10): p. 999-1014. 23. Inglis, D.W., et al., Microfluidic high gradient magnetic cell separation. Journal of Applied Physics, 2006. 99(8): p. 08K101. 24. MacDonald, M.P., G.C. Spalding, and K. Dholakia, Microfluidic sorting in an optical lattice. Nature, 2003. 426(6965): p. 421-424. 25. Pamme, N., Continuous flow separations in microfluidic devices. Lab on a Chip, 2007. 7(12): p. 1644-1659. 26. Park, J.-S., S.-H. Song, and H.-I. Jung, Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab on a Chip, 2009. 9(7): p. 939-948. 27. Wu, Z., et al., Continuous inertial microparticle and blood cell separation in straight channels with local microstructures. Lab on a Chip, 2016. 16(3): p. 532-542. 28. Hur, S.C., H.T.K. Tse, and D. Di Carlo, Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab on a Chip, 2010. 10(3): p. 274-280. 29. Wu, R.G., et al. Label-free blood cells separation and enrichment from whole blood by high-throughput hydrodynamic and inertial force. in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). 2013. 30. Tseng, H.C., et al. High-throughput white blood cells (leukocytes) separation and enrichment from whole blood by hydrodynamic and inertial force. in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS). 2012. 31. Hyun, K.-A., et al., Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients. Biosensors and Bioelectronics, 2013. 40(1): p. 206-212. 32. Gossett, D.R., et al., Label-free cell separation and sorting in microfluidic systems. Analytical and Bioanalytical Chemistry, 2010. 397(8): p. 3249-3267. 33. Chen, X., et al., Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Analytica Chimica Acta, 2007. 584(2): p. 237-243. 34. Chen, X., et al., Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sensors and Actuators B: Chemical, 2008. 130(1): p. 216-221. 35. VanDelinder, V. and A. Groisman, Perfusion in Microfluidic Cross-Flow: Separation of White Blood Cells from Whole Blood and Exchange of Medium in a Continuous Flow. Analytical Chemistry, 2007. 79(5): p. 2023-2030. 36. Sajeesh, P., et al., A microfluidic device with focusing and spacing control for resistance-based sorting of droplets and cells. Lab on a Chip, 2015. 15(18): p. 3738-3748. 37. Lee, M.G., et al., Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress. Analytical Chemistry, 2013. 85(13): p. 6213-6218. 38. Choi, J., J.-c. Hyun, and S. Yang, On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood. Scientific Reports, 2015. 5: p. 15167. 39. Johnston, I.D., et al., Dean flow focusing and separation of small microspheres within a narrow size range. Microfluidics and Nanofluidics, 2014. 17(3): p. 509-518. 40. Yoon, Y., et al., Clogging-free microfluidics for continuous size-based separation of microparticles. Scientific Reports, 2016. 6: p. 26531. 41. Alvankarian, J., A. Bahadorimehr, and B. Yeop Majlis, A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics, 2013. 7(1): p. 014102. 42. Chen, J., et al., Microfluidic chips for cells capture using 3-D hydrodynamic structure array. Microsystem Technologies, 2014. 20(3): p. 485-491. 43. Dhar, M., et al., High efficiency vortex trapping of circulating tumor cells. Biomicrofluidics, 2015. 9(6): p. 064116. 44. Chen, J., et al., A microfluidic chip for direct and rapid trapping of white blood cells from whole blood. Biomicrofluidics, 2013. 7(3): p. 034106. 45. Sarioglu, A.F., et al., A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Meth, 2015. 12(7): p. 685-691. 46. Albert, J.M., B.A. Oladunni, and C. Dino Di, Microfluidic sample preparation for diagnostic cytopathology. Lab on a chip, 2013. 13(6): p. 1011-1026. 