Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27142
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高全良(Chuan-Liang Kao)
dc.contributor.authorYi-Ting Tsaien
dc.contributor.author蔡譯霆zh_TW
dc.date.accessioned2021-06-12T17:56:19Z-
dc.date.available2011-02-20
dc.date.copyright2008-02-20
dc.date.issued2008
dc.date.submitted2008-01-31
dc.identifier.citation1. Halstead, S. B. 1980. Dengue haemorrhagic fever--a public health problem and a field for research. Bull World Health Organ 58:1-21.
2. Reiter, P. a. N., M.B. 2001. Guidelines for assessing the efficacy of insecticidal space sprays for control of the dengue vector Aedes aegypti. World Health Organization, Geneva. 1:1-34.
3. Gubler, D. J., and M. Meltzer. 1999. Impact of dengue/dengue hemorrhagic fever on the developing world. Adv Virus Res 53:35-70.
4. WHO. 2000. Dengue/dengue haemorrhagic fever. Wkly Epidemiol Rec 75:193-196.
5. Kuo, M. C., J. M. Chang, P. L. Lu, Y. W. Chiu, H. C. Chen, and S. J. Hwang. 2007. Difficulty in diagnosis and treatment of dengue hemorrhagic fever in patients with chronic renal failure: report of three cases of mortality. Am J Trop Med Hyg 76:752-756.
6. Gubler, D. J. 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480-496.
7. Health, D. o. 1996. Report cases of infectious diseases in Taiwan. Health Rep 13:1-406.
8. Teng, H. J., T. J. Chen, S. F. Tsai, C. P. Lin, H. Y. Chiou, M. C. Lin, S. Y. Yang, Y. W. Lee, C. C. Kang, H. C. Hsu, and N. T. Chang. 2007. Emergency vector control in a DENV-2 outbreak in 2002 in Pingtung City, Pingtung County, Taiwan. Jpn J Infect Dis 60:271-279.
9. Wen, T. H., N. H. Lin, C. H. Lin, C. C. King, and M. D. Su. 2006. Spatial mapping of temporal risk characteristics to improve environmental health risk identification: a case study of a dengue epidemic in Taiwan. Sci Total Environ 367:631-640.
10. King, C. C., Wu, Y.C., Chao, D.Y. 2000. Major epidemics of dengue in Taiwan in 1981- 2000: related to intensive virus activities in Asia. Dengue Bull 24:1-10.
11. Kalayanarooj, S., D. W. Vaughn, S. Nimmannitya, S. Green, S. Suntayakorn, N. Kunentrasai, W. Viramitrachai, S. Ratanachu-eke, S. Kiatpolpoj, B. L. Innis, A. L. Rothman, A. Nisalak, and F. A. Ennis. 1997. Early clinical and laboratory indicators of acute dengue illness. J Infect Dis 176:313-321.
12. Halstead, S. B. 2002. Dengue. Curr Opin Infect Dis 15:471-476.
13. Stiasny, K., and F. X. Heinz. 2006. Flavivirus membrane fusion. In J Gen Virol. 2755-2766.
14. Rothman, A. L., and F. A. Ennis. 1999. Immunopathogenesis of Dengue hemorrhagic fever. Virology 257:1-6.
15. Halstead, S. B. 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239:476-481.
16. Navarro-Sanchez, E., R. Altmeyer, A. Amara, O. Schwartz, F. Fieschi, J. L. Virelizier, F. Arenzana-Seisdedos, and P. Despres. 2003. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723-728.
17. Tassaneetrithep, B., T. H. Burgess, A. Granelli-Piperno, C. Trumpfheller, J. Finke, W. Sun, M. A. Eller, K. Pattanapanyasat, S. Sarasombath, D. L. Birx, R. M. Steinman, S. Schlesinger, and M. A. Marovich. 2003. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823-829.
18. Mellman, I., R. Fuchs, and A. Helenius. 1986. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663-700.
19. Tapper, H., and R. Sundler. 1995. Bafilomycin A1 inhibits lysosomal, phagosomal, and plasma membrane H(+)-ATPase and induces lysosomal enzyme secretion in macrophages. J Cell Physiol 163:137-144.
20. Yoshimori, T., A. Yamamoto, Y. Moriyama, M. Futai, and Y. Tashiro. 1991. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266:17707-17712.
21. Gubler, D. J., D. Reed, L. Rosen, and J. R. Hitchcock, Jr. 1978. Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am J Trop Med Hyg 27:581-589.
22. Vaughn, D. W., S. Green, S. Kalayanarooj, B. L. Innis, S. Nimmannitya, S. Suntayakorn, T. P. Endy, B. Raengsakulrach, A. L. Rothman, F. A. Ennis, and A. Nisalak. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181:2-9.
23. Loke, H., D. B. Bethell, C. X. Phuong, M. Dung, J. Schneider, N. J. White, N. P. Day, J. Farrar, and A. V. Hill. 2001. Strong HLA class I--restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis 184:1369-1373.
24. Halstead, S. B., T. G. Streit, J. G. Lafontant, R. Putvatana, K. Russell, W. Sun, N. Kanesa-Thasan, C. G. Hayes, and D. M. Watts. 2001. Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am J Trop Med Hyg 65:180-183.
25. Sakuntabhai, A., C. Turbpaiboon, I. Casademont, A. Chuansumrit, T. Lowhnoo, A. Kajaste-Rudnitski, S. M. Kalayanarooj, K. Tangnararatchakit, N. Tangthawornchaikul, S. Vasanawathana, W. Chaiyaratana, P. T. Yenchitsomanus, P. Suriyaphol, P. Avirutnan, K. Chokephaibulkit, F. Matsuda, S. Yoksan, Y. Jacob, G. M. Lathrop, P. Malasit, P. Despres, and C. Julier. 2005. A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37:507-513.
26. Chakravarti, A., and R. Kumaria. 2006. Circulating levels of tumour necrosis factor-alpha & interferon-gamma in patients with dengue & dengue haemorrhagic fever during an outbreak. Indian J Med Res 123:25-30.
27. Yadav, M., K. R. Kamath, N. Iyngkaran, and M. Sinniah. 1991. Dengue haemorrhagic fever and dengue shock syndrome: are they tumour necrosis factor-mediated disorders? FEMS Microbiol Immunol 4:45-49.
28. Vitarana, T., H. de Silva, N. Withana, and C. Gunasekera. 1991. Elevated tumour necrosis factor in dengue fever and dengue haemorrhagic fever. Ceylon Med J 36:63-65.
29. Bethell, D. B., K. Flobbe, X. T. Cao, N. P. Day, T. P. Pham, W. A. Buurman, M. J. Cardosa, N. J. White, and D. Kwiatkowski. 1998. Pathophysiologic and prognostic role of cytokines in dengue hemorrhagic fever. J Infect Dis 177:778-782.
30. Pace, E., M. Gjomarkaj, M. Melis, M. Profita, M. Spatafora, A. M. Vignola, G. Bonsignore, and C. H. Mody. 1999. Interleukin-8 induces lymphocyte chemotaxis into the pleural space. Role of pleural macrophages. Am J Respir Crit Care Med 159:1592-1599.
31. Pang, T., M. J. Cardosa, and M. G. Guzman. 2007. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol Cell Biol 85:43-45.
32. Jessie, K., M. Y. Fong, S. Devi, S. K. Lam, and K. T. Wong. 2004. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189:1411-1418.
33. Wu, S. J., G. Grouard-Vogel, W. Sun, J. R. Mascola, E. Brachtel, R. Putvatana, M. K. Louder, L. Filgueira, M. A. Marovich, H. K. Wong, A. Blauvelt, G. S. Murphy, M. L. Robb, B. L. Innes, D. L. Birx, C. G. Hayes, and S. S. Frankel. 2000. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816-820.
34. Takeda, K., and S. Akira. 2001. Roles of Toll-like receptors in innate immune responses. Genes Cells 6:733-742.
35. Kadowaki, N., S. Ho, S. Antonenko, R. W. Malefyt, R. A. Kastelein, F. Bazan, and Y. J. Liu. 2001. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863-869.
36. Hochrein, H., and M. O'Keeffe. 2008. Dendritic cell subsets and toll-like receptors. Handb Exp Pharmacol:153-179.
37. Kalinski, P., C. M. Hilkens, E. A. Wierenga, and M. L. Kapsenberg. 1999. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561-567.
38. Pacsa, A. S., R. Agarwal, E. A. Elbishbishi, U. C. Chaturvedi, R. Nagar, and A. S. Mustafa. 2000. Role of interleukin-12 in patients with dengue hemorrhagic fever. FEMS Immunol Med Microbiol 28:151-155.
39. Kwan, W. H., A. M. Helt, C. Maranon, J. B. Barbaroux, A. Hosmalin, E. Harris, W. H. Fridman, and C. G. Mueller. 2005. Dendritic cell precursors are permissive to dengue virus and human immunodeficiency virus infection. J Virol 79:7291-7299.
40. Chaturvedi, U. C., R. Nagar, and R. Shrivastava. 2006. Macrophage and dengue virus: friend or foe? Indian J Med Res 124:23-40.
41. Mogensen, S. C. 1979. Role of macrophages in natural resistance to virus infections. Microbiol Rev 43:1-26.
42. Pestka, J., and H. R. Zhou. 2006. Toll-like receptor priming sensitizes macrophages to proinflammatory cytokine gene induction by deoxynivalenol and other toxicants. Toxicol Sci 92:445-455.
43. Aderem, A. 2001. Role of Toll-like receptors in inflammatory response in macrophages. Crit Care Med 29:S16-18.
44. Green, S., S. Pichyangkul, D. W. Vaughn, S. Kalayanarooj, S. Nimmannitya, A. Nisalak, I. Kurane, A. L. Rothman, and F. A. Ennis. 1999. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infect Dis 180:1429-1435.
45. Azeredo, E. L., L. M. De Oliveira-Pinto, S. M. Zagne, D. I. Cerqueira, R. M. Nogueira, and C. F. Kubelka. 2006. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease. Clin Exp Immunol 143:345-356.
46. Kurane, I., D. Hebblewaite, W. E. Brandt, and F. A. Ennis. 1984. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J Virol 52:223-230.
47. Green, S., and A. Rothman. 2006. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis 19:429-436.
48. Rothman, A. L. 2003. Immunology and immunopathogenesis of dengue disease. Adv Virus Res 60:397-419.
49. Gay, N. J., and F. J. Keith. 1991. Drosophila Toll and IL-1 receptor. Nature 351:355-356.
50. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nat Rev Immunol 4:499-511.
51. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1:135-145.
52. Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-1529.
53. Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732-738.
54. Latz, E., A. Schoenemeyer, A. Visintin, K. A. Fitzgerald, B. G. Monks, C. F. Knetter, E. Lien, N. J. Nilsen, T. Espevik, and D. T. Golenbock. 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190-198.
55. O'Neill L, A., and A. G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353-364.
56. Uematsu, S., and S. Akira. 2007. Toll-like receptors and Type I interferons. J Biol Chem 282:15319-15323.
57. Liu, Y. J. 2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275-306.
58. Parker, L. C., L. R. Prince, and I. Sabroe. 2007. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 147:199-207.
59. Kurt-Jones, E. A., M. Chan, S. Zhou, J. Wang, G. Reed, R. Bronson, M. M. Arnold, D. M. Knipe, and R. W. Finberg. 2004. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101:1315-1320.
60. Wang, J. P., E. A. Kurt-Jones, O. S. Shin, M. D. Manchak, M. J. Levin, and R. W. Finberg. 2005. Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 79:12658-12666.
61. Bieback, K., E. Lien, I. M. Klagge, E. Avota, J. Schneider-Schaulies, W. P. Duprex, H. Wagner, C. J. Kirschning, V. Ter Meulen, and S. Schneider-Schaulies. 2002. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729-8736.
62. Compton, T., E. A. Kurt-Jones, K. W. Boehme, J. Belko, E. Latz, D. T. Golenbock, and R. W. Finberg. 2003. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77:4588-4596.
63. Kurt-Jones, E. A., L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398-401.
64. Rassa, J. C., J. L. Meyers, Y. Zhang, R. Kudaravalli, and S. R. Ross. 2002. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci U S A 99:2281-2286.
65. Wang, T., T. Town, L. Alexopoulou, J. F. Anderson, E. Fikrig, and R. A. Flavell. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366-1373.
66. Le Goffic, R., V. Balloy, M. Lagranderie, L. Alexopoulou, N. Escriou, R. Flavell, M. Chignard, and M. Si-Tahar. 2006. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog 2:e53.
67. Le Goffic, R., J. Pothlichet, D. Vitour, T. Fujita, E. Meurs, M. Chignard, and M. Si-Tahar. 2007. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 178:3368-3372.
68. Groskreutz, D. J., M. M. Monick, L. S. Powers, T. O. Yarovinsky, D. C. Look, and G. W. Hunninghake. 2006. Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J Immunol 176:1733-1740.
69. Rudd, B. D., E. Burstein, C. S. Duckett, X. Li, and N. W. Lukacs. 2005. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J Virol 79:3350-3357.
70. Khvalevsky, E., L. Rivkin, J. Rachmilewitz, E. Galun, and H. Giladi. 2007. TLR3 signaling in a hepatoma cell line is skewed towards apoptosis. J Cell Biochem 100:1301-1312.
71. Shiina, M., and B. Rehermann. 2007. Cell culture-produced hepatitis C virus impairs plasmacytoid dendritic cell function. Hepatology.
72. Bode, J. G., E. D. Brenndorfer, and D. Haussinger. 2007. Subversion of innate host antiviral strategies by the hepatitis C virus. Arch Biochem Biophys 462:254-265.
73. Wornle, M., H. Schmid, B. Banas, M. Merkle, A. Henger, M. Roeder, S. Blattner, E. Bock, M. Kretzler, H. J. Grone, and D. Schlondorff. 2006. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am J Pathol 168:370-385.
74. MacDonald, E. M., A. Savoy, A. Gillgrass, S. Fernandez, M. Smieja, K. L. Rosenthal, A. A. Ashkar, and C. Kaushic. 2007. Susceptibility of human female primary genital epithelial cells to herpes simplex virus, type-2 and the effect of TLR3 ligand and sex hormones on infection. Biol Reprod 77:1049-1059.
75. Zhang, S. Y., E. Jouanguy, S. Ugolini, A. Smahi, G. Elain, P. Romero, D. Segal, V. Sancho-Shimizu, L. Lorenzo, A. Puel, C. Picard, A. Chapgier, S. Plancoulaine, M. Titeux, C. Cognet, H. von Bernuth, C. L. Ku, A. Casrouge, X. X. Zhang, L. Barreiro, J. Leonard, C. Hamilton, P. Lebon, B. Heron, L. Vallee, L. Quintana-Murci, A. Hovnanian, F. Rozenberg, E. Vivier, F. Geissmann, M. Tardieu, L. Abel, and J. L. Casanova. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522-1527.
76. Lund, J., A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki. 2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198:513-520.
77. Krug, A., G. D. Luker, W. Barchet, D. A. Leib, S. Akira, and M. Colonna. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103:1433-1437.
78. Gowen, B. B., J. D. Hoopes, M. H. Wong, K. H. Jung, K. C. Isakson, L. Alexopoulou, R. A. Flavell, and R. W. Sidwell. 2006. TLR3 deletion limits mortality and disease severity due to Phlebovirus infection. J Immunol 177:6301-6307.
79. Querec, T., S. Bennouna, S. Alkan, Y. Laouar, K. Gorden, R. Flavell, S. Akira, R. Ahmed, and B. Pulendran. 2006. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203:413-424.
80. Wang, J. P., P. Liu, E. Latz, D. T. Golenbock, R. W. Finberg, and D. H. Libraty. 2006. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177:7114-7121.
81. Seth, R. B., L. Sun, and Z. J. Chen. 2006. Antiviral innate immunity pathways. Cell Res 16:141-147.
82. Uehara, A., A. Iwashiro, T. Sato, S. Yokota, and H. Takada. 2007. Antibodies to proteinase 3 prime human monocytic cells via protease-activated receptor-2 and NF-kappaB for Toll-like receptor- and NOD-dependent activation. Mol Immunol 44:3552-3562.
83. Mueller, T., T. Terada, I. M. Rosenberg, O. Shibolet, and D. K. Podolsky. 2006. Th2 cytokines down-regulate TLR expression and function in human intestinal epithelial cells. J Immunol 176:5805-5814.
84. Triantafilou, K., G. Orthopoulos, E. Vakakis, M. A. Ahmed, D. T. Golenbock, P. M. Lepper, and M. Triantafilou. 2005. Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell Microbiol 7:1117-1126.
85. Latz, E., A. Visintin, E. Lien, K. A. Fitzgerald, B. G. Monks, E. A. Kurt-Jones, D. T. Golenbock, and T. Espevik. 2002. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277:47834-47843.
86. Latz, E., A. Schoenemeyer, A. Visintin, K. A. Fitzgerald, B. G. Monks, C. F. Knetter, E. Lien, N. J. Nilsen, T. Espevik, and D. T. Golenbock. 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5:190-198.
87. Gagnon, S. J., M. Mori, I. Kurane, S. Green, D. W. Vaughn, S. Kalayanarooj, S. Suntayakorn, F. A. Ennis, and A. L. Rothman. 2002. Cytokine gene expression and protein production in peripheral blood mononuclear cells of children with acute dengue virus infections. J Med Virol 67:41-46.
88. Raghupathy, R., U. C. Chaturvedi, H. Al-Sayer, E. A. Elbishbishi, R. Agarwal, R. Nagar, S. Kapoor, A. Misra, A. Mathur, H. Nusrat, F. Azizieh, M. A. Khan, and A. S. Mustafa. 1998. Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 56:280-285.
89. Avila-Aguero, M. L., C. R. Avila-Aguero, S. L. Um, A. Soriano-Fallas, A. Canas-Coto, and S. B. Yan. 2004. Systemic host inflammatory and coagulation response in the Dengue virus primo-infection. Cytokine 27:173-179.
90. Trinchieri, G., and A. Sher. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7:179-190.
91. Hammerbeck, D. M., G. R. Burleson, C. J. Schuller, J. P. Vasilakos, M. Tomai, E. Egging, F. R. Cochran, S. Woulfe, and R. L. Miller. 2007. Administration of a dual toll-like receptor 7 and toll-like receptor 8 agonist protects against influenza in rats. Antiviral Res 73:1-11.
92. Padalko, E., D. Nuyens, A. De Palma, E. Verbeken, J. L. Aerts, E. De Clercq, P. Carmeliet, and J. Neyts. 2004. The interferon inducer ampligen [poly(I)-poly(C12U)] markedly protects mice against coxsackie B3 virus-induced myocarditis. Antimicrob Agents Chemother 48:267-274.
93. Gillespie, D., H. R. Hubbell, W. A. Carter, P. Midgette, W. Elsasser, R. Mullaney, and D. R. Strayer. 1994. Synergistic inhibition of AZT-resistant HIV by AZT combined with poly(I):poly(C12U), without synergistic toxicity to bone marrow progenitor cell elements. In Vivo 8:375-381.
94. Huang, Y. H., H. Y. Lei, H. S. Liu, Y. S. Lin, C. C. Liu, and T. M. Yeh. 2000. Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg 63:71-75.
95. Bosch, I., K. Xhaja, L. Estevez, G. Raines, H. Melichar, R. V. Warke, M. V. Fournier, F. A. Ennis, and A. L. Rothman. 2002. Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J Virol 76:5588-5597.
96. Wang, W. K., H. L. Chen, C. F. Yang, S. C. Hsieh, C. C. Juan, S. M. Chang, C. C. Yu, L. H. Lin, J. H. Huang, and C. C. King. 2006. Slower rates of clearance of viral load and virus-containing immune complexes in patients with dengue hemorrhagic fever. Clin Infect Dis 43:1023-1030.
97. Wang, W. K., D. Y. Chao, C. L. Kao, H. C. Wu, Y. C. Liu, C. M. Li, S. C. Lin, S. T. Ho, J. H. Huang, and C. C. King. 2003. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology 305:330-338.
98. Guillot, L., R. Le Goffic, S. Bloch, N. Escriou, S. Akira, M. Chignard, and M. Si-Tahar. 2005. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280:5571-5580.
99. Renn, C. N., D. J. Sanchez, M. T. Ochoa, A. J. Legaspi, C. K. Oh, P. T. Liu, S. R. Krutzik, P. A. Sieling, G. Cheng, and R. L. Modlin. 2006. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177:298-305.
100. Tissari, J., J. Siren, S. Meri, I. Julkunen, and S. Matikainen. 2005. IFN-alpha enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression. J Immunol 174:4289-4294.
101. Kabelitz, D. 2007. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 19:39-45.
102. Chaturvedi, U. C., R. Agarwal, E. A. Elbishbishi, and A. S. Mustafa. 2000. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol 28:183-188.
103. Heath, W. R., G. T. Belz, G. M. Behrens, C. M. Smith, S. P. Forehan, I. A. Parish, G. M. Davey, N. S. Wilson, F. R. Carbone, and J. A. Villadangos. 2004. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9-26.
104. Salio, M., and V. Cerundolo. 2005. Viral immunity: cross-priming with the help of TLR3. Curr Biol 15:R336-339.
105. van Kooyk, Y., and T. B. Geijtenbeek. 2003. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697-709.
106. Maeda, N., J. Nigou, J. L. Herrmann, M. Jackson, A. Amara, P. H. Lagrange, G. Puzo, B. Gicquel, and O. Neyrolles. 2003. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 278:5513-5516.
107. Wang, Y. Y., L. Li, K. J. Han, Z. Zhai, and H. B. Shu. 2004. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett 576:86-90.
108. Abe, T., Y. Kaname, I. Hamamoto, Y. Tsuda, X. Wen, S. Taguwa, K. Moriishi, O. Takeuchi, T. Kawai, T. Kanto, N. Hayashi, S. Akira, and Y. Matsuura. 2007. Hepatitis C virus nonstructural protein 5A modulates the toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J Virol 81:8953-8966.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27142-
dc.description.abstract登革病毒是目前重要透過病媒傳播的病毒之一。其臨床表現除了一般典型登革外還可造成嚴重的登革出血熱/登革休克症候群,超過一百個國家曾爆發流行,這些國家最主要位於熱帶和亞熱帶地區。了解登革熱的產生以及登革病毒入侵宿主後與宿主免疫系統的交互作用為疾病預防及治療上重要的課題。人體在登革病毒感染後血液循環中的促發炎細胞激素濃度異常大幅上升的情況被認為是造成嚴重登革出血熱的原因,然而至今對於宿主免疫系統辨識登革病毒進而活化並釋放這些促發炎細胞激素的詳細機制仍不清楚。先前研究顯示,一般病毒感染初期時,免疫系統對病毒的辨識在病程演化上扮演重要角色,其中先天性免疫裡的類鐸受體與病毒的相互作用尤其受到重視。類鐸受體是近年被發現分佈於多種血球細胞上的分子,對於辨識外來致病原並引發局部、全身性發炎反應以及在適應性免疫的引發上佔有重要的角色。本研究著重於探討登革病毒與人類類鐸受體的結合與交互作用,以體外實驗模式觀察類鐸受體在登革病毒感染初期對於細胞激素引發的重要性。本研究結果顯示登革病毒活化人類單核球細胞株需要經由內膜體的酸化作用,顯示細胞膜上的類鐸受體分子無法辨識外來的登革病毒。本實驗進一步利用真核蛋白質表現系統與干擾性核糖核酸技術證實宿主對於登革病毒的辨識主要經由細胞內膜體中的類鐸受體第三型而非細胞膜上的其他受體亞型。除此之外,在體外實驗中亦發現,位於人類腎臟上皮HEK293細胞株中的類鐸受體第三型在偵測登革病毒之後能引發大量的第一型干擾素,進而抑制病毒生長並達到降低細胞病變、提昇細胞存活率的作用。本篇在體外實驗結果說明了登革病毒與人體多種類鐸受體的相互關係,對於登革病毒在登革熱/登革出血熱病人體內引起細胞激素產生的機制也有更進一步的了解。zh_TW
dc.description.abstractDengue virus (DENV) causes dengue fever (DF) as well as dengue hemorrhagic fever (DHF)/ dengue shock syndrome (DSS) that occur in more than 100 countries and usually in the tropical and subtropical regions of the world. A clearer understanding of its host-virus interaction is imperative for prophylaxis and treatment of this disease. Aberrant cytokine overproduction in host after DENV infection has been established as the cause of DHF. However, the innate immune recognition of DENV and inflammatory response elicited at the initial stages of infection have not been well elucidated. The aim of this study was to clarify the interaction between DENV and human toll-like receptors, which comprise the first line of innate immunity by activating local or systemic inflammatory response. This study found that endosomal acidification is required for DENV-2 to activate the human monocytic cell THP-1. Using the HEK293-TLR expression system and RNAi-based knockdown techniques, the experiments demonstrated that DENV-2 can be recognized mainly by TLR3, but not by the plasma membrane-anchored TLR. Further, TLR3-mediated IFN response has strong potential for inhibiting virus replication and significantly diminishes the in vitro cytopathic effect (CPE) of DENV-2, thus promoting cell survival. The findings of this study illustrate the in vitro interaction between DENV-2 and different TLR molecules which elucidate host-virus interaction and may enhance understanding of viral pathogenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:56:19Z (GMT). No. of bitstreams: 1
ntu-97-R94424006-1.pdf: 2689934 bytes, checksum: 317672534aee83e614778ebbf3db9cbd (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsApproval of dissertation committee ………………………………………… i
Acknowledgement ……………………………………………………….. ii
Abstract ….……………………………………………………………… 1
Abstract in Chinese …………………………………………………… 2
Chapter I: Introduction
Section I: Epidemiology ..……………………………...…………..….... 3
Section II: Clinical manifestations in Human …………………………... 4
Section III: Virus characteristics and Life Cycle ………….…………… 5
Section IV: Pathogenesis of DHF/DSS ……………………..…………… 6
Section V: Innate immune response to dengue virus …....……………. 8
Section VI: Toll-like receptor ……………………………..…………….. 10
Chapter II: Material and Methods
Section I: Materials ……………………………….…………………….... 15
Section II: Medium and buffer …………………….……………………... 17
Section III: Methods …………..………………………………………..… 20
Chapter III: Results
Section I: Recognition of DENV-2 NGC in monocytic cell requires endosomal acidification ……………….…………………….... 39
Section II: Analysis of the response to DENV-2 or endosomal TLR agonists in human monocytic cell THP-1 and U937............. 39
Section III: Construction of TLR-expression HEK293 clones ……....… 40
Section IV: IL-8 production induced by DENV-2 infection of HEK293 cells requires TLR3, 7 or 8 …………………….. 41
Section V: Establishment of plasmid delivery method for TLR-knockdown assay ..........…………………………………. 41
Section VI: Assessment of efficient TLR3-knockdown shRNA-coding clone ………………...…………………………………......… 43
Section VII: TLR3 is necessary for human monocytic cell U937 for DENV-2 NGC recognition …….……………………..…... 44
Section IX: Dengue viral RNA is colocalized with TLR3 intracellularly.... 44
Section X: TLR3 expression significantly reduces the cytopathic effect of DENV ……………………………………………… 45
Section XI: TLR3 expression in HEK293 lessons intracellular viral Env protein synthesis ……………………….………………….… 45
Section IV: TLR3 expression upregulates type I IFN production upon DENV-2 NGC infection ………..……...…………………….. 46
Chapter IV: Discussion …………………………………………………… 47
Chapter V: Reference …………………………………………………...… 52
Appendix: Figures and Table ……………………………………………… 60
dc.language.isoen
dc.subject細胞活化zh_TW
dc.subject單核球zh_TW
dc.subject巨噬細胞zh_TW
dc.subject細胞激素zh_TW
dc.subject病毒zh_TW
dc.subjectChemokinesen
dc.subjectCytokinesen
dc.subjectViralen
dc.subjectMacrophagesen
dc.subjectCell Activationen
dc.subjectMonocytesen
dc.title先天免疫類鐸受體第三型辨識登革病毒之研究zh_TW
dc.titleHuman TLR3 Recognizes Dengue Virus and Modulates Viral Replication In Vitroen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李君男(Chun-Nan Lee),張淑媛(Sui-Yuan Chang)
dc.subject.keyword單核球,巨噬細胞,病毒,細胞激素,細胞活化,zh_TW
dc.subject.keywordMonocytes,Macrophages,Viral,Cytokines,Chemokines,Cell Activation,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2008-02-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved