請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27155完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭介宗(Jai-Tsung Shaw) | |
| dc.contributor.author | Da-Wei Chien | en |
| dc.contributor.author | 錢大衛 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:56:39Z | - |
| dc.date.available | 2010-02-18 | |
| dc.date.copyright | 2008-02-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-30 | |
| dc.identifier.citation | 1.中國國家標準。1998。乳品檢驗法-乳中牛乳之檢出。總號14117。類號N6304。經濟部中央標準局印行。
2.王雅芳。1996。生羊乳中還原牛乳之檢出。碩士論文。國立台灣大學畜產研究所。 3.林慶文。1983。酪蛋白膠粒的構造。科學農業 31(5-6): 179-182。 4.林慶文。1993。乳品加工學。二版。華香園出版社。pp. 12,18,22,90。台北。 5.李素珍。2002。台灣地區原料乳品質。博士論文。國立台灣大學畜產研究所。 6.楊价民。1996 。瘤胃生態系統與反芻動物對養分的利用,第46-83 頁。藝軒圖書出版社,台灣台北。 7.Anguita, G., R. Martin, T. Garcia, P. Morales, A. I. Haza, I. Gonzalez, B. Sanz and P. E. Hernandez. 1996. Immunological characterization of bovine casein fractionated by fast protein liquid chromatography(FPLC). Milchwissenschaft 51,21-25. 8.Mouazen, A.M., 2007, Feasibility study on using visible-near infrared spectroscopy coupled with a factorial discriminant analysis technique to identify sheep milk from different genotypes and feeding system. J. Near Infrared Spectrosc. 15,359–369 9.Birth, G. S. and H. G. Hecht. 1990. Chapter 1. the physics of near –infrared reflectance. In “Near-Infrared Technology in the agricultural and food industries”, ed. Williams, P., and K. Norris , 1-15. St. Paul, Minnesota, USA, American Association of Cereal Chemists Inc. 10.Boulanger, A., F. Groscaude and M. F. Mahe. 1984. Polymorphism of αs1- andαs2-CNs of the goat. Genet. Sel. Evol. 16, 157-176. 11.Cohen, J. 1983. Applied multiple regression/correlation analysis for the behavioralsciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates. 12.Cohen, J., P. Cohen, S.G West, and L.S Aiken, 2003. Applied multiple regression/correlation analysis for the behavioral sciences. 3rd ed. Hillsdale, NJ: Lawrence Erlbaum Associates. 13.Corbella E. and D. Cozzolino, 2005, The use of visible and near infrared spectroscopy to classify the floral origin of honey samples produced in Uruguay. J. Near Infrared Spectrosc. 13, 63–68 14.DePeters, E. J. and J. D. Ferguson. 1992. Nonprotein nitrogen and protein distribution in the milk of cows. J. Dairy Sci. 75,3192-3209. 15.E.F. Ahumada, G.V. Ana, G. J. Emilio, W. Arjan, V.S. Catrinus and M. Jos, 2006, Understanding factors affecting near infrared analysis of potato constituents, J. Near Infrared Spectrosc. 14, 27–35 16.Emery, R. S. 1978. Feedings for increased milk protein. J. Dairy Sci.61, 825-828. 17.Fu H.Y., S. Y. Huan, L. J. Tang, J.H. Jiang, H. L. Wu, G. L. Shen and R. Q. Yu, Moving window partial least-squares discriminant analysis for identification of different kinds of bezoar samples by near infrared spectroscopy and comparison of different pattern recognition methods. 2007, J. Near Infrared Spectrosc, 15, 291–297 18.Hruschka, W. R., 2001, Chapter 3, Data Analysis: Wavelength selection methods. In “Near-Infrared Technology in the agricultural and food industries”, ed. Williams, P., and K. Norris , 39-58. St. Paul, Minnesota, USA, American Association of Cereal Chemists Inc. 19.Ingle , J. D. and , S. R. Crouch .1989. Spectrochemical analysis. 323-351. Englewood Cliffs: Prentice-Hall. 20.J.Y. Chen, C. Iyo, F. Terada and S. Kawano, 2002, Effect of multiplicative scatter correction on wavelength selection for near infrared calibration to determine fat content in raw milk. J. Near Infrared Spectrosc. 10, 301–307 21.Kaminarides S.E. and E. M. Anifantakis. 1993. Comparative study of the speperation of casein from bovine, ovine and caprine milks using HPLC. J Dairy Res. 60, 495-504. 22.Majid. A. M., T. C. Cartwright. J. A. Yazman and Jr. H. A. Fitzhugh. 1994. Performance of five breeds of dairy goats in southern United States. 