Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2714
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松
dc.contributor.authorPo-Chuan Chienen
dc.contributor.author簡伯銓zh_TW
dc.date.accessioned2021-05-13T06:48:48Z-
dc.date.available2017-08-31
dc.date.available2021-05-13T06:48:48Z-
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-20
dc.identifier.citation[1] N. C. Commission. (Apr. 2017). Telecommunication figures in 2016, [Online]. Available: http://www.ncc.gov.tw/english/files/16060/384_1830_170428_1.pdf.
[2] C. V. N. Index. (Feb. 2016). Global mobile data traffic forecast update 2015–2020 white paper, Feb 2016, [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.
[3] H. Dahrouj, A. Douik, O. Dhifallah, T. Y. Al-Naffouri, and M.-S. Alouini, “Resource allocation in heterogeneous cloud radio access networks: advances and challenges,”IEEE Wireless Communications, vol. 22, no. 3, pp. 66–73, 2015.
[4] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, et al., “Scenarios for 5G mobile and wireless communications: the vision of the metis project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26–35, 2014.
[5] M. Peng, Y. Li, J. Jiang, J. Li, and C. Wang, “Heterogeneous cloud radio access networks: a new perspective for enhancing spectral and energy efficiencies,”IEEE Wireless Communications, vol. 21, no. 6, pp. 126–135, 2014.
[6] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: a comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.
[7] F. Han, S. Zhao, L. Zhang, and J. Wu, “Survey of strategies for switching off base stations in heterogeneous networks for greener 5G systems,” IEEE Access, vol. 4, pp. 4959–4973, 2016.
[8] U. Dotsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier, “Quantitative analysis of split base station processing and determination of advantageous architectures for lte,” Bell Labs Technical Journal, vol. 18, no. 1, pp. 105–128, 2013.
[9] J. Zhang, Y. Ji, X. Xu, H. Li, Y. Zhao, and J. Zhang, “Energy efficient baseband unit aggregation in cloud radio and optical access networks,” Journal of Optical Communications and Networking, vol. 8, no. 11, pp. 893–901, 2016.
[10] M. Qian, W. Hardjawana, J. Shi, and B. Vucetic, “Baseband processing units virtualization for cloud radio access networks,” IEEE Wireless Communications Letters, vol. 4, no. 2, pp. 189–192, 2015.
[11] A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Coordinated scheduling for the downlink of cloud radio-access networks,” in Communications (ICC), 2015 IEEE International Conference on, IEEE, 2015, pp. 2906–2911.
[12] O. Chabbouh, S. B. Rejeb, N. Agoulmine, and Z. Choukair, “Service scheduling scheme based load balancing for 5G/ hetnets cloud ran,” in Advanced Information Networking and Applications (AINA), 2017 IEEE 31st International Conference on, IEEE, 2017, pp. 843–849.
[13] J. Li, D. Chen, Y. Wang, and J. Wu, “Performance evaluation of cloud-ran system with carrier frequency offset,” in Globecom Workshops (GC Wkshps), 2012 IEEE, IEEE, 2012, pp. 222–226.
[14] H. Niu, C. Li, A. Papathanassiou, and G. Wu, “Ran architecture options and performance for 5G network evolution,” in Wireless Communications and Networking Conference Workshops (WCNCW), 2014 IEEE, IEEE, 2014, pp. 294–298.
[15] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, et al., “How much energy is needed to run a wireless network?” IEEE Wireless Communications, vol. 18, no. 5, pp. 40–49, 2011.
[16] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the horizon: key challenges for the radio-access network,” IEEE Vehicular Technology Magazine, vol. 8, no. 3, pp. 47–53, 2013.
[17] D. S. Johnson, “Fast algorithms for bin packing,” Journal of Computer and System Sciences, vol. 8, no. 3, pp. 272–314, 1974.
[18] M. Yue, “A simple proof of the inequality FFD (L)? 11/9 OPT (L) + 1,L for the FFD bin-packing algorithm,” Acta Mathematicae Applicatae Sinica (English Series), vol. 7, no. 4, pp. 321–331, 1991.
[19] X. Xu, J. Zhang, Y. Ji, H. Li, R. Gu, H. Yu, and J. Zhang, “BBU aggregation for maximizing the resource utilization in optical-enabled cloud radio access networks,” in Optical Communications and Networks (ICOCN), 2016 15th International Conference on, IEEE, 2016, pp. 1–3.
[20] X. Wang, S. Thota, M. Tornatore, S.-S. Lee, H.-H. Lee, S. Park, and B. Mukherjee, “Green virtual base station in optical-access-enabled cloud-ran,” in Communications (ICC), 2015 IEEE International Conference on, IEEE, 2015, pp. 5002–5006.
[21] X. Wang, S. Thota, M. Tornatore, H. S. Chung, H. H. Lee, S. Park, and B. Mukherjee, “Energy-efficient virtual base station formation in optical-access-enabled cloud-ran,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1130– 1139, 2016.
[22] S. Burnwal and S. Deb, “Scheduling optimization of flexible manufacturing system using cuckoo search-based approach,” The International Journal of Advanced Manufacturing Technology, pp. 1–9, 2013.
[23] S. D. Dao, K. Abhary, and R. Marian, “Optimisation of partner selection and collaborative transportation scheduling in virtual enterprises using ga,” Expert Systems with Applications, vol. 41, no. 15, pp. 6701–6717, 2014.
[24] J. Wu, B. Cheng, Y. Shang, J. Huang, and J. Chen, “A novel scheduling approach to concurrent multipath transmission of high definition video in overlay networks,” Journal of network and computer applications, vol. 44, pp. 17–29, 2014.
