請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27105
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林峰輝 | |
dc.contributor.author | Tzu-Wen Chuang | en |
dc.contributor.author | 莊子文 | zh_TW |
dc.date.accessioned | 2021-06-12T17:55:31Z | - |
dc.date.available | 2008-11-25 | |
dc.date.copyright | 2008-11-25 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-02-01 | |
dc.identifier.citation | 1. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;13:2482-94.
2. Shah PK. Molecular mechanisms of plaque instability. Curr Opin Lipidol 2007;18:492-9. 3. Jialal I, Devaraj S, Venugopal SK. C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension 2004;44:6-11. 4. Vela D, Buja LM, Madjid M, Burke A, Naghavi M, Willerson JT, Casscells SW, Litovsky S. The role of periadventitial fat in atherosclerosis. Arch Pathol Lab Med 2007 Mar;131:481-7. 5. Shah PK. Molecular mechanisms of plaque instability. Curr Opin Lipidol 2007;18:492-9. 6. Ako J, Bonneau HN, Honda Y, Fitzgerald PJ. Design criteria for the ideal drug-eluting stent. Am J Cardiol 2007;100:3M-9M. 7. Meier B. The first 20 years of coronary angioplasty: retrospective and perspectives Schweiz Med Wochenschr 1997;127:2046-53. 8. Hara H, Nakamura M, Palmaz JC, Schwartz RS. Role of stent design and coatings on restenosis and thrombosis. Adv Drug Deliv Rev 2006;58:377-86. 9. Nallamothu BK, Bradley EH, Krumholz HM. Time to treatment in primary percutaneous coronary intervention. N Engl J Med 2007;357:1631-8. 10. Bravata DM, Gienger AL, McDonald KM, Sundaram V, Perez MV, Varghese R, Kapoor JR, Ardehali R, Owens DK, Hlatky MA. Systematic review: the comparative effectiveness of percutaneous coronary interventions and coronary artery bypass graft surgery. Ann Intern Med 2007;147:703-16. 11. Morrison D. PCI versus CABG versus medical therapy in 2006. Minerva Cardioangiol 2006;54:643-72. 12. http://www.know-heart-diseases.com/Angioplasty.html 13. Koziński M, Sukiennik A, Rychter M, Kubica J, Sinkiewicz W. Restenosis after coronary angioplasty: pathomechanism and potential targets for therapeutic intervention. Focus on inflammation. Postepy Hig Med Dosw 2007;61:58-73. 14. Weintraub WS. The pathophysiology and burden of restenosis. Am J Cardiol. 2007;3;100:3K-9K. 15. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 2001;103:604-16. 16. Kipshidze N, Dangas G, Tsapenko M, Moses J, Leon MB, Kutryk M, Serruys P. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol 2004;44:733-9. 17. Boger RH, Bode-Boger SM, Alfke H. Restenosis after percutaneous transluminal angioplasty: II. Possibilities for pharmacologic intervention. Vasa 1996;25:21-31. 18. Mackey RH, Venkitachalam L, Sutton-Tyrrell K. Calcifications, arterial stiffness and atherosclerosis. Adv Cardiol 2007;44:234-44. 19. Rutanen J, Puhakka H, Yla-Herttuala S. Post-intervention vessel remodeling. Gene Ther 2002;9:1487-91. 20. Jensen LO, Maeng M, Kaltoft A, Thayssen P, Hansen HH, Bottcher M, Lassen JF, Krussel LR, Rasmussen K, Hansen KN, Pedersen L, Johnsen SP, Soerensen HT, Thuesen L. Stent thrombosis, myocardial infarction, and death after drug-eluting and bare-metal stent coronary interventions. J Am Coll Cardiol 2007;50:463-70. 21. Grinius V, Navickas R, Unikas R. Stents in interventional cardiology Medicina (Kaunas). 2007;43:183-9. 22. Fontaine AB, Koelling K, Passos SD, Cearlock J, Hoffman R, Spigos DG. Polymeric surface modifications of tantalum stents. J Endovasc Surg 1996;3:276-83. 23. Dussaillant N G, Frago M G, Callejas R S, Farias Ch E, Cumsille G MA, Ramirez N A, Ugalde P H, Garcia B S, Silva J AM, Ibarra F M. Acute and long-term clinical results of bare metal coronary stenting. Rev Med Chil 2007;135:558-65. 24. Markovitz JH, Roubin GS, Parks JM, Bittner V. Platelet activation and restenosis after coronary stenting: flow cytometric detection of wound-induced platelet activation. Coron Artery Dis 1996;7:657-65. 25. Kibos A, Campeanu A, Tintoiu I. Pathophysiology of coronary artery in-stent restenosis. Acute Card Care 2007;9:111-9. 26. http://www.emedicine.com/med/images/Large/10801199ptca-stent_mech.jpg 27. Yutani C, Imakita M, Ishibashi-Ueda H, Tsukamoto Y, Nishida N, Ikeda Y. Coronary atherosclerosis and interventions: pathological sequences and restenosis. Pathol Int 1999;49:273-90. 28. Ferns GA, Avades TY. The mechanisms of coronary restenosis: insights from experimental models. Int J Exp Pathol 2000;81:63-88. 29. Ribichini F. In-stent restenosis. Ital Heart J. 2001;2:728-35. 30. Lowe HC, Oesterle SN, Khachigian LM. Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 2002;39:183-93. 31. Kotzerke J, Hanke H, Hoher M. Endovascular brachytherapy for the prevention of restenosis after angioplasty. Eur J Nucl Med 2000;27:223-36. 32. Nag S, Gupta N, Monge RM. Brachytherapy for the interventional cardiologist and vascular surgeon. Cardiovasc Radiat Med 1999;1:160-8. 33. Cavusoglu E, Kini AS, Marmur JD, Sharma SK. Current status of rotational atherectomy. Catheter Cardiovasc Interv 2004;62:485-98. 34. Villanueva EV, Wasiak J, Petherick ES. Percutaneous transluminal rotational atherectomy for coronary artery disease. Cochrane Database Syst Rev 2003;CD003334. 35. http://www.dqdev.net/images/various/rotational_atherectomy.jpg 36. Tsetis D, Morgan R, Belli AM. Cutting balloons for the treatment of vascular stenoses. Eur Radiol 2006;16:1675-83. 37. Sanborn TA. Laser angioplasty: peripheral and coronary applications. Cardiovasc Clin. 1988;19:181-95. 38. Dahm JB. Excimer laser coronary angioplasty (ELCA) for diffuse in-stent restenosis: beneficial long-term results after sufficient debulking with a lesion-specific approach using various laser catheters. Lasers Med Sci 2001;16:84-9. 39. Shah R, Martin RE, Topaz O. Laser angioplasty and laser-induced thrombolysis in revascularization of anomalous coronary arteries. J Invasive Cardiol 2002;14:180-6. 40. Hara H, Nakamura M, Palmaz JC, Schwartz RS. Role of stent design and coatings on restenosis and thrombosis. Adv Drug Deliv Rev 20063;58:377-86. 41. Popma JJ, Tulli M. Drug-eluting stents. Cardiol Clin 2006;24:217-31. 42. Nakazawa G, Finn AV, John MC, Kolodgie FD, Virmani R. The significance of preclinical evaluation of sirolimus-, paclitaxel-, and zotarolimus-eluting stents. Am J Cardiol 2007;100:36M-44M. 43. Schomig A, Dibra A, Windecker S, Mehilli J, Suarez de Lezo J, Kaiser C, Park SJ, Goy JJ, Lee JH, Di Lorenzo E, Wu J, Juni P, Pfisterer ME, Meier B, Kastrati A. A meta-analysis of 16 randomized trials of sirolimus-eluting stents versus paclitaxel-eluting stents in patients with coronary artery disease. J Am Coll Cardiol 2007;50:1373-80. 44. de Lemos HP Jr, Atallah AN. Does the use of paclitaxel or rapamycin-eluting stent decrease further need for coronary-artery bypass grafting when compared with bare-metal stent? Sao Paulo Med J 2007;125:242-5. 45. Lasala JM, Stone GW, Dawkins KD, Serruys PW, Colombo A, Grube E, Koglin J, Ellis S. An overview of the TAXUS Express, paclitaxel-eluting stent clinical trial program. J Interv Cardiol 2006;19:422-31. 46. Abizaid A. Sirolimus-eluting coronary stents: a review. Vasc Health Risk Manag 2007;3:191-201. 47. Oberhoff M, Herdeg C, Baumbach A, Karsch KR. Stent-based antirestenotic coatings (sirolimus/paclitaxel). Catheter Cardiovasc Interv 2002;55:404-8. 48. Lafont A. The Cypher stent: no longer efficacious at three months in the porcine model? Cardiovasc Res 2004;63:575-6. 49. Shin DI, Kim PJ, Seung KB, Kim DB, Kim MJ, Chang K, Lim SM, Jeon DS, Chung WS, Baek SH, Lee MY. Drug-eluting stent implantation could be associated with long-term coronary endothelial dysfunction. Int Heart J 2007;48:553-67. 50. Kipshidze N, Leon MB. Endothelial dysfunction after drug-eluting stent was never predicted in preclinical studies. J Am Coll Cardiol 2006;47:1911 51. Gyongyosi M, Strehblow C, Sperker W, Hevesi A, Garamvolgyi R, Petrasi Z, Pavo N, Ferdinandy P, Csonka C, Csont T, Sylven C, Declerck PJ, Pavo I Jr, Wojta J, Glogar D, Huber K. Platelet activation and high tissue factor level predict acute stent thrombosis in pig coronary arteries: prothrombogenic response of drug-eluting or bare stent implantation within the first 24 hours. Thromb Haemost 2006;96:202-9. 52. Baier RE. Surface behaviour of biomaterials: the theta surface for biocompatibility. J Mater Sci Mater Med. 2006;17:1057-62. 53. Sharma CP. Blood-compatible materials: a perspective. J Biomater Appl. 2001;15:359-81. 54. Ragaller M, Werner C, Bleyl J, Adam S, Jacobasch HJ, Albrecht DM. Blood compatible polymers in intensive care units: state of the art and current aspects of biomaterials research. Kidney Int Suppl. 1998;64:S84-90. 55. Kiss J. Chemistry of heparin. A short review on recent chemical trends. Thromb Diath Haemorrh. 1975;33:20-5. 56. Chen C, Conklin B, Barber N, Richter, E, Yao Q, Lin P, Hanson S, Lumsden A. Covalent linkage of heparin provides a stable anti-coagulation surface of decellularized porcine arteries. J Surg Res 2003;114:298. 57. Zhou Z, Meyerhoff ME. Preparation and characterization of polymeric coatings with combined nitric oxide release and immobilized active heparin. Biomaterials 2005;26:6506-17. 58. Blezer R, Fouache B, Willems GM, Lindhout T. Activation of blood coagulation at heparin-coated surfaces. J Biomed Mater Res. 1997;37:108-13. 59. Sung HW, Shih JS. Biological materials fixed with an epoxy compound: comparison of the effects with or without ionically bound heparin. J Appl Biomater 1995;6:185-90. 60. Raininko R, Soder H. Clot formation in angiographic catheters--an in vitro comparative study. Effects of heparin and protein coating of the catheter. Acta Radiol 1993;34:78-82. 61. Kutay V, Noyan T, Ozcan S, Melek Y, Ekim H, Yakut C. Biocompatibility of heparin-coated cardiopulmonary bypass circuits in coronary patients with left ventricular dysfunction is superior to PMEA-coated circuits. J Card Surg 2006;21:572-7. 62. Bajpai AK, Bhanu S. Dynamics of controlled release of heparin from swellable crosslinked starch microspheres. J Mater Sci Mater Med 2007;18:1613-21. 63. Gotman I. Characteristics of metals used in implants. J Endourol 1997;11:383-9. 64. Ahmed WH, Al-Shaibi KF. Coronary stent thrombosis in bare metal stents. Saudi Med J 2004;25:1172-5. 65. Cenni E, Ciapetti G, Pratelli L, Pizzoferrato A. In vitro and in vivo evaluation of the blood-biomaterial interaction. Minerva Cardioangiol 1992;40:297-316. 66. Nakatani M, Takeyama Y, Shibata M, Yorozuya M, Suzuki H, Koba S, Katagiri T. Mechanisms of restenosis after coronary intervention: difference between plain old balloon angioplasty and stenting. Cardiovasc Pathol. 2003;12:40-8. 67. Gatti AM, Montanari S, Gambarelli A, Capitani F, Salvatori R. In-vivo short- and long-term evaluation of the interaction material-blood. J Mater Sci Mater Med 2005;16:1213-9. 68. Choy K. Chemical vapor deposition of coatings. Progr Mat Sci 2003;48:57-170. 69. Zhu D, van Ooij WJ. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. Prog Org Coat 2004;49:42-53. 70. Nishiyama N, Komatsu K, Fukai K, Nemoto K, Kumagai M. Influence of adsorption characteristics of silane on the hydrolytic stability of silane at the silica-matrix interface. Composites 1995;26:309-313. 71. Lin FH, Dong GC, Chen KS, Jiang GJ, Huang CW, Sun JS. Immobilization of Chinese herbal medicine onto the surface-modified calcium hydrogenphosphate. Biomaterials 2003;24:2413-22. 72. Seo EJ, Kang IK. Synthesis and characterization of heparinized polyurethanes using plasma glow discharge. Biomaterials 1999;20:529-537. 73. van Delden CJ, Lens JP, Kooyman RP, Engbers GH, Feijen J. Heparinization of gas plasma-modified polystyrene surfaces and the interactions of these surfaces with proteins studied with surface plasmon resonance. Biomaterials 1997;18:845-852. 74. Petitou M, Casu B, Lindahl U. 1976-1983, a critical period in the history of heparin: the discovery of the antithrombin. Biochimie 2003;85:83-89. 75. Guerrini M, Guglieri S, Beccati D, Torri G, Viskov C, Mourier P. Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochem J. 2006;399:191-8. 76. Marcel J, Jacqueline J. Antithrombogenic polymers. Pure Appl Chem 1984;56:1335-1344. 77.Wessel HP, Hosang M, Tschopp TB, Weimann BJ. Heparin, carboxyl-reduced sulfated heparin, and Trestatin A sulfate. Antiproliferative and anticoagulant activities. Carbohydr Res 1990;204:131-139. 78. Oliveira GB, Carvalho LB Jr, Silva MP. Properties of carbodiimide treated heparin. Biomaterials 2003;24:4777-4783. 79. Mlcochova P, Bystricky S, Steiner B, Machova E, Koos M, Velebny V, Krcmar M. Synthesis and characterization of new biodegradable hyaluronan alkyl derivatives. Biopolymers 2006;82:74-9. 80. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release. 2001;70:63-70. 81. Lee BS, Chi YS, Lee KB, Kim YG, Choi IS. Functionalization of poly(oligo(ethylene glycol) methacrylate) films on gold and Si/SiO2 for immobilization of proteins and cells: SPR and QCM studies. Biomacromolecules 2007;8:3922-9. 82. de Figueiredo RM, Frohlich R, Christmann M. N,N'-carbonyldiimidazole-mediated cyclization of amino alcohols to substituted azetidines and other N-heterocycles. J Org Chem. 2006;71:4147-54. 83. Dong GC, Sun JS, Yao CH, Jiang GJ, Huang CW, Lin FH. A study on grafting and characterization of HMDI-modified calcium hydrogenphosphate. Biomaterials 2001;22:3179-89. 84. Rowley JM, Lobkovsky EB, Coates GW. Catalytic double carbonylation of epoxides to succinic anhydrides: catalyst discovery, reaction scope, and mechanism. J Am Chem Soc 2007;129:4948-60. 85. Nasr-Esfahani M, Moghadam M, Tangestaninejad S, Mirkhani V, Momeni AR. Rapid and efficient oxidation of Hantzsch 1,4-dihydropyridines with sodium periodate catalyzed by manganese (III) Schiff base complexes. Bioorg Med Chem. 2006;14:2720-4. 86. Tsang VC, Greene RM, Pilcher JB. Optimization of the covalent conjugating procedure (NaIO4) of horseradish peroxidase to antibodies for use in enzyme-linked immunosorbent assay. J Immunoassay. 1995;16:395-418. 87. Hensel B. Electropolishing. Metal Finishing 1999;97:447-448. 88. Watson H, Norstrom A, Torrkulla A, Rosenholm J. Aqueous amino silane modification of E-glass surfaces. J Colloid Interface Sci 2001;1:136-146. 89. Rzaev ZMO, Guner A, Can HK, Asici A. Reactions of some anhydride-containing copolymers with g-aminopropyltriethoxysilane. Polymer 2001;42:5599-5606. 90. Wissink MJ, Beernink R, Pieper JS, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials 2001;22:151-163. 91. Tan H, Zhan T, Fan WY. Direct functionalization of the hydroxyl group of the 6-mercapto-1-hexanol (MCH) ligand attached to gold nanoclusters. J Phys Chem B 2006;110:21690-3. 92. Chuang TW, Chen MH, Lin FH. Preparation and surface characterization of HMDI-activated 316L stainless steel for coronary artery stents. J Biomed Mater Res A. 2007 Sep 26; [Epub ahead of print] 93. Vandenabeele-Trambouze O, Mion L, Garrelly L, Commeyras A. Reactivity of organic isocyanates with nucleophilic compounds: amines; alcohols; thiols; oximes; and phenols in dilute organic solutions. Adv Environ Res 2001;6:45-55. 94. Jonnalagadda SB, Gollapalli NR. Kinetics of Reduction of Toluidine Blue with Sulfite-Kinetic Salt Effect in Elucidation of Mechanism. J Chem Educ 2000;77:506-509. 95. Kim YJ, Kang IK, Huh MW, Yoon SC. Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials 2000;21:121-130. 96. Small WC, Jones ME. A quantitative colorimetric assay for semialdehydes. Anal Biochem. 1990;185:156-9. 97. Yu H, Munoz EM, Edens RE, Linhardt RJ. Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance. Biochim Biophys Acta. 2005;1726:168-76. 98. Zhang F, McLellan JS, Ayala AM, Leahy DJ, Linhardt RJ. Kinetic and structural studies on interactions between heparin or heparan sulfate and proteins of the hedgehog signaling pathway. Biochemistry 2007;46:3933-41. 99. Harenberg J, Giese C, Hagedorn A, Traeger I, Fenyvesi T. Determination of antithrombin-dependent factor Xa inhibitors by prothrombin-induced clotting time. Semin Thromb Hemost 2007;33:503-7. 100. Tang J, Krajcikova D, Zhu R, Ebner A, Cutting S, Gruber HJ, Barak I, Hinterdorfer P. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore. J Mol Recognit 2007;20(6):483-9. 101. Hietala EM, Maasilta P, Juuti H, Nuutinen JP, Harjula AL, Salminen US, Lassila R. Platelet deposition on stainless steel, spiral, and braided polylactide stents. A comparative study. Thromb Haemost 2004;92(6):1394-401. 102. Vande Vannet BM, Hanssens JL. Cytotoxicity of two bonding adhesives assessed by three-dimensional cell culture. Angle Orthod 2007;77:716-22. 103. MacDougall M, Selden JK, Nydegger JR, Carnes DL. Immortalized mouse odontoblast cell line MO6-G3 application for in vitro biocompatibility testing. Am J Dent 1998;11:S11-6. 104. Dong GC, Lin FH, Yao CH, Jiang GJ, Huang CW. Preparation and characterization of surface-modified calcium hydrogenphosphate by hexamethylene diisocyanates. Biomed Sci Instrum 2000;36:105-10. 105. Mathur AB, Collier TO, Kao WJ, Wiggins M, Schubert MA, Hiltner A, Anderson JM. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res 1997;36:246-57. 106. Liu Z, Liu XH, Zhao Y, Sun XY, Weng SF, Xu DF, Wu JG. FTIR spectroscopic studies of hydration effect on the molecular structure of polyether urethane. Guang Pu Xue Yu Guang Pu Fen Xi 2006;26:33-6 107. Shen W, He H, Zhu J, Yuan P, Frost RL. Grafting of montmorillonite with different functional silanes via two different reaction systems. J Colloid Interface Sci. 2007;313:268-73. 108. Ko YG, Kim YH, Park KD, Lee HJ, Lee WK, Park HD, Kim SH, Lee GS, Ahn DJ. Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials 2001;22:2115-23. 109. Margutti S, Vicini S, Proietti N, Capitani D, Condio G, Pedemonte E, Segre AL.. Physical-chemical characterization of acrylic polymers grafted on cellulose. Polymer 2002;43:6183-6194. 110. Conley RT. Espectroscopia Infrarroja. Alhambra,Madrid;1979. 111. Demje’n Z, Puka’nszky B, Nagy Jr J. Possible coupling reactions of functional silanes and polypropylene. Polymer 1999;40:1763-73. 112. Maleki A, Kjoniksen AL, Nystrom B. Characterization of the chemical degradation of hyaluronic acid during chemical gelation in the presence of different cross-linker agents. Carbohydr Res 2007;342:2776-92. 113. Chen H, Chen Y, Sheardown H, Brook MA. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials 2005;26:7418-7424. 114. Walker CM, Stagg SJ 3rd. Coronary stents: a review of recent developments. J La State Med Soc 1990;142:25-32. 115. Ali MN, Mazur W, Kleiman NS, Rodgers GP, Abukhalil JM, French BA, Raizner AE. Inhibition of coronary restenosis by antithrombin III in atherosclerotic swine. Coron Artery Dis 1996;7:851-61. 116. Mulloy B. The specificity of interactions between proteins and sulfated polysaccharides. An Acad Bras Cienc 2005;77:651-64. 117. Christensen K, Larsson R, Emanuelsson H, Elgue G, Larsson A. Heparin coating of the stent graft-effects on platelets, coagulation and complement activation. Biomaterials 2001;22,349-355. 118. Zhao H, Van Humbeeck J, Sohier J, De Scheerder I. Electrochemical polishing of 316L stainless steel slotted tube coronary stents. J Mater Sci Mater Med 2002;13:911-6. 119. French SA, Sokol AA, Catlow CR, Kornherr A, Nauer GE, Zifferer G. A computational investigation of the different intermediates during organoalkoxysilane hydrolysis. J Phys Chem B. 2006;110:24311-7. 120. Chuang TW, Lin DT, Lin FH. Immobilization of NaIO4-treated heparin on PEG-modified 316L SS surface for high anti-thrombin-III binding. J Biomed Mater Res A. 2007 Nov 16; [Epub ahead of print] 121. Kasai K. Biosensor based on surface plasmon resonance Tanpakushitsu Kakusan Koso. 1992;37:2977-84. 122. Wang L, Brown JR, Varki A, Esko JD. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J Clin Invest 2002;110:127-136. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27105 | - |
dc.description.abstract | 冠心病是國人常見的疾病,此疾病是因提供心臟所需的冠狀動脈發生狹窄阻塞所致。目前常見的治療方式是支架的置入,但支架不理想的血液相容性,常使得撐開後的血管在半年後再度的狹窄。為了避免血管的再狹窄,本研究固定抗凝血藥物肝素於支架表面以改善其血液相容性。由於金屬支架表面並不具有具反應性之官能基,本研究先以表面偶合劑二異氰酸己烷將之活化,使支架得以進行後續的藥物固定反應。支架表面改質後,肝素分子也必須進行活化,方可固定於支架表面。乙基二甲基氨丙基碳二亞胺是目前常用來固定肝素至材料表面的交聯劑。此試劑可將肝素的羧酸基轉換成高反應性的中間產物,使肝素固定於支架表面。但有研究指出,經此試劑處理後的肝素,將喪失其部分的抗凝血功效。為了避免羧酸基的耗損,本研究以氧化劑過碘酸鈉處理肝素。此分子可使肝素分子中特定且無關肝素活性的氫氧基轉成極具反應性的醛基,使肝素能在不損失羧酸基的情況下,固定於材料表面。本研究我們分別以乙基二甲基氨丙基碳二亞胺及過碘酸鈉將肝素固定於支架表面,並進行各種肝素活性及血液相容性測試。研究結果顯示,以乙基二甲基氨丙基碳二亞胺法固定肝素後之支架較未經處理之支架有相對較好的血液相容性,但結果仍未盡理想。而經過碘酸鈉法固定肝素之支架,則有明顯較好的血液相容性。因此我們相信,本研究所研發的肝素固定技術,能改善過去支架不理想的血液相容性,解決血管再狹窄的問題。 | zh_TW |
dc.description.abstract | Poor compatibility between blood and metallic coronary artery stents is one reason for arterial restenosis. Immobilization of anticoagulant heparin on the stent’s surface is feasible for improving compatibility. Prior to heparin immobilization, we examined possible surface-coupling agents for heparin immobilization. Hexamethylene diisocyanate (HMDI) and 3-aminopropyl-triethoxysilane (APTS) were examined as surface-coupling agents to activate 316L stainless steel (e.g., stent material). The activated surface was characterized by Fourier transformation infrared spectroscopy (FTIR), atomic force microscope (AFM), surface plasmon resonance (SPR), and trinitrobenzene sulfonic acid (TNBS) assay. In the FTIR analysis, HMDI and APTS were both covalently linked to 316L stainless steel. In the AFM analysis, it was found that the HMDI-activated surface was smoother than the APTS-activated one. In the SPR test, the shift of the SPR angle for the APTS-activated surface was much higher than that for the HMDI-activated surface after being challenged with acidic solution. The TNBS assay was utilized to determine the amount of immobilized primary amine groups. The HMDI-activated surface was found to consist of about 1.32 μmole/cm2 amine group, whereas the APTS-activated surface consisted of only 0.89μmole/cm2 amine group. We conclude that the HMDI-activated surface has more desirable surface characteristics than the APTS-activated surface, such as surface roughness, chemical stability, and the amount of active amine groups.
The HMDI-activated 316L stainless steel (SS) was then utilized for heparin linking. The compound 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDAC) has often been utilized for the immobilization of heparin, but the critical carboxyl groups of heparin (with regards to heparin’s anticoagulant activity) will be reduced by this method. We were trying to examined possible methods of heparin immobilization without consuming these carboxyl groups. Sodium periodate (NaIO4; SP) was then used to oxidize heparin to form aldehyde groups and then coupled with bis-amine-terminated poly(ethylene glycol) (Bis-amine PEG) so as to form heparin-PEG complexes. The complexe could then be grafted onto the activated surface of the test material without losing its carboxyl groups. The heparin-PEG complex formed by EDAC method was used as comparison group. Effective surface modification of the HMDI-activated and heparin-PEG grafted 316L SS surface was confirmed using Fourier Transform Infrared Spectroscopy (FTIR), Electron Spectroscopy for Chemical Analysis (ESCA) and a water contact angle test. After the heparin grafted by SP, the surface showed an improvement in antithrombrin (AT) binding ability, its anticoagulant property, and hemocompatibility in comparison to heparin grafted by EDAC. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T17:55:31Z (GMT). No. of bitstreams: 1 ntu-97-F91548001-1.pdf: 11336159 bytes, checksum: 68f2019fee93342dde9810052d5e3f30 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | ABSTRACT 1
CHAPTER 1 INTRODUCTION 1-1 Coronary atherosclerosis 4 1-2 Percutaneous transluminal coronary angioplasty 6 1-3 The pathophysiology of restenosis after angioplasty 8 1-4 Stent implantation 10 1-5 Pathology of in-stent restenosis 12 1-6 Treatment of in-stent restenosis 13 1-6-1 Brachytherapy 13 1-6-2 Rotational atherectomy 13 1-6-3 Cutting balloon 14 1-6-4 Laser angioplasty 15 1-6-5 Drug-eluting stents 15 1-7 Objectives of this study 19 CHAPTER 2 THEORETICAL BASIS 2-1 Blood-compatible materials 21 2-2 Heparinized surface 22 2-3 316L Stainless Steel 24 2-4 Electropolish for 316L SS stent surface 25 2-5 Surface activation for 316L SS 26 2-6 The methods for heparin immobilization 27 CHAPTER 3 MATERIALS AND METHODS 3-1 Surface pretreatment and activation for 316L SS 34 3-1-1 Electropolishing process 34 3-1-2 Preparation of HMDI-activated 316L SS 34 3-1-3 Preparation of APTS-activated 316L SS 35 3-2 Surface characterization of the activated 316L SS 35 3-2-1 FTIR spectra for the activated 316L SS 35 3-2-2 AFM topography of the activated 316L SS 35 3-2-3 TNBS assay for the activated 316L SS 36 3-2-4 SPR analysis for the stability of the HMDI and APTS activated surface 36 3-2-5 Surface immobilizing of PEG 37 3-3 Preparation and characterization of activated heparin for immobilization 38 3-3-1 Preparation and toluidine blue testing of EDAC- or SP-modified heparin 38 3-3-2 FTIR spectra for EDAC- and SP-treated heparin 38 3-3-3 Purpald assay for the SP-treated heparin 39 3-4 Preparation and characterization of heparin-PEG complexes 39 3-4-1-1Preparation of the heparin–PEG complexes with EDAC method 39 3-4-1-2Preparation of the heparin–PEG complexes with SP method 40 3-4-2 FTIR spectra for the two heparin–PEG complexes 40 3-4-3 SPR test for the interaction of grafted AT and the two heparin-PEG complexes 41 3-4-4 SPR testing for affinity measurement of grafted heparin and AT 41 3-4-5 Blood coagulation assays of the two heparin-PEG complexes 42 3-5 Surface immobilization and characterization of the two heparin–PEG complexes 42 3-5-1 Surface immobilization of the two heparin–PEG complexes 42 3-5-2 Surface characterization of the heparinized surfaces with water contact angle test, ESCA, and toluidine blue assay 43 3-5-3 AT adsorption testing of the heparinized 316L SS 44 3-5-4 Preparation of the AT-grafted probe and AFM measurement 45 3-5-5 Hemocompatibility characterization of the heparinized 316L SS 45 3-6 LDH and WST-1 test for in vitro biocompatibility of native and heparinized 316L SS 46 3-6-1 LDH leakage 46 3-6-2 WST-1 Assay 47 CHAPTER 4 RESULTS 4-1 Characterization of HMDI and APTS-activated 316L SS 48 4-1-1 FTIR spectra for the HMDI-activated 316L SS 48 4-1-2 FTIR spectra for the APTS-activated 316L SS 50 4-1-3 AFM topography of the activated 316L SS 51 4-1-4 SPR analysis for the stability of the HMDI and APTS activated surface. 52 4-1-5 TNBS assay for the activated 316L SS 54 4-1-6 FTIR spectra for the PEG grafted 316L SS 55 4-2 Characterization of the EDAC- and SP-treated heparin 57 4-2-1 FTIR spectra for EDAC heparin 57 4-2-2 The number of aldehyde groups per heparin molecular versus the SP concentration for the heparin activation 58 4-2-3 Fourier Transform Infrared spectra for SP-treated heparin 59 4-2-4 Toluidine blue testing of EDAC- or SP-modified heparin 60 4-3 Characterization of the two heparin-PEG complexes 61 4-3-1 FTIR spectra of the bis-amine PEG, the native heparin, the heparin-PEG complex formed by EDAC method, and the heparin-PEG complex formed by SP method 61 4-3-2 SPR test for the interaction of grafted AT and the heparin-PEG complex 63 4-3-3 SPR test for the interaction of grafted AT and the heparin-PEG 66 complex 4-3-4 Blood coagulation assays of the heparin-PEG complexes 69 4-4 Surface characterization of the heparinized surface 70 4-4-1 Surface characterization of the heparinized surface with water contact 70 angle test 4-4-2 Surface characterization of heparinized surface with ESCA 72 4-4-3 Estimation of surface heparin density with toluidine blue assay 73 4-4-5 AT adsorption testing of the heparinized 316L SS 74 4-4-6 AFM measurement of the adhesion force of the heparinized surface and AT grafted probe 75 4-4-7 Hemocompatibility characterization of the heparinized 316L SS 77 4-5 LDH and WST-1 test of the heparinized 316L SS 80 CHAPTER 5 DISCUSSIONS 84 CHAPTER 6 CONCLUSION 96 REFERENCE 98 RESUME 111 FIGURES AND TABLES Figure 1-1 Balloon Angioplasty 7 Figure 1-2 Restenosis 8 Figure 1-3 Stent implantation 11 Figure 1-4 Rotational Athrectomy 14 Figure 1-5 The four steps for heparin immobilization 20 Figure 2-1 The interaction of grafted heparin with AT 23 Figure 2-2 Proposed mechanism for reaction of hexamethylene diisocyanate (HMDI) with 316L stainless steel surface. 26 Figure 2-3 The structure of AT binding sequence of heparin 28 Figure 2-4 The heparin carboxyl group is consumed during the activation process 29 Figure 2-5 The hydroxyl group can react with cyanogen bromide to give the reactive cyclic imido-carbonate 30 Figure 2-6 The hydroxyl group can react with chloroformates to give the intermediates that produced by cyanogens bromide 30 Figure 2-7 DSC can activate hydroxylic compounds to form an amine reactive intermediate 31 Figure 2-8 CDI can activate hydroxylic compounds to form an amine reactive intermediate 31 Figure 2-9 The HMDI can activate hydroxylic compounds to form an amine reactive intermediate 32 Figure 2-10 The succinic anhydride can create terminal carboxyl group on hydroxyl bearing compound in aqueous environment 32 Figure 4-1 FTIR spectra of the HMDI monomer and HMDI-activated 316L SS 49 Figure 4-2 FTIR spectra of the APTS monomer and APTS-activated 316L SS 51 Figure 4-3 Noncontact AFM images of native stainless steel, electropolished stainless steel, HMDI-activated 316L SS, and the APTS-activated 316L SS 52 Figure 4-4 Surface plasmon resonance angle of the native, the activated, 53 and the activated surface after washing with 0.1NHCl. Figure 4-5 Reflected light intensity versus time for the activated surface with 0.1N HCl washing 54 Figure 4-6 Amount of amine groups on the APTS-activated and HMDI- activated 316L SS 55 Figure 4-7 FTIR spectra of bis-amine and bis-amine-modified 316L SS 56 Figure 4-8 FTIR spectra of native heparin, and of native heparin treated with EDAC 58 Figure 4-9 The number of aldehyde groups per heparin molecular versus the SP concentration for the heparin activation 59 Figure 4-10 FTIR spectra of native heparin, and of native heparin treated with SP. 60 Figure 4-11 OD value for the toluidine blue solution added to native heparin and various concentrations of EDAC or SP. 61 Figure 4-12 FTIR spectra of the bis-amine PEG, the native heparin, the heparin PEG complex formed by EDAC method, and the heparin-PEG complex formed by SP method. 63 Figure 4-13 The design of the SPR tests 64 Figure 4-14 The schematic sensorgram showing the results of antithrombin coupling using EDAC 65 Figure 4-15 The sensorgram showing interaction of grafted AT with native heparin, heparin-PEG complexes formed by SP or EDAC method 66 Figure 4-16 The schematic sensorgram showing the results of bis-amine PEG coupling using EDAC and the interaction of SP-treated heparin with bis-amine PEG on the SPR sensing surface. 67 Figure 4-17 The sensorgram showing the interaction of the SP or EDAC method grafted heparin AT 68 Figure 4-18 Water contact angle on surfaces of the native 316L SS, the HMDI activated 316L SS, the bis-amine PEG-modified 316L SS, the SP heparin-immobilization group, and the EDAC heparin- immobilization group 71 Figure 4-19 ESCA survey scans spectra of the control group (native 316L SS), SP heparin-immobilization group and EDAC heparin- immobilization group. 73 Figure 4-20 The amount of adsorbed AT on the surfaces of the SP heparin immobilization group, EDAC heparin-immobilization group and control group (native 316L SS). 75 Figure 4-21 The force-versus-distance curve (f-d curve) between the AT grafted AFM probe and the native 316L SS, SP method modified 316L SS surface, and EDAC method modified 316L SS surface. 76 Figure 4-22 Scanning electron micrographs of thrombus adherence to the surface of the control group, the EDAC heparin-immobilization group, and the SP heparin-immobilization group. 77 Figure 4-23 Scanning electron micrographs of thrombus adherence to the surface of the control group 78 Figure 4-24 Scanning electron micrographs of thrombus adherence to the surface of the EDAC heparin-immobilization group. 79 Figure 4-25 Scanning electron micrographs of thrombus adherence to the surface of the SP heparin-immobilization group. 80 Figure 4-26 The LDH test for in vitro biocompatibility of native and heparinized 316L SS (3T3) 81 Figure 4-27 The LDH test for in vitro biocompatibility of native and heparinized 316L SS (HUVEC cells) 81 Figure 4-28 The WST-1 test for in vitro biocompatibility of native and heparinized 316L SS (3T3) 82 Figure 4-29 The WST-1 test for in vitro biocompatibility of native and heparinized 316L SS (HUVEC cells) 83 Table 4-1 Activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of the native heparin and the two hepairn-PEG complexes. 70 Table 4-2 The chemical compositions of native 316L SS and 316L SS modified step-by-step with HMDI, BA-PEG and SP-treated or EDAC-treated heparin. 73 | |
dc.language.iso | en | |
dc.title | 316L不鏽鋼表面活化改質及固定抗凝血藥物肝素於冠心病支架上之應用 | zh_TW |
dc.title | Immobilization of Anticoagulant Heparin on HMDI-activated 316L Stainless Steel for the Application of Coronary Artery Disease | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳克紹,林東燦,楊禎明,宋信文,吳造中,廖俊德,S. Sadhasivam(S. Sadhasivam) | |
dc.subject.keyword | 關鍵字: 支架,肝素,表面改質,表面分析,血液相容性, | zh_TW |
dc.subject.keyword | Keywords: stent,heparin,surface modification,surface characterization,hemocompatibility, | en |
dc.relation.page | 126 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-02-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 11.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。