2. Lactation yields and curves. World Review of anim. Produc. 29, 30-37. 23.Sáiz-Abajo M.J., J.M. González-Sáiz and C. Pizarro, 2007, Temperature and path length optimization for near infrared measurement of liquid samples:an alternative approach, J. Near Infrared Spectrosc, 15, 71–80 24.Moio, L., M. Sasso, L. Chianese and F. Addeo. 1990. Rapid detection of bovine milk in ovine, caprine and water buffalo milk or cheese by gel isoelectric focusing on PhastSystem. Italian J. Food Sci. 2(3),185-190. 25.Murray, I., and Williams, P. C., 1990, Chapter 2, chemical principles of near infrared technology. In “Near-Infrared Technology in the Agricultural and Food Industries”, ed. by Williams, P., and K. Norris, 1-15. St. Paul, Minnesota, USA, American Association of Cereal Chemists Inc., 26.Lachenbruch ,P. A and M. Goldstein Biometrics, 1979. Discriminant Analysis, Perspectives in Biometry Vol. 35(1), 69-85 27.Owens, F. N. and R. Zinn. 1988. Protein metabolism of ruminant animals . In Church, D. C. The ruminant animal digestive physiology and nutrition. pp. 227-249. Prentice Hall, Englewood Clifts, NJ., USA. 28.Recio, I., M., L. Perez-Rodriguez, L. Amigo and M. Ramos. 1997a. Study of the polymorphism of caprine milk caseins by capillary electrophoresis. J. Dairy Res. 64, 515-523. 29.Recio, I., M. L. Perez-Rodriguez, L. Amigo and M. Ramos. 1997b. Capillary electrophoretic analysis of genetic variants of milk proteins from different species. J. Chromat. A 768, 47-56. 30.Romero, C., A. O. Perez, A. Olmedo and S. Jimenez. 1996.Detection of cow’s milk in ewe’s or goat’s milk by HPLC. Chromatographia 42, 1182-1184. 31.Rook, J. A. F. and R. C. Campling. 1965. Effect of stage and number of lactation the yield and composition of cow’s milk. J. Dairy Res. 32, 45. 32.Visek, W. J. 1984. Ammonia: its effects on biological systems, metabolic hormones, and reproduction. J. Dairy Sci. 67, 481-498. 33.Waite, R., J. C. D. White and A. Robertson. 1956. Variations in the chemical composition of milk with particular reference to the solids-not-fat. J. Dairy Res. 23, 637. 34.Westwood, C. T., L. J. Lean and R. C. Kellaway. 1998. Indications and implications for testing of milk urea in dairy cattle : a quantitative review: part 1. dietary protein sources and metabolism. New Zealand Vet. J. 46, 87-96. 35.Williams, P., and K. Norris. 2001. Near-Infrared technology in the agricultural and food industries. 2nd ed. Chapter 2: “Chemical Principles of Near-Infrared Technology”, ed. C. E. Miller, 19-37. Minnesota: American Association of Cereal Chemists, Inc. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27155 | - |
| dc.description.abstract | 市售羊乳的價格幾乎是牛乳的兩倍。常有羊乳攙入牛乳或標示成份不清楚的問題,為了維持市場秩序及保護消費者的權益,需要發展一套快速檢測羊奶攙入牛乳的方法。於40。C的溫度下,利用分光光度計(FOSS NIRSystem 6500)掃描随機取樣台大農場生產的羊奶及牛奶,60羊奶樣本各摻雜15% 、10%、6%牛奶,波長從400nm到2500nm,使用光譜間距為2nm,即一次掃描可得1050個吸收光譜值,用WinISIⅡ軟體輸出,再用Unscramber 7.6軟體部分之最小平方迴歸與Matlab 6.0軟體之區別分析法搭配虛擬迴歸技術、建立校正模式。
原始光譜全在波長400nm~2498nm以PLSR配合虛擬迴歸分析,驗證純羊奶樣本對15%摻雜樣本有97.5%準確率,對10%摻雜樣本有72.5%驗證率,對6%摻雜樣本有72.5%驗證率。 以區別分析選取40個相關係數較低波長對應之光譜值,純羊奶與15%、10%及6%的摻雜牛奶樣本,驗證率分別為90%、85%及70%。三組的平均驗證率為81.7%高於PLSR分析的結果80.8%。建立驗證率與羊奶摻雜牛奶比率成線性之方程式可用耒推估未耒量測羊奶摻雜牛奶比例之驗證率。 | zh_TW |
| dc.description.abstract | Market price of goat milk is about twice of milk. To solve the problems of goat milk mixed milk and unclear labeling the compositions ,to maintain market order and to protect consumers' rights and interests, it is necessary to develop a rapid detecting method. At temperature 40 degree C, 60 random goat samples were taken from the experimental farm of National Taiwan University, mixed with 15%,10% and 6% of cow , scanned by FOSS NIRSystem 6500 from 400nm to 2498nm with 2nm intervals.1050 absorbance were collected by winISIⅡ software, and analyzed by PLSR in Unscramber 7.6 software and discriminant analysis in Matlab 6.0 software with a dummy regression technique.
Using original spectra from 400nm to 2498nm analyzed by a PLSR method with a dummy regression, validation rates of 60 goat milk samples mixed with 15% , 10%,and 6%cow milk were 97.5%,72.5% and72.5%, respectively. Selecting 40 absorbance corresponding to wavelength with the lowest correlation analyzed by discriminant analysis, validation rates of 60 goat milk samples mixed with 15%, 10%, and 6% cow milk were 90%, 85% and 70%, respectively. The average validation rate of three groups was 81.7% higher than 80.8% by PLSR method. The established linear equation could predict the validation rate without measurement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:56:39Z (GMT). No. of bitstreams: 1 ntu-97-R94631029-1.pdf: 1239526 bytes, checksum: 344c4d5c7d2663ca896676cae2e4aff0 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要………………………………………………………. iii 英文摘要………………………………………………………. v 圖目錄………………………………………………………… vi 表目錄…………………………………………………………. vii 第一章 前言…………………………………………………. 1 第二章 文獻探討……………………………………………. 3 2.1 乳蛋白合成………………………………………… 3 2.2 泌乳牛蛋白質代謝………………………………… 4 2.3 牛乳與羊乳成份與影響泌乳之因素……………… 4 2.3.1 季節之影響…………………………………… 4 2.3.2 泌乳期之影響 ………………………………… 5 2.3.3 胎次之影響 …………………………………… 5 2.3.4 餵食系統之影響 ……………………………… 5 2.4 傳統檢驗牛乳與羊乳的方法……………………… 6 2.5 可見光與近紅外光之檢測原理…………………… 7 2.5.1 近紅外光光譜之特性………………………… 7 2.5.2 影響近紅外光譜吸收波長之因素…………… 7 2.5.3 物質能階與近紅外光吸收…………………… 8 2.5.4 Beer-Lambert定律……………………………… 8 2.5.5 近紅外光譜液態溫度選擇…………………… 9 2.6 近紅外光譜分析方法……………………………… 9 2.6.1 PLSR搭配虛擬迴歸…………………………… 10 2.6.2 區別分析……………………………………… 10 2.7 近紅外光譜波長選擇……………………………… 11 2.7.1 一階與二階差分法…………………………… 11 2.7.2 相關係數……………………………………… 11 2.7.3 迴歸係數……………………………………… 12 2.8 可見光與近紅外光檢測之應用…………………… 12 第三章 材料與方法…………………………………………. 16 3.1 實驗材料…………………………………………… 16 3.2 實驗設備…………………………………………… 16 3.3 實驗步驟…………………………………………… 20 3.4 實驗方法…………………………………………… 23 3.4.1 PLSR…………………………………………… 23 3.4.2 區別分析……………………………………… 25 第四章 結果與討論…………………………………………... 26 4.1 以PLSR區分羊奶中摻雜牛奶……………………… 26 4.2 以MATLAB 7.2中之區別分析法區分羊奶中摻雜牛奶………………………………………………… 32 4.3 驗證率預測與量測結果之比較…………………… 34 第五章 結論…………………………………………………... 36 參考文獻……………………………………………………….. 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 牛奶 | zh_TW |
| dc.subject | 羊奶 | zh_TW |
| dc.subject | 近紅外光 | zh_TW |
| dc.subject | 光譜 | zh_TW |
| dc.subject | 部份最小平方迴歸 | zh_TW |
| dc.subject | 區別分析 | zh_TW |
| dc.subject | milk | en |
| dc.subject | spectroscopy | en |
| dc.subject | nearly infrared | en |
| dc.subject | discriminant analysis | en |
| dc.subject | PLSR | en |
| dc.subject | goat milk | en |
| dc.title | 以可見光/近紅外光光度計檢驗羊奶攙雜牛奶 | zh_TW |
| dc.title | Detecting Goat Milk Mixed with Cow Milk by Visible / Near Infrared Spectrophotometer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳世銘,周瑞仁 | |
| dc.subject.keyword | 光譜,近紅外光,區別分析,部份最小平方迴歸,羊奶,牛奶, | zh_TW |
| dc.subject.keyword | spectroscopy,nearly infrared,discriminant analysis,PLSR,goat milk,milk, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-01-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
