Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27058Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張培仁(Pei-Zen Chang) | |
| dc.contributor.author | Song-Lin Yu | en |
| dc.contributor.author | 游松霖 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:54:38Z | - |
| dc.date.available | 2008-02-18 | |
| dc.date.copyright | 2008-02-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-02-04 | |
| dc.identifier.citation | [1] J. Vranish, “Magnetoinductive skin for robots,” IEEE International Conference on Robotics and Automation, Proceedings, vol. 3, pp. 1292-1318, 1986.
[2] H. K. Lee, S. I. Chang and E. Yoon, “A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment,” Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1681-1686, 2006. [3] S. Begej, “Planar and finger-shaped optical tactile sensors for roboticapplications,” IEEE Journal of Robotics and Automation, vol. 4, no. 5, pp. 472-484, 1988. [4] P. Dario, D. De Rossi, C. Domenici and R. Francesconi, “Ferroelectric polymer tactile sensors with anthropomorphic features,” IEEE International Conference on Robotics and Automation, Proceedings, vol. 1, pp. 332-340, 1984. [5] T. Lomas, A. Tuantranont and F. Cheevasuvit, “Micromachined piezoresistive tactile sensor array fabricated by bulk-etched MUMPs process,” Proceedings of the International Symposium on Circuits and Systems, vol. 4, pp. 856-859, 2003. [6] R. Gaska, M. S. Shur, A. D. Bykhovski, J. W. Yang, M. A. Khan, V. V. Kaminski and S. M. Soloviov, “Piezoresistive effect in metal--semiconductor--metal structures on p-type GaN,” Applied Physics Letters, vol. 76, no. 26, pp. 3956-3958, 2000. [7] C. S. Smith, “Piezoresistive effect in germanium and silicon,” Physical Review, vol. 94, pp. 42-49, 1954. [8] B. Lundberg and B. Sundqvist, “Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment - applications as a pressure and gas concentration transducer,” Journal of Applied Physics, vol. 60, no. 3, pp. 1074-1079, 1986. [9] M. Hussain, Y. H. Choa and K. Niihara, “Fabrication process and electrical behavior of novel pressure-sensitive composites,” Composites Part A: Applied Science and Manufacturing, vol. 32, no. 12, pp. 1689-1696, 2001. [10] M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, Y. J. Yang, W. P. Shih, F. Y. Chang, S. H. Chang and K. C. Fan, “Design and fabrication of an artificial skin using PI-copper films,” IEEE International Micro Electro Mechanical Systems Conference, pp. 389-392, 2007. [11] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proceedings of the National Academy of Sciences, vol. 101, no. 27, pp. 9966-9970, 2004. [12] J. Engel, J. Chen and C. Liu, “Development of polyimide flexible tactile sensor skin,” Journal of Micromechanics and Microengineering, vol. 13, no. 3, pp. 359-366, 2003. [13] K. Noda, K. Hoshino, K. Matsumoto and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators A: Physical, vol. 127, no. 2, pp. 295-301, 2006. [14] O. Kerpa, K. Weiss and H. Worn, “Development of a Flexible Tactile Sensor System for a Humanoid Robot,” IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 1-6, 2003. [15] A. S. Fiorillo, “A piezoresistive tactile sensor,” IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 1, pp. 15-17, 1997. [16] S. Middelhoek, A. A. Bellekom, U. Dauderstadt, P. J. French, S. R. i. Hout, W. Kindt, F. Riedijk and M. J. Vellekoop, “Silicon sensors,” Measurement Science and Technology, vol. 6, no. 12, pp. 1641-1658, 1995. [17] L. P. Cheng, D. J. Lin and K. C. Yang, “Formation of mica-intercalated-Nylon 6 nanocomposite membranes by phase inversion method,” Journal of Membrane Science, vol. 172, no. 1-2, pp. 157-166, 2000. [18] E. Smela, “Microfabrication of PPy microactuators and other conjugated polymer devices,” Journal of Micromechanics and Microengineering, vol. 9, no. 1, pp. 1-18, 1999. [19] W. Luheng, D. Tianhuai and W. Peng, “Effects of conductive phase content on critical pressure of carbon black filled silicone rubber composite,” Sensors and Actuators A: Physical, vol. 135, no. 2, pp. 587-592, 2007. [20] S. K. Sen, “An improved lead wire compensation technique for conventional two wire resistance temperature detectors (RTDs),” Measurement, vol. 39, no. 5, pp. 477-480, 2006. [21] E. R. Stroik, “RTD`s (resistance temperature detectors) are sturdier than you think,” Instrum. Control System, vol. 53, no. 6, pp. 28-33, 1980. [22] O. Saburi and K. Wakino, “Processing techniques and applications of positive temperature coefficient thermistors,” IEEE Transactions on Component Parts, vol. 10, no. 2, pp. 53-67, 1963. [23] B. Huybrechts, K. Ishizaki and M. Takata, “The positive temperature coefficient of resistivity in barium titanate,” Journal of Materials Science, vol. 30, no. 10, pp. 2463-2474, 1995. [24] W. W. Chen and L. A. Dorrell, “A method to achieve arcless interruptions in low current circuits,” Proceedings of the Forty-Fifth IEEE Holm Conference on Electrical Contacts, pp. 24-29, 1999. [25] B. Heinen and R. Waser, “Influence of the thickness and area of NiCr/Ag electrodes on the characteristics of BaTiO3- ceramic based positive-temperature-coefficient thermistors,” Journal of Materials Science, vol. 33, no. 18, pp. 4603-4608, 1998. [26] X. S. Yi, G. Wu and Y. Pan, “Properties and applications of filled conductive polymer composites,” Polymer international, vol. 44, no. 2, pp. 117-124, 1997. [27] J. F. Feller, “Conductive polymer composites: Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin)-carbon black blends,” Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2151-2157, 2004. [28] P. Murugaraj, D. Mainwaring and N. Mora-Huertas, “Thermistor behaviour in a semiconducting polymer–nanoparticle composite film,” Journal of Physics D: Applied Physics, vol. 39, pp. 2072-2078, 2006. [29] J. L. Martin De Vidales, P. Garcia-CHAIN, R. M. Rojas, E. Vila and O. Garcia-MARTINEZ, “Preparation and characterization of spinel-type Mn–Ni–Co–O negative temperature coefficient ceramic thermistors,” Journal of Materials Science, vol. 33, no. 6, pp. 1491-1496, 1998. [30] P. Murugaraj, D. E. Mainwaring, T. Jakubov, N. E. Mora-Huertas, N. A. Khelil and R. Siegele, “Electron transport in semiconducting nanoparticle and nanocluster carbon-polymer composites,” Solid State Communications, vol. 137, no. 8, pp. 422-426, 2006. [31] J.S. Boyer, E.B. Knipling, “Isopiestic Technique for Measuring Leaf Water Potentials with a Thermocouple Psychrometer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 54, no. 4, pp. 1044-1051, 1965. [32] M. Steenbeck, F. Krause, K.H. Radler, “A Calculation of the Mean Electromotive Force in an Electrically Conducting Fluid in Turbulent Motion Under the Influence of Coriolis Forces,” Z. Naturforsch, vol. 21, pp. 369-376, 1966. [33] T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi and T. Sakurai, “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” Proceedings of the National Academy of Sciences, vol. 102, no. 35, pp. 12321-12325, 2005. [34] J. H. Cho, J. B. Yu, J. S. Kim, S. O. Sohn, D. D. Lee and J. S. Huh, “Sensing behaviors of polypyrrole sensor under humidity condition,” Sensors and Actuators B: Chemical, vol. 108, no. 1-2, pp. 389-392, 2005. [35] K. S. Chou, T. K. Lee and F. J. Liu, “Sensing mechanism of a porous ceramic as humidity sensor,” Sensors and Actuators B: Chemical, vol. 56, no. 1-2, pp. 106-111, 1999. [36] L.S. HWANG, J.M. KO, H.W. RHEE, C.Y. KIM, “A polymer humidity sensor,” Synthetic Metals, vol. 57, no. 1, pp. 3671, 1993. [37] H. Iwahara, H. Uchida, J. Kondo, “Galvanic cell-type humidity sensor using high temperature-type proton conductive solid electrolyte,” Journal of Applied Electrochemistry, vol. 13, no. 3, pp. 365, 1983. [38] C. T. Wang, C. L. Wu, I. C. Chen and Y. H. Huang Humidity sensors based on silica nanoparticle aerogel thin films, Sensors and Actuators B, Vol. 107, pp. 402-410, 2005. [39] T. Islam, S. Ghosh and H. Saha, ANN-based signal conditioning and its hardware implementation of a nanostructured porous silicon relative humidity sensor, Sensors and Actuators B, Vol. 120, pp. 130-141, 2006. [40] J. R. Huang, M. Q. Li, Z. Y. Huang and J. H. Liu, A novel conductive humidity sensor based on field ionization from carbon nanotubes, Sensors and Actuators A, Vol. 133, pp. 467-471, 2007. [41] Z. M. Rittersma, Recent achievements in miniaturised humidity sensors-a review of transduction techniques, Sensors and Actuators A, Vol. 96, pp. 196-210, 2002. [42] P. G. Su, Y. L. Sun and C. C. Lin, Novel low humidity sensor made of TiO2 nanowires/poly(2-acrylamido-2-methylpropane sulfonate) composite material film combined with quartz crystal microbalance, Talanta, Vol. 69, pp. 946-951, 2006. [43] J. Wang, B. K. Xu, S. P. Ruan and S. P. Wang, Preparation and electrical properties of humidity sensing films of BaTiO3/polystrene sulfonic sodium, Materials Chemistry and Physics, Vol. 8, pp. 746-750, 2003. [44] Y. Li, M.J. Yang, N. Camaioni, G. Casalbore-Miceli, “Humidity sensors based on polymer solid electrolytes: investigation on the capacitive and resistive devices construction,” Sensors and Actuators B: Chemical, vol. 77, no. 3, pp. 525-631, 2001. [45] Y Sakai, M Matsuguchi, N Yonesato, “Humidity sensor based on alkali salts of poly(2-acrylamido-2-methylpropane sulfonic acid),” Electrochimica Acta, vol. 46, no. 10-11, pp. 1509-1514, 2001. [46] C. Roman, O. Bodea, N. Prodan, A. Levi, E. Cordos and I. Manoviciu, “A capacitive-type humidity sensor using crosslinked poly (methyl methacrylate-co-(2 hydroxypropyl)-methacrylate),” Sensors and Actuators B: Chemical, vol. 25, no. 1-3, pp. 710-713, 1995. [47] Z. Yao and M. Yang, “A fast response resistance-type humidity sensor based on organic silicon containing cross-linked copolymer,” Sensors and Actuators B: Chemical, vol. 117, no. 1, pp. 93-98, 2006. [48] Y. Sakai, Y. Sadaoka and M. Matsuguchi, “Humidity sensors based on polymer thin films,” Sensors and Actuators B: Chemical, vol. 35, no. 1-3, pp. 85-90, 1996. [49] T. Hubert, Humidity-Sensing Materials, MRS BULLETIN, 1999 [50] K. J. Kim and M. Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles,” Polymer, vol. 43, pp. 797, 2002. [51] J. Y. Li and S. Nemat-Nasser, “Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane,” Mechanics of Materials, vol. 32, pp. 303, 2000. [52] K. Idla, O. Inganas, and M. Strandberg, “Good adhesion between chemically oxidized titanium and electrochemically deposited polypyrrole,” Electrochimica Acta, vol. 45, pp. 2121, 2000. [53] R. Pelrine, R. Kornbluh, Q. B. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science, vol. 287, pp. 836, 2000. [54] V.L. Finkenstadt, J.L. Willett, Electroactive Materials Composed of Starch, Journal of Polymers and the Environment, vol. 12, no. 2, pp. 43, 2004. [55] K. Oguro, Y. Kawami, and H. Takenaka, “Biomimetic micro actuators based on polymer electrolyte/gold composite driven by low voltage,” Transaction Journal of Micromachine Society, vol. 5, pp. 27, 1992. [56] M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review,” Smart Material Structures, vol. 7, pp. 15, 1998. [57] R. Kanno, S.Tadokoro, T. Takamori, and K.Oguro, “3-Dimensional dynamic model of ionic conducting polymer gel film (ICPF) actuator,” Proceedings of IEEE International conference on Systems, Man and Cybernetics, pp. 2179, 1996. [58] T. A. Ezquerra, J. M. Salazar, and F. J. Caleja, “Percolation threshold of conductive polycarbonate/carbon composites as revealed by electron microscopy,” Journal of Materials Science, vol. 5, pp. 1065, 1986. [59] T. Shiga, “Deformation and viscoelastic behavior of polymer gels in electric fields, ” Advances in Polymer Science, vol. 134, pp. 131, 1997. [60] T. Furukawa, “Ferroelectric properties of vinylidene fluoride copolymers,” Phase Transitions: A Multinational Journal, vol. 18, no. 3, pp. 141, 1989. [61] H Kawai, “The Piezoelectricity of Poly (vinylidene Fluoride),” Kobayashi Institute of Physical Research, vol. 8, no. 7, pp. 975-976, 1969. [62] M.W. Chase, H.H. Hills, “Silica Gel: An Ideal Material for Field Preservation of Leaf Samples for DNA Studies,” Taxon, pp. 215-220, 1991. [63] S.B. Cho, K. Nakanishi, T. Kokubo, N. Soga, C. Ohtsuki, “Dependence of apatite formation on silica gel on its structure: effect of heat treatment,” Journal of the American Ceramic Society, vol. 78, no. 7, pp. 1995, 1976. [64] R.A. Hayes, B.J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature, vol. 435, no. 6959, pp. 383, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27058 | - |
| dc.description.abstract | 本文提出一種快速的製程和混合電敏感摻雜物的多孔隙尼龍特性作為可撓性觸覺感測陣列、溫度感測陣列、溼氣感測器和致動器的應用。多孔隙尼龍作為基材整合在可撓軟性基板上,提供可撓機械性質。在基材內部,聚批落(導電高分子)電化學合成在預先定義的指叉銅電極上並且作為導電摻雜物。做為不同應用感測器的電機械特性已經量測。電致動器的變形也已經模擬。 | zh_TW |
| dc.description.abstract | This paper presents rapid fabrication process and characterization of porous nylon with electro-active dopants for the applications of flexible tactile sensor array, temperature sensor array, moisture sensor and actuator. Porous nylon was used as the matrix integrated on a flexible copper-PI film, which provided flexible mechanical properties. Inside the matrix, polypyrrole was electrochemically deposited on the pre-defined interdigitated copper electrodes and acted as conductive dopant. The electro-mechanical characteristics of the fabricated sensors for different applications were measured. The deformation of the electro-active actuator was simulated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:54:38Z (GMT). No. of bitstreams: 1 ntu-97-R94543047-1.pdf: 1364145 bytes, checksum: c430276c54354da53129e0c0b2981f4b (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Table of Contents V List of Tables VII List of Figures VIII Chapter 1 Tactile Sensor Array 1 1-1 Introduction 1 1-2 Sensing Principle 4 1-3 Materials 5 1-3-1 Polyimide 6 1-3-2 Nylon66 6 1-3-3 Polypyrrole 8 1-4 TESING THE MATERIAL 8 1-4-1 Polypyrrole 8 1-4-2 Composite Material 9 1-5 Design and Fabricate Tactile Sensor Array 15 1-5-1 Design and Fabrication 15 1-5-2 Fabrication Discussion 17 1-6 Results and Discussion 21 1-6-1 Comparison with pure PPy 21 1-6-2 Sensitivity of Nylon-PPy 21 1-6-3 Pressure contour test 26 1-7 Conclusions 29 Chapter 2 Temperature Sensor Array 30 2-1 Introduction 30 2-2 Sensing Principle 34 2-3 Materials 35 2-3-1 Polyimide 36 2-3-2 Nylon66 36 2-3-3 Polypyrrole 38 2-4 Fabricate Composite Material 38 2-5 Design and Fabricate Temperature Sensor Array 40 2-5-1 Design and Fabrication 40 2-5-2 Fabrication Discussion 42 2-6 Results and Discussion 45 2-6-1 Comparison with pure PPy 45 2-6-2 Temperature distribution measurement 48 2-7 Conclusions 51 Chapter 3 Moisture Sensor 52 3-1 Introduction 52 3-2 Sensing Principle 55 3-3 Materials 55 3-3-1 Polyimide 56 3-3-2 Nylon66 56 3-3-3 Polypyrrole 58 3-4 Fabricate Composite Material 58 3-5 Design and Fabricate Moisture Sensor 59 3-6 Results and Discussion 62 3-7 Conclusion and Future Work 63 Chapter 4 Actuator Array 64 4-1 Introduction 64 4-2 Working Mechanism 65 4-3 Materials 66 4-3-1 Polyimide 66 4-3-2 Nylon66 67 4-3-3 Polypyrrole 68 4-4 Fabricate Composite Material 69 4-5 Design and Fabricate Actuator Array 70 4-5-1 Design and Fabrication 70 4-5-2 Fabrication Discussion 72 4-6 Results and Discussion 75 4-7 Conclusion and Future Work 76 References 77 | |
| dc.language.iso | en | |
| dc.subject | 可撓性元件 | zh_TW |
| dc.subject | 複合高分子 | zh_TW |
| dc.subject | 多孔隙高分子 | zh_TW |
| dc.subject | 觸覺感測陣列 | zh_TW |
| dc.subject | 溫度感測陣列 | zh_TW |
| dc.subject | 溼度感測器 | zh_TW |
| dc.subject | 高分子致動器 | zh_TW |
| dc.subject | composite polymer | en |
| dc.subject | flexible device | en |
| dc.subject | polymer actuator | en |
| dc.subject | moisture sensor | en |
| dc.subject | temperature sensor array | en |
| dc.subject | tactile sensor array | en |
| dc.subject | porous polymer | en |
| dc.title | 以多孔隙尼龍摻雜導電高分子製作可撓式感測器和致動器 | zh_TW |
| dc.title | Porous Nylon with Electro-Active Dopants as Flexible Sensors and Actuators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 施文彬(Wen-Pin Shih) | |
| dc.contributor.oralexamcommittee | 胡毓忠(Yuh-Chung Hu),李其源(Chi-Yuan Lee),林沛群(Pei-Chun Lin) | |
| dc.subject.keyword | 複合高分子,多孔隙高分子,觸覺感測陣列,溫度感測陣列,溼度感測器,高分子致動器,可撓性元件, | zh_TW |
| dc.subject.keyword | composite polymer,porous polymer,tactile sensor array,temperature sensor array,moisture sensor,polymer actuator,flexible device, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-02-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| Appears in Collections: | 應用力學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 1.33 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