47. Yang, S., A. Undar, and J.D. Zahn, A microfluidic device for continuous, real time blood plasma separation. Lab on a Chip, 2006. 6(7): p. 871-880. 48. Yen, R.T. and Y.C. Fung, Effect of velocity distribution on red cell distribution in capillary blood vessels. American Journal of Physiology - Heart and Circulatory Physiology, 1978. 235(2): p. H251. 49. Kim, M., et al., A Microfluidic Device for Continuous White Blood Cell Separation and Lysis From Whole Blood. Artificial Organs, 2010. 34(11): p. 996-1002. 50. Ji, H.M., et al., Silicon-based microfilters for whole blood cell separation. Biomedical Microdevices, 2008. 10(2): p. 251-257. 51. Li, C., et al., Extraction of plasma from whole blood using a deposited microbead plug (DMBP) in a capillary-driven microfluidic device. Biomedical Microdevices, 2012. 14(3): p. 565-572. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2716 | - |
dc.description.abstract | 血液是現今最常被用來分析各式各樣人體訊息的生物樣本,其中常見的分析目標為紅血球、白血球以及血漿。為了要準確地得到這些訊息,必須將血液樣本中的各內容物進行前處理如:分離或稀釋。本論文設計一被動式分離全血微流道晶片,僅需使用少量的血液樣本(<10μL),無需血球標記的前處理,同時進行全血的血漿分離純化(稀釋1.3至2.5倍)與紅、白血球的分離,並且30分鐘內以微柱陣列捕捉約3000顆白血球。目前此全血處理微流道晶片在分析目標上已有初步成果,且具有將全血細胞計數(Complete Blood Count, CBC)發展成實驗室晶片(Lab-on-a-Chip, LOC)之潛力。 | zh_TW |
dc.description.abstract | Nowadays, one of the most commonly used sample for health analysis is blood, of which red blood cells (RBCs), white blood cells (WBCs), and plasma are the most commonly used analytes. For direct analysis of blood, the samples should be pre-processed through separation or dilution. In this thesis, we designed a passive whole blood separation microfluidic device that can simultaneously separate plasma (with 2.2-2.5 times dilution) and WBCs from whole blood. The device can further trap about 3000 WBCs with micro-pillars in 30 minutes. The separation process is label-free and requires a low sample volume of 10 μL. The whole blood separation microfluidic device has the potential to achieve complete blood count (CBC) and develop into a Lab-on-a-Chip (LOC) device. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:48:49Z (GMT). No. of bitstreams: 1 ntu-106-R04945031-1.pdf: 3469395 bytes, checksum: 09a216c64d0c5bf2430feab184d03ab1 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 第 1 章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 從全血分離血漿 3 1.2.2 從全血分離白血球 8 1.2.3 白血球或罕見細胞之捕捉 13 1.3 研究動機以及目的 14 1.4 論文架構 14 第 2 章 基本理論 16 2.1 分岔定律 16 2.2 血液分離流道原理與微流道晶片設計 18 第 3 章 實驗流程 23 3.1 晶片製程 23 3.1.1 光微影模具製程流程 24 3.1.2 光微影製程之參數設定 28 3.1.3 軟微影製程 30 3.1.4 微流道晶片之填充微珠製程 33 3.2 血液樣本處理 33 3.2.1 血液樣本取得 33 3.2.2 吸光度量測血漿稀釋倍率 34 3.2.3 白血球染色 35 3.2.4 血球計數 35 3.3 微流道實驗 36 3.3.1 血漿純化實驗 36 3.3.2 使用2μm及10μm微珠模擬分離紅、白血球實驗 37 3.3.3 白血球捕捉實驗 38 3.3.4 使用4.5及10μm微珠模擬不同尺寸的細胞捕捉實驗 39 第 4 章 實驗結果與討論 41 4.1 微流道製作結果與量測 41 4.2 2 μm及10μm微珠模擬紅、白血球分離結果 42 4.3 純化血漿結果與稀釋倍率量測 42 4.4 全血分離紅血球結果 44 4.5 使用微柱結構捕捉白血球 46 4.5.1 之字形捕捉區域捕捉白血球 46 4.5.2 圓形捕捉區域捕捉白血球 48 4.6 圓形微柱捕捉不同尺寸之微珠 51 第 5 章 結論與未來展望 53 5.1 結論 53 5.2 未來展望 53 | |
dc.language.iso | zh-TW | |
dc.title | 研發一免標定全血處理之微流道晶片進行血漿純化和白血球捕捉 | zh_TW |
dc.title | Developing a label-free whole-blood processing microfluidic device for plasma collection and white blood cells trapping | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),董奕鍾(Yi-Chung Tung),許聿翔(Yu-Hsiang Hsu) | |
dc.subject.keyword | 全血,微流道,免標記,細胞分離,細胞捕捉, | zh_TW |
dc.subject.keyword | whole blood,microfluidics,label-free,cells separation,cells trapping, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU201704073 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-08-21 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 3.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。