[25] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent tasks scheduling based on genetic algorithm in cloud computing,” in Wireless Communications, Networking and Mobile Computing, 2009. WiCom’09. 5th International Conference on, IEEE, 2009, pp. 1–4.
[26] W. Yu, T. Kwon, and C. Shin, “Multicell coordination via joint scheduling, beamforming, and power spectrum adaptation,” IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 1–14, 2013.
[27] K. C. Garikipati and K. G. Shin, “Scalable real-time transport of baseband traffic,” arXiv preprint arXiv:1706.01160, 2017.
[28] A. Douik, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Coordinated scheduling and power control in cloud-radio access networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2523–2536, 2016.
[29] R. D. Williams, “Performance of dynamic load balancing algorithms for unstructured mesh calculations,” Concurrency and Computation: Practice and Experience, vol. 3, no. 5, pp. 457–481, 1991.
[30] D. R. Karger and M. Ruhl, “Simple efficient load balancing algorithms for peer-to-peer systems,” in Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, ACM, 2004, pp. 36–43.
[31] L. Doddini Probhuling, “Load balancing algorithms in cloud computing,” computing, vol. 2, p. 4, 2013.
[32] C. Ran, S. Wang, and C. Wang, “Optimal load balancing in cloud radio access networks,” in Wireless Communications and Networking Conference (WCNC), 2015 IEEE, IEEE, 2015, pp. 1006–1011.
[33] M. L. Fisher, “The lagrangian relaxation method for solving integer programming problems,” Management science, vol. 27, no. 1, pp. 1–18, 1981.
[34] ——, “The lagrangian relaxation method for solving integer programming problems,” Management science, vol. 50, no. 12_supplement, pp. 1861–1871, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2714-
dc.description.abstract為了應付節節攀升的網路流量,網路系統也必須與時俱進,而第五代移動通信系統(5G)正是為了解決此項問題而提出的目標。在 5G 之中,雲端接取網路因為將基帶處理器與無線寬頻頭端設備分離並集中於中央統一管理,因而可以更有效率的使用計算資源。在本篇論文之中,我們基於拉格朗日鬆弛法,輔以裝箱問題、排程、負載均衡算法,以及在營運時將面臨到的資源限制,提出了一套應用於雲端接取網路的工作分配策略來最大化網路營運商的收益。本篇論文亦模擬了各種情況,並提供實驗模擬數據來說明本方法確能增加網路營運商的利潤。zh_TW
dc.description.abstractDue to the rapid increase in the network traffic load, the Internet service system must improve to meet the requirement. Fifth generation (5G) mobile networks aim to deal with this problem, and cloud radio access networks (C-RANs) is a popular approach to this goal. In a C-RAN, baseband processing units are centralized into a pool, which allows us to have a better resource utilization. In this thesis, we use the Lagrangian relaxation method combined with bin packing, scheduling, and traffic shaping to derive a task allocation strategy in a C-RAN that tries to maximize the profit of a network operator who may face multiple kinds of constraints during its operation. After that, we will present the experimental results to show the effectiveness of our proposed method.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:48:48Z (GMT). No. of bitstreams: 1
ntu-106-R04725015-1.pdf: 828379 bytes, checksum: 7b8d74de8cc5aa3346f716d2ed59909c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 iii
摘要 v
Abstract vii
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Related Work 7
2.1 Bin packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Task scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Load balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Mathematical Model 13
3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Task assignment constraints . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Capacity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Server switch constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Solution Approach 23
4.1 Lagrangian relaxation method . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Lagrangian relaxation objective function and constraints . . . . . . . . . 25
4.3 Task assignment subproblem - SP1 . . . . . . . . . . . . . . . . . . . . . 27
4.4 Server power on subproblem - SP2 . . . . . . . . . . . . . . . . . . . . . 28
4.5 Server re-power on related subproblem - SP3 . . . . . . . . . . . . . . . 30
4.6 Block subproblem - SP4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Auxiliary subproblem - SP5 . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Getting primal feasible solution . . . . . . . . . . . . . . . . . . . . . . . 33
5 Computational Experiments 39
5.1 Experiment on task quantity . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.1 Uniform arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Bursty arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Experiment on fixed capacity with different number of servers . . . . . . 44
5.2.1 High capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Medium capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Low capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Experiment on processing time . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Experiment on tolerance and waiting time . . . . . . . . . . . . . . . . . 53
5.5 Experiment on task block penalty . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Experiment on task revenue rate . . . . . . . . . . . . . . . . . . . . . . 56
5.7 Experiment on server cost rate . . . . . . . . . . . . . . . . . . . . . . . 58
6 Conclusion and Future Work 61
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References 65
dc.language.isoen
dc.subject拉格朗日鬆弛法zh_TW
dc.subject第五代移動通信系統zh_TW
dc.subject無線接取網路zh_TW
dc.subject工作分配策略zh_TW
dc.subject最佳化zh_TW
dc.subjectcloud radio access network (C-RAN)en
dc.subjecttask allocation strategyen
dc.subjectLagrangian relaxationen
dc.subjectoptimizationen
dc.subject5Gen
dc.title於雲端接取網路中以最佳化為基礎使收益最大化之工作分配策略zh_TW
dc.titleAn Optimization-based Task Allocation Strategy for Maximization of Revenue in Cloud Radio Access Networksen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee溫演福,莊東穎,林宜隆
dc.subject.keyword第五代移動通信系統,無線接取網路,工作分配策略,最佳化,拉格朗日鬆弛法,zh_TW
dc.subject.keyword5G,cloud radio access network (C-RAN),task allocation strategy,optimization,Lagrangian relaxation,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201704109
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-21
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf808.96 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved