請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27127完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫(Chang-Fu Wu) | |
| dc.contributor.author | I-Chun Kuo | en |
| dc.contributor.author | 郭怡君 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:55:59Z | - |
| dc.date.available | 2011-02-25 | |
| dc.date.copyright | 2008-02-25 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-02-01 | |
| dc.identifier.citation | 1. Taiwan-EPA, Air quality annual report of R.O.C.,2005. Taiwan EPA: Taipei, 2006.
2. Taiwan-EPA, Air quality annual report of R.O.C.,2004. Taiwan EPA: Taipei, 2005. 3. Chunghwa-Post-Co., Annual report of Chunghwa post Co., Ltd. . In Chunghwa Post Co.: Taipei, 2005. 4. Chen, S. J. Epidemiological investigation of occupational diseases among postman in middle taiwan. Chung Shan Medical University, Taichung, 1996. 5. Yang, C. L. Study on Work-related Injury, Fatigue and Physiological Effect for Postal Operators. National Yang-Ming University, Taipei, 2000. 6. Chan, C. C.; Wu, T. H., Effects of ambient ozone exposure on mail carriers' peak expiratory flow rates. Environmental Health Perspectives 2005, 113, (6), 735-738. 7. Harrison, R. M.; Yin, J. X., Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of the Total Environment 2000, 249, (1-3), 85-101. 8. Pope, C. A.; Dockery, D. W., Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association 2006, 56, (6), 709-742. 9. Oberdorster, G.; Oberdorster, E.; Oberdorster, J., Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 2005, 113, (7), 823-839. 10. Han, X. L.; Naeher, L. P., A review of traffic-related air pollution exposure assessment studies in the developing world. Environment International 2006, 32, (1), 106-120. 11. Garg, B. D.; Cadle, S. H.; Mulawa, P. A.; Groblicki, P. J.; Laroo, C.; Parr, G. A., Brake wear particulate matter emissions. Environmental Science & Technology 2000, 34, (21), 4463-4469. 12. Hsu, S. C.; Liu, S. C.; Lin, C. Y.; Hsu, R. T.; Huang, Y. T.; Chen, Y. W., Metal compositions of PM10 and PM2.5 aerosols in Taipei during spring, 2002. Terrestrial Atmospheric and Oceanic Sciences 2004, 15, (5), 925-948. 13. Lin, C. C.; Chen, S. J.; Huang, K. L.; Hwang, W. I.; Chang-Chien, G. P.; Lin, W. Y., Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environmental Science & Technology 2005, 39, (21), 8113-8122. 14. Wrobel, A.; Rokita, E.; Maenhaut, W., Transport of traffic-related aerosols in urban areas. Science of the Total Environment 2000, 257, (2-3), 199-211. 15. Boudet, C.; Zmirou, D.; Poizeau, D., Fraction of PM2.5 personal exposure attributable to urban traffic: A modeling approach. Inhalation Toxicology 2000, 12, 41-53. 16. Brauer, M.; Brumm, J.; Vedal, S.; Petkau, A. J., Exposure misclassification and threshold concentrations in time series analyses of air pollution health effects. Risk Analysis 2002, 22, (6), 1183-1193. 17. Kulkarni, M. M.; Patil, R. S., Monitoring of daily integrated exposure of outdoor workers to respirable particulate matter in an urban region of India. Environmental Monitoring and Assessment 1999, 56, (2), 129-146. 18. Klemm, R. J.; Mason, R. M.; Heilig, C. M.; Neas, L. M.; Dockery, D. W., Is daily mortality associated specifically with fine particles? Data reconstruction and replication of analyses. Journal of the Air & Waste Management Association 2000, 50, (7), 1215-1222. 19. Schwartz, J.; Dockery, D. W.; Neas, L. M., Is daily mortality associated specifically with fine particles? Journal of the Air & Waste Management Association 1996, 46, (10), 927-939. 20. Laden, F.; Schwartz, J.; Speizer, F. E.; Dockery, D. W., Reduction in fine particulate air pollution and mortality - Extended follow-up of the Harvard six cities study. American Journal of Respiratory and Critical Care Medicine 2006, 173, (6), 667-672. 21. Pope, C. A.; Burnett, R. T.; Thurston, G. D.; Thun, M. J.; Calle, E. E.; Krewski, D.; Godleski, J. J., Cardiovascular mortality and long-term exposure to particulate air pollution - Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, (1), 71-77. 22. Weinhold, B., Environmental cardiology - Getting to the heart of the matter. Environmental Health Perspectives 2004, 112, (15), A880-A887. 23. Monn, C., Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmospheric Environment 2001, 35, (1), 1-32. 24. Liu, L. J. S.; Delfino, R.; Koutrakis, P., Ozone exposure assessment in a Southern California community. Environmental Health Perspectives 1997, 105, (1), 58-65. 25. Liu, L. J. S.; Koutrakis, P.; Suh, H. H.; Mulik, J. D.; Burton, R. M., Use of Personal Measurements for Ozone Exposure Assessment - a Pilot-Study. Environmental Health Perspectives 1993, 101, (4), 318-324. 26. Sousa, S. I.; Pereira, M. C.; Martins, F. G.; Alvim-Ferraz, M. C., Contribution of ozone precursors on ozone concentrations at urban and remote areas. Epidemiology 2007, 18, (5), S61-S62. 27. Chang, S. C.; Lee, C. T., Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmospheric Environment 2007, 41, (19), 4002-4017. 28. Hoppe, P.; Peters, A.; Rabe, G.; Praml, G.; Lindner, J.; Jakobi, G.; Fruhmann, G.; Nowak, D., Environmental ozone effects in different population subgroups. International Journal of Hygiene and Environmental Health 2003, 206, (6), 505-516. 29. Lee, S. L.; Wong, W. H. S.; Lau, Y. L., Association between air pollution and asthma admission among children in Hong Kong. Clinical and Experimental Allergy 2006, 36, (9), 1138-1146. 30. Chuang, K. J.; Chan, C. C.; Su, T. C.; Lee, C. T.; Tang, C. S., The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American Journal of Respiratory and Critical Care Medicine 2007, 176, (4), 370-376. 31. Park, S. K.; O'Neill, M. S.; Vokonas, P. S.; Sparrow, D.; Schwartz, J., Effects of air pollution on heart rate variability: The VA Normative Aging Study. Environmental Health Perspectives 2005, 113, (3), 304-309. 32. Barnett, A. G.; Williams, G. M.; Schwartz, J.; Best, T. L.; Neller, A. H.; Petroeschevsky, A. L.; Simpson, R. W., The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environmental Health Perspectives 2006, 114, (7), 1018-1023. 33. Maitre, A.; Bonneterre, V.; Huillard, L.; Sabatier, P.; de Gaudemaris, R., Impact of urban atmospheric pollution on coronary disease. European Heart Journal 2006, 27, (19), 2275-2284. 34. Brook, R. D.; Franklin, B.; Cascio, W.; Hong, Y. L.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S. C.; Tager, I., Air pollution and cardiovascular disease - A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 2004, 109, (21), 2655-2671. 35. von Klot, S.; Peters, A.; Aalto, P.; Bellander, T.; Berglind, N.; D'Ippoliti, D.; Elosua, R.; Hormann, A.; Kulmala, M.; Lanki, T.; Lowel, H.; Pekkanen, J.; Picciotto, S.; Sunyer, J.; Forastiere, F., Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 2005, 112, (20), 3073-3079. 36. Riediker, M.; Williams, R.; Devlin, R.; Griggs, T.; Bromberg, P., Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environmental Science & Technology 2003, 37, (10), 2084-2093. 37. Camm, A. J.; Malik, M.; Bigger, J. T.; Breithardt, G.; Cerutti, S.; Cohen, R. J.; Coumel, P.; Fallen, E. L.; Kennedy, H. L.; Kleiger, R. E.; Lombardi, F.; Malliani, A.; Moss, A. J.; Rottman, J. N.; Schmidt, G.; Schwartz, P. J.; Singer, D., Heart rate variability - Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, (5), 1043-1065. 38. Stein, P. K.; Kleiger, R. E., Insights from the study of heart rate variability. Annual Review of Medicine 1999, 50, 249-261. 39. Pumprla, J.; Howorka, K.; Groves, D.; Chester, M.; Nolan, J., Functional assessment of heart rate variability: physiological basis and practical applications. International Journal of Cardiology 2002, 84, (1), 1-14. 40. Sztajzel, J., Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Medical Weekly 2004, 134, (35-36), 514-522. 41. Magari, S. R.; Schwartz, J.; Williams, P. L.; Hauser, R.; Smith, T. J.; Christiani, D. C., The association of particulate air metal concentrations with heart rate variability. Environmental Health Perspectives 2002, 110, (9), 875-880. 42. Creason, J.; Neas, L.; Walsh, D.; Williams, R.; Sheldon, L.; Liao, D. P.; Shy, C., Particulate matter and heart rate variability among elderly retirees: the Baltimore 1998 PM study. Journal of Exposure Analysis and Environmental Epidemiology 2001, 11, (2), 116-122. 43. Bouthillier, L.; Vincent, R.; Goegan, P.; Adamson, I. Y. R.; Bjarnason, S.; Stewart, M.; Guenette, J.; Potvin, M.; Kumarathasan, P., Acute effects of inhaled urban particles and ozone - Lung morphology, macrophage activity, and plasma endothelin-1. American Journal of Pathology 1998, 153, (6), 1873-1884. 44. Brook, R. D.; Brook, J. R.; Urch, B.; Vincent, R.; Rajagopalan, S.; Silverman, F., Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 2002, 105, (13), 1534-1536. 45. Tomiyama, H.; Yamashina, A.; Arai, T.; Hirose, K.; Koji, Y.; Chikamori, T.; Hori, S.; Yamamoto, Y.; Doba, N.; Hinohara, S., Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement - a survey of 12 517 subjects. Atherosclerosis 2003, 166, (2), 303-309. 46. Yamashina, A.; Tomiyama, H.; Arai, T.; Koji, Y.; Yambe, M.; Motobe, H.; Glunizia, Z.; Yamamoto, Y.; Hori, S., Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertension Research 2003, 26, (10), 801-806. 47. Yambe, T.; Yoshizawa, M.; Saijo, Y.; Yamaguchi, T.; Shibata, M.; Konno, S.; Nitta, S.; Kuwayama, T., Brachio-ankle pulse wave velocity and cardio-ankle vascular index (CAVI). Biomedicine & Pharmacotherapy 2004, 58, S95-S98. 48. Shirai, K.; Utino, J.; Otsuka, K.; Takata, M., A novel blood pressure-independent arterial wall stiffness parameter; Cardio-ankle vascular index (CAVI). Journal of Atherosclerosis and Thrombosis 2006, 13, (2), 101-107. 49. Kubozono, T.; Miyata, M.; Ueyama, K.; Nagaki, A.; Otsuji, Y.; Kusano, K.; Kubozono, O.; Tei, C., Clinical significance and reproducibility of new arterial distensibility index. Circulation Journal 2007, 71, (1), 89-94. 50. Hitchins, J.; Morawska, L.; Wolff, R.; Gilbert, D., Concentrations of submicrometre particles from vehicle emissions near a major road. Atmospheric Environment 2000, 34, (1), 51-59. 51. Brugge, D.; Durant, J. L.; Rioux, C., Near-highway pollutants in motor vehicle exhaust: A review of epidemiologic evidence of cardiac and pulmonary health risks. Environmental Health 2007, 6. 52. Peng, R. D.; Dominici, F.; Pastor-Barriuso, R.; Zeger, S. L.; Samet, J. M., Seasonal analyses of air pollution and mortality in 100 US cities. American Journal of Epidemiology 2005, 161, (6), 585-594. 53. Pietropaoli, A. P.; Frampton, M. W.; Hyde, R. W.; Morrow, P. E.; Oberdorster, G.; Cox, C.; Speers, D. M.; Frasier, L. M.; Chalupa, D. C.; Huang, L. S.; Utell, M. J., Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhalation Toxicology 2004, 16, 59-72. 54. Chan, C. C.; Chuang, K. J.; Shiao, G. M.; Lin, L. Y., Personal exposure to submicrometer particles and heart rate variability in human subjects. Environmental Health Perspectives 2004, 112, (10), 1063-1067. 55. Singh, M.; Misra, C.; Sioutas, C., Field evaluation of a personal cascade impactor sampler (PCIS). Atmospheric Environment 2003, 37, (34), 4781-4793. 56. Misra, C.; Singh, M.; Shen, S.; Sioutas, C.; Hall, P. A., Development and evaluation of a personal cascade impactor sampler (PCIS). Journal of Aerosol Science 2002, 33, (7), 1027-1047. 57. Apgar, G.; Dillard, R.; Mikel, D.; Pierce, G.; Goohs, K.; Westerinen, A.; Miller, J.; Heffern, R.; Harman, D., Quality Assurance Guidance Document:Model Quality Assurance Project Plan for the PM Ambient Air 2.5 Monitoring Program at State and Local Air Monitoring Stations. In Standards, O. o. A. Q. P. a., Ed. United States Environmental Protection Agency: 1998. 58. Lee, C. T., Quality Assurance and Data Validation on Aerosol Monitoring from Supersite in 2003. In EPA, T., Ed. 2003. 59. Hinds, W., Aerosol Technology. 2nd ed. John Wiley & Sons: New York, 1999. 60. Adams, H. S.; Nieuwenhuijsen, M. J.; Colvile, R. N.; McMullen, M. A. S.; Khandelwal, P., Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Science of the Total Environment 2001, 279, (1-3), 29-44. 61. Delfino, R. J.; Murphy-Moulton, A. M.; Becklake, M. R., Emergency room visits for respiratory illnesses among the elderly in Montreal: Association with low level ozone exposure. Environmental Research 1998, 76, (2), 67-77. 62. Gent, J. F.; Triche, E. W.; Holford, T. R.; Belanger, K.; Bracken, M. B.; Beckett, W. S.; Leaderer, B. P., Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. Jama-Journal of the American Medical Association 2003, 290, (14), 1859-1867. 63. Jenkin, M. E.; Clemitshaw, K. C., Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment 2000, 34, (16), 2499-2527. 64. Zhang, B. N.; Oanh, N. T. K., Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in relation to O-3 precursor concentrations and meteorological conditions. Atmospheric Environment 2002, 36, (26), 4211-4222. 65. Sardar, S. B.; Fine, P. M.; Mayo, P. R.; Sioutas, C., Size-fractionated measurements of ambient ultrafine particle chemical composition in Los Angeles using the NanoMOUDI. Environmental Science & Technology 2005, 39, (4), 932-944. 66. Ebelt, S. T.; Wilson, W. E.; Brauer, M., Exposure to ambient and nonambient components of particulate matter - A comparison of health effects. Epidemiology 2005, 16, (3), 396-405. 67. Chang, L. T.; Koutrakis, P.; Catalano, P. J.; Suh, H. H., Hourly personal exposures to fine particles and gaseous pollutants - Results from Baltimore, Maryland. Journal of the Air & Waste Management Association 2000, 50, (7), 1223-1235. 68. Charron, A.; Harrison, R. M., Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmospheric Environment 2003, 37, (29), 4109-4119. 69. Tu, J.; Xia, Z. G.; Wang, H. S.; Li, W. Q., Temporal variations in surface ozone and its precursors and meteorological effects at an urban site in China. Atmospheric Research 2007, 85, (3-4), 310-337. 70. Colls, J., Air Pollution. 2nd ed.; Spon Press: New York, 2002. 71. Agus, E. L.; Young, D. T.; Lingard, J. J. N.; Smalley, R. J.; Tate, J. E.; Goodman, P. S.; Tomlin, A. S., Factors influencing particle number concentrations, size distributions and modal parameters at a roof-level and roadside site in Leicester, UK. Science of the Total Environment 2007, 386, (1-3), 65-82. 72. Holguin, F.; Tellez-Rojo, M. M.; Hernandez, M.; Cortez, M.; Chow, J. C.; Watsow, J. G.; Mannino, D.; Romieu, I., Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology 2003, 14, (5), 521-527. 73. Choi, J. H.; Xu, Q. S.; Park, S. Y.; Kim, J. H.; Hwang, S. S.; Lee, K. H.; Lee, H. J.; Hong, Y. C., Seasonal variation of effect of air pollution on blood pressure. Journal of Epidemiology and Community Health 2007, 61, (4), 314-318. 74. Ballester, F.; Rodriguez, P.; Iniguez, C.; Saez, M.; Daponte, A.; Galan, I.; Taracido, M.; Arribas, F.; Bellido, J.; Cirarda, F. B.; Canada, A.; Guillen, J. J.; Guillen-Grima, F.; Lopez, E.; Perez-Hoyos, S.; Lertxundi, A.; Toro, S., Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project. Journal of Epidemiology and Community Health 2006, 60, (4), 328-336. 75. Hong, Y. C.; Leem, J. H.; Ha, E. H.; Christiani, D. C., PM10 exposure, gaseous pollutants, and daily mortality in Inchon, South Korea. Environmental Health Perspectives 1999, 107, (11), 873-878. 76. Chuang, K. J.; Chan, C. C.; Chen, N. T.; Su, T. C.; Lin, L. Y., Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environmental Health Perspectives 2005, 113, (12), 1693-1697. 77. Yambe, T.; Meng, X.; Hou, X.; Wang, Q.; Sekine, K.; Shiraishi, Y.; Watanabe, M.; Yamaguchi, T.; Shibata, M.; Kuwayama, T.; Maruyama, M.; Konno, S.; Nitta, S., Cardio-ankle vascular index (CAVI) for the monitoring of the atherosclerosis after heart transplantation. Biomedicine & Pharmacotherapy 2005, 59, S177-S179. 78. Adar, S. D.; Adamkiewicz, G.; Gold, D. R.; Schwartz, J.; Coull, B. A.; Suh, H., Ambient and microenvironmental particles and exhaled nitric oxide before and after a group bus trip. Environmental Health Perspectives 2007, 115, (4), 507-512. 79. Brauer, M.; Ebelt, S. T.; Fisher, T. V.; Brumm, J.; Petkau, A. J.; Vedal, S., Exposure of chronic obstructive pulmonary disease patients to particles: Respiratory and cardiovascular health effects. Journal of Exposure Analysis and Environmental Epidemiology 2001, 11, (6), 490-500. 80. Bocci, V., Is it true that ozone is always toxic? The end of a dogma. Toxicology and Applied Pharmacology 2006, 216, (3), 493-504. 81. Gold, D. R.; Litonjua, A.; Schwartz, J.; Lovett, E.; Larson, A.; Nearing, B.; Allen, G.; Verrier, M.; Cherry, R.; Verrier, R., Ambient pollution and heart rate variability. Circulation 2000, 101, (11), 1267-1273. 82. Milton, R.; Steed, A., Mapping carbon monoxide using GPS tracked sensors. Environmental Monitoring and Assessment 2007, 124, (1-3), 1-19. 83. Brunekreef, B.; Holgate, S. T., Air pollution and health. Lancet 2002, 360, (9341), 1233-1242. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27127 | - |
| dc.description.abstract | 許多毒理學與流行病學的研究已經指出交通相關的污染物質會增加心血管的致死率的風險以及影響心血管的功能,特別是一些易感受族群者,像是老年人或已患有心血管疾病的病人。然而之前的研究往往採用固定點,例如一般測站的採樣結果作為個人暴露,這樣會造成暴露評估上的誤差。因此,此研究一共從新莊郵局徵選了18位健康的郵務人員;這群受測者在外出送信的過程中會配戴個人五階微粒採樣器以及直讀式臭氧儀。健康方面採用外出回來時的心跳變異性的五種指標(HRV)以及血管彈性的指標(CAVI)。每位受測者當他們騎車送信時自星期一到星期五進行連續五天的採樣。我們採用混合式受體模式(linear mixed-effect models)進行暴露與健康評估。監測站的採樣與個人暴露結果有差異,測站會低估個人的微粒暴露特別是小的微粒(直徑小於0.25μm),但會高估個人的臭氧暴露。大微粒的個人暴露預測只跟固定測站的數據以及溫度或濕度有關。針對小微粒的個人暴露預測,選取固定測站小微粒的濃度以及個人和主要道路間的距離、風速和溫度可以提高預測能力,縱相關係數(longitudinal correlation)可自0.61提升到0.85。至於個人即時性臭氧的暴露預測則可藉由固定側站的臭氧及一氧化碳濃度,人到測站的距離或車速作為變相,縱相關係數可自0.41提升到0.51。個人小微粒的暴露會造成心跳變異速率(HRV)相關指標的下降,但個人臭氧的暴露只會造成SDNN此單一指標的上升;又以小微粒對心跳變異速率的影響較為重要。每升高17.46μg/m3會造成14.50%的SDNN下降。至於血管彈性指標則與個人臭氧和大微粒有相關性。每上升20ppb的臭氧會造成5.31%血管彈性指標上升。因此交通污染物質確實對人體的心血管功能造成傷害,且不同的物質像大微粒,小微粒或臭氧對人體造成危害的途徑是不相同的。採用個人採樣器有助於此個人暴露與健康上的研究。 | zh_TW |
| dc.description.abstract | Although traffic-related pollutants have been associated with increased cardiovascular mortality and affected the cardiovascular functions, most studies used the central site monitoring data as surrogates for personal exposure. To examine the associations between traffic-related air pollution and cardiovascular functions, we used the personal five-sized-fraction particular matter sampler (PCIS; cut point: 2.5, 1.0, 0.5 and 0.25 μm) and personal real-time ozone monitor to assess personal exposure. We recruited 18 healthy adults from the Sinjhuang Post Office in Taipei County, Taiwan. We sampled PM and ozone when they worked outside by motorcycles. In this exploratory study, the health endpoints of those subjects were postsample HRV indices and Cardiao-ankle vascular index (CAVI) as an arterial stiffness index. We used mixed-effect models to estimate the personal exposure from fixed-site data and also to estimate the health effects from personal particles and ozone exposure. The fixed site monitoring data underestimated personal PM exposure, especially for the small particles with diameter < 0.25μm (different ratio = 1.72). However, fixed site data overestimated personal ozone exposure (different ratio = -0.23). The models including fixed-site PM data, distance to the major road, wind speed, temperature were increased the correlation from 0.61 to 0.85 for small particles with aerodynamic diameter less than 0.25μm. Large particle only was associated significantly (p value <0.05) with temperature and relative humidity in the fixed-effect models after adjusting fixed-site PM data. The fixed site O3, CO, distance from fixed-site station or speed were chosen as the variables for estimate the real-time personal ozone exposure (r = 0.50). We also found that increased exposure to small particles (<0.25μm) was associated with decreased HRV indices but increased ozone exposure significantly was associated with increased SDNN. For a 17.46μg/m3 increase in PM <0.25µm, SDNN decreased 14.50%. However, ozone and PM between 1.0 to2.5μm were associated with increased Cardio-ankle vascular index (CAVI). An interquartile increase of 20ppb in the average ozone exposure was associated with 5.31% increase in CAVI. Different size-fraction PM and ozone exposure were associated with cardiovascular effects. Large PM, small PM and ozone have different pathway to affect the health response. The use of personal exposure improved the association between health outcomes and exposure and decrease the misclassification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:55:59Z (GMT). No. of bitstreams: 1 ntu-97-R94844008-1.pdf: 2693283 bytes, checksum: 6426e17c745b61ddb7d39d9c58753a63 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENT III
ABSTRACT IV CHINESE ABSTRACT VI CONTENTS VII LIST OF FIGURE IX LIST OF TABLE X ACRONYMS AND ABBREVIATIONS XI CHAPTER 1 INTRODUCTION AND BACKGROUND 1 1.1 AIR POLLUTION IN TAIWAN 1 1.2 MAIL CARRIERS IN TAIWAN 2 1.3 PARTICULATE MATTERS STUDIES 2 1.3.1 Characteristics of particulate matters 3 1.3.2 Exposure to particulate matter 4 1.3.3 Health effect of particulate matter 5 1.4 OZONE STUDIES 6 1.4.1 Exposure 6 1.4.2 Health effect 7 1.5 CARDIOVASCULAR EFFECTS 7 1.5.1 Heart rate variability 8 1.5.2 Arterial stiffness 9 1.6 FLOW CHART 10 CHAPTER 2 PERSONAL EXPOSURE ASSESSMENT 13 2.1 INTRODUCTION 13 2.2 MATERIAL AND METHOD 14 2.2.1 Study design and subject characteristics 14 2.2.2 Personal monitor and equipments 15 2.2.3 The ambient monitoring 17 2.2.4 Data analysis 18 2.3 RESULTS AND DISCUSSION 19 2.3.1 Quality Assurance and Quality Control 19 2.3.2 Fixed site ambient concentration 21 2.3.3 Personal sampling 22 2.3.4 Relationship between personal exposures and ambient concentration 25 2.3.5 Predict the personal exposure 30 2.4 CONCLUSION 34 CHAPTER 3 CARDIOVASCULAR EFFECTS ASSESSMENT 55 3.1 INTRODUCTION 55 3.2 MATERIAL AND METHOD 56 3.2.1 Study population 56 3.2.2 Study design 57 3.2.3 Exposure measurements 58 3.2.4 Health measurement 59 3.2.5 Statistical methods 60 3.3 RESULTS AND DISCUSSION 61 3.3.1 Study participants and levels of exposure 61 3.3.2 Cardiovascular health outcome 63 3.3.3 Association between exposure and health outcome 64 3.4 CONCLUSION 69 CHAPTER 4 OVERALL SUMMARY 83 REFERENCE 88 APPENDIX A - CONSENT LETTER 96 APPENDIX B - QUESTIONNAIRE 97 APPENDIX C - EQUIPMENTS 101 List of Figure Figure 2 1 Map of study region showed the position of post office, the PM Supersite, general air monitor (AQM) station and the major roads in the Sinjhuang and Taishan areas. 36 Figure 2 2 The total delivering route of the mail carriers. 37 Figure 3-1 Study schedule: each space means almost 1 hour time period. 71 Figure 3-2 The percent change in post-work rCAVI index per inter-quartile pollutants’ concentration increase. 72 Figure 3-3 The percent change in post-work 5 minute HRV index per inter-quartile pollutants’ concentration. 73 Figure 3-4 Associations between personal or AQM ozone and heart rate variability outcomes by 5-, 15-, 30-, 60 minutes average period. 74 List of Table Table 2 1 Summary statistics for particular matters mass concentration 38 Table 2 2 Summary statistics for ozone concentration 39 Table 2 3 Summary statistics the meteorological parameters and GIS data 40 Table 2 4 The Pearson correlation between personal PM and ozone exposure (per person-day) 41 Table 2 5 The difference and the difference ratio between personal and fixed-site data 42 Table 2 6 The Pearson correlation between personal exposure and fixed-site data 43 Table 2 7 The Pearson correlation among personal exposure and meteorological data 44 Table 2 8 The Pearson correlation between personal exposure and other pollutants from AQM station for mail carrier working period 45 Table 2 9 The linear-mixed model for personal PM exposure (per person-day) 46 Table 2 10 The linear-mixed model for personal ozone exposure 51 Table 2 11 The correlation between personal ozone and personal PM exposure with mixed models 54 Table 3-1 Basic characteristics of study subjects 75 Table 3-2 Basic characteristics of personal exposure, ambient concentration and meteorology parameters 76 Table 3-3 Basic characteristics of personal health result 78 Table 3-4 The association between per interquartile change in pollutants exposure and percent change in post work health index 79 Table 3-5 The association between per interquartile change in PM1.0, PM2.5 and PM10 and percent change in postwork health index 80 Table 3-6 The association between per interquartile change in ozone exposure and percent change in HRV indices 81 Table 3-7 The association between per interquartile change in PM1.0, PM2.5 and PM10 and percent change in postwork health index from multiple pollutant models 82 | |
| dc.language.iso | en | |
| dc.subject | 血管彈性 | zh_TW |
| dc.subject | 個人暴露 | zh_TW |
| dc.subject | 暴露評估 | zh_TW |
| dc.subject | 交通污染物 | zh_TW |
| dc.subject | 懸浮微粒 | zh_TW |
| dc.subject | 次微米懸浮微粒 | zh_TW |
| dc.subject | 臭氧 | zh_TW |
| dc.subject | 心血管影響 | zh_TW |
| dc.subject | 心跳變異速率 | zh_TW |
| dc.subject | 心踝血管指標 | zh_TW |
| dc.subject | submicrometer particles | en |
| dc.subject | exposure assessment | en |
| dc.subject | traffic-related pollutants | en |
| dc.subject | particular matter | en |
| dc.subject | cardiovascular effect | en |
| dc.subject | arterial stiffness | en |
| dc.subject | CAVI | en |
| dc.subject | cardio-ankle vascular index | en |
| dc.subject | HRV | en |
| dc.subject | ozone | en |
| dc.subject | personal exposure | en |
| dc.title | 評估郵差個人暴露於交通空氣污染物質對心血管功能的影響 | zh_TW |
| dc.title | Assessing the cardiovascular effects of mail carriers from personal exposure to traffic related air pollutants | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹長權(Chang-Chuan Chan),蘇大成(Ta-Chen Su),李崇德(Chung-Te Lee) | |
| dc.subject.keyword | 個人暴露,暴露評估,交通污染物,懸浮微粒,次微米懸浮微粒,臭氧,心血管影響,心跳變異速率,心踝血管指標,血管彈性, | zh_TW |
| dc.subject.keyword | personal exposure,exposure assessment,traffic-related pollutants,particular matter,submicrometer particles,ozone,cardiovascular effect,HRV,cardio-ankle vascular index,CAVI,arterial stiffness, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-02-01 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
