請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27035完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫(Kai-Wun Yeh) | |
| dc.contributor.author | Yih-Feng Hsieh | en |
| dc.contributor.author | 謝懿風 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:54:14Z | - |
| dc.date.available | 2008-02-18 | |
| dc.date.copyright | 2008-02-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-02-04 | |
| dc.identifier.citation | 邱崇益 (2005) 過氧化氫酶家族在文心蘭假球莖內之功能性研究。台大植物科學研究所碩士論文。
Abeles, F.B., Dunn, L.J., Morgens, P., Callahan, A., Dinterman, R.E., and Schmidt, J. (1988). Induction of 33-kD and 60-kD Peroxidases during Ethylene-Induced Senescence of Cucumber Cotyledons. Plant physiology 87, 609-615. Agrawal, G.K., Rakwal, R., Jwa, N.S., and Agrawal, V.P. (2002). Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283, 227-236. Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. (2000). Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes & development 14, 2085-2096. Arroyo, A., Bossi, F., Finkelstein, R.R., and Leon, P. (2003). Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant physiology 133, 231-242. Baker, S.S., Wilhelm, K.S., and Thomashow, M.F. (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant molecular biology 24, 701-713. Benhamou, N., Joosten, M.H., and De Wit, P.J. (1990). Subcellular Localization of Chitinase and of Its Potential Substrate in Tomato Root Tissues Infected by Fusarium oxysporum f. sp. radicis-lycopersici. Plant physiology 92, 1108-1120. Bergey, D.R., Howe, G.A., and Ryan, C.A. (1996). Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci U S A 93, 12053-12058. Bergey, D.R., Orozco-Cardenas, M., de Moura, D.S., and Ryan, C.A. (1999). A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci U S A 96, 1756-1760. Bindschedler, L.V., Dewdney, J., Blee, K.A., Stone, J.M., Asai, T., Plotnikov, J., Denoux, C., Hayes, T., Gerrish, C., Davies, D.R., Ausubel, F.M., and Paul Bolwell, G. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47, 851-863. Birkenmeier, G.F., and Ryan, C.A. (1998). Wound signaling in tomato plants. Evidence that aba is not a primary signal for defense gene activation. Plant physiology 117, 687-693. Bishop, P.D., Makus, D.J., Pearce, G., and Ryan, C.A. (1981). Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci U S A 78, 3536-3540. Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T.M., Mueller, M.J., Xia, Z.Q., and Zenk, M.H. (1995). The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci U S A 92, 4099-4105. Bolwell, G.P., Butt, V.S., Davies, D.R., and Zimmerlin, A. (1995). The origin of the oxidative burst in plants. Free radical research 23, 517-532. Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743. Constabel, C.P., Bergey, D.R., and Ryan, C.A. (1995). Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci U S A 92, 407-411. Constabel, C.P., Yip, L., and Ryan, C.A. (1998). Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant molecular biology 36, 55-62. Cote, F., and Hahn, M.G. (1994). Oligosaccharins: structures and signal transduction. Plant molecular biology 26, 1379-1411. Creelman, R.A., and Mullet, J.E. (1997). Biosynthesis and Action of Jasmonates in Plants. Annu Rev Plant Physiol Plant Mol Biol 48, 355-381. Creelman, R.A., Tierney, M.L., and Mullet, J.E. (1992). Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A 89, 4938-4941. Curtis, M.D., Rae, A.L., Rusu, A.G., Harrison, S.J., and Manners, J.M. (1997). A peroxidase gene promoter induced by phytopathogens and methyl jasmonate in transgenic plants. Mol Plant Microbe Interact 10, 326-338. Dayan, F.E., Rimando, A.M., Duke, S.O., and Jacobs, N.J. (1999). Thiol-dependent degradation of protoporphyrin IX by plant peroxidases. FEBS letters 444, 227-230. de Marco, A., Guzzardi, P., and Jamet, E. (1999). Isolation of tobacco isoperoxidases accumulated in cell-suspension culture medium and characterization of activities related to cell wall metabolism. Plant physiology 120, 371-382. Delessert, C., Wilson, I.W., Van Der Straeten, D., Dennis, E.S., and Dolferus, R. (2004). Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant molecular biology 55, 165-181. Doares, S.H., Syrovets, T., Weiler, E.W., and Ryan, C.A. (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92, 4095-4098. Espelie, K.E., and Kolattukudy, P.E. (1985). Purification and characterization of an abscisic acid-inducible anionic peroxidase associated with suberization in potato (Solanum tuberosum). Archives of biochemistry and biophysics 240, 539-545. Espelie, K.E., Franceschi, V.R., and Kolattukudy, P.E. (1986). Immunocytochemical Localization and Time Course of Appearance of an Anionic Peroxidase Associated with Suberization in Wound-Healing Potato Tuber Tissue. Plant physiology 81, 487-492. Eulgem, T., Rushton, P.J., Schmelzer, E., Hahlbrock, K., and Somssich, I.E. (1999). Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. The EMBO journal 18, 4689-4699. Farmer, E.E., and Ryan, C.A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A 87, 7713-7716. Finkelstein, R.R., Wang, M.L., Lynch, T.J., Rao, S., and Goodman, H.M. (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054. Gazaryan, I.G., and Lagrimini, L.M. (1996). Purification and unusual kinetic properties of a tobacco anionic peroxidase. Phytochemistry 41, 1029-1034. Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., and Thomashow, M.F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16, 433-442. Gundlach, H., Muller, M.J., Kutchan, T.M., and Zenk, M.H. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A 89, 2389-2393. Hammerschmidt, R., and Dann, E.K. (1999). The role of phytoalexins in plant protection. Novartis Foundation symposium 223, 175-187; discussion 188-190. Harrison, S.J., Mott, E.K., Parsley, K., Aspinall, S., Gray, J.C., and Cottage, A. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant methods 2, 19. Herde, O., Atzorn, R., Fisahn, J., Wasternack, C., Willmitzer, L., and Pena-Cortes, H. (1996). Localized Wounding by Heat Initiates the Accumulation of Proteinase Inhibitor II in Abscisic Acid-Deficient Plants by Triggering Jasmonic Acid Biosynthesis. Plant physiology 112, 853-860. Hildmann, T., Ebneth, M., Pena-Cortes, H., Sanchez-Serrano, J.J., Willmitzer, L., and Prat, S. (1992). General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4, 1157-1170. Hinman, R.L., and Lang, J. (1965). Peroxidase-Catalyzed Oxidation of Indole-3-Acetic Acid. Biochemistry 4, 144-158. Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., and Matsui, H. (2001). A large family of class III plant peroxidases. Plant & cell physiology 42, 462-468. Hiraga, S., Ito, H., Sasaki, K., Yamakawa, H., Mitsuhara, I., Toshima, H., Matsui, H., Honma, M., and Ohashi, Y. (2000a). Wound-induced expression of a tobacco peroxidase is not enhanced by ethephon and suppressed by methyl jasmonate and coronatine. Plant & cell physiology 41, 165-170. Hiraga, S., Ito, H., Yamakawa, H., Ohtsubo, N., Seo, S., Mitsuhara, I., Matsui, H., Honma, M., and Ohashi, Y. (2000b). An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon. Mol Plant Microbe Interact 13, 210-216. Howe, G.A., Lightner, J., Browse, J., and Ryan, C.A. (1996). An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8, 2067-2077. Hu, X.Y., Neill, S.J., Cai, W.M., and Tang, Z.C. (2004). Induction of defence gene expression by oligogalacturonic acid requires increases in both cytosolic calcium and hydrogen peroxide in Arabidopsis thaliana. Cell research 14, 234-240. Huijser, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E., and Smeekens, S. (2000). The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J 23, 577-585. Ishige, F., Mori, H., Yamazaki, K., and Imaseki, H. (1993). Identification of a basic glycoprotein induced by ethylene in primary leaves of azuki bean as a cationic peroxidase. Plant physiology 101, 193-199. Ito, H., Hiraga, S., Tsugawa, H., Matsui, H., Honma, M., Otsuki, Y., Murakami, T., and Ohashi, Y. (2000). Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Plant Sci 155, 85-100. Kawaoka, A., Kawamoto, T., Sekine, M., and Shinmyo, A. (1994a). Induction of horseradish peroxidase isozyme by wounding. Annals of the New York Academy of Sciences 721, 248-249. Kawaoka, A., Kawamoto, T., Sekine, M., Yoshida, K., Takano, M., and Shinmyo, A. (1994b). A cis-acting element and a trans-acting factor involved in the wound-induced expression of a horseradish peroxidase gene. Plant J 6, 87-97. Kawaoka, A., Kaothien, P., Yoshida, K., Endo, S., Yamada, K., and Ebinuma, H. (2000). Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J 22, 289-301. Kay, L.E., and Basile, D.V. (1987). Specific Peroxidase Isoenzymes Are Correlated with Organogenesis. Plant physiology 84, 99-105. Kim, K.Y., Kwon, S.Y., Lee, H.S., Hur, Y., Bang, J.W., and Kwak, S.S. (2003). A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant molecular biology 51, 831-838. Klimyuk, V.I., Carroll, B.J., Thomas, C.M., and Jones, J.D. (1993). Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3, 493-494. Klotz, K.L., Liu, T.T., Liu, L., and Lagrimini, L.M. (1998). Expression of the tobacco anionic peroxidase gene is tissue-specific and developmentally regulated. Plant molecular biology 36, 509-520. Koch, K.E. (1996). Carbohydrate-Modulated Gene Expression in Plants. Annu Rev Plant Physiol Plant Mol Biol 47, 509-540. Kolattukudy, P.E. (1980). Biopolyester Membranes of Plants: Cutin and Suberin. Science (New York, N.Y 208, 990-1000. Kristensen, B.K., Bloch, H., and Rasmussen, S.K. (1999). Barley coleoptile peroxidases. Purification, molecular cloning, and induction by pathogens. Plant physiology 120, 501-512. Kuo, T.M., Pearce, G., and Ryan, C.A. (1984). Isolation and characterization of proteinase inhibitor I from etiolated tobacco leaves. Archives of biochemistry and biophysics 230, 504-510. Laby, R.J., Kincaid, M.S., Kim, D., and Gibson, S.I. (2000). The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23, 587-596. Lagrimini, L.M. (1991). Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase. Plant physiology 96, 577-583. Lagrimini, L.M., and Rothstein, S. (1987). Tissue Specificity of Tobacco Peroxidase Isozymes and Their Induction by Wounding and Tobacco Mosaic Virus Infection. Plant physiology 84, 438-442. Lagrimini, L.M., Bradford, S., and Rothstein, S. (1990). Peroxidase-Induced Wilting in Transgenic Tobacco Plants. Plant Cell 2, 7-18. Lagrimini, L.M., Joly, R.J., Dunlap, J.R., and Liu, T.T. (1997a). The consequence of peroxidase overexpression in transgenic plants on root growth and development. Plant molecular biology 33, 887-895. Lagrimini, L.M., Gingas, V., Finger, F., Rothstein, S., and Liu, T. (1997b). Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase. Plant physiology 114, 1187-1196. Lawton, M.A., and Lamb, C.J. (1987). Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Molecular and cellular biology 7, 335-341. Lee, S., Choi, H., Suh, S., Doo, I.S., Oh, K.Y., Choi, E.J., Schroeder Taylor, A.T., Low, P.S., and Lee, Y. (1999). Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant physiology 121, 147-152. Leung, J., Merlot, S., and Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759-771. Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chefdor, F., and Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science (New York, N.Y 264, 1448-1452. Lovrekovich, L., Lovrekovich, H., and Stahmann, M.A. (1968). Tobacco mosaic virus-induced resistance to Pseudomonas tabaci in tobacco. Phytopathology 58, 1034-1035. Mader, M., and Fussl, R. (1982). Role of Peroxidase in Lignification of Tobacco Cells : II. Regulation by Phenolic Compounds. Plant physiology 70, 1132-1134. Mader, M., and Amberg-Fisher, V. (1982). Role of Peroxidase in Lignification of Tobacco Cells : I. Oxidation of Nicotinamide Adenine Dinucleotide and Formation of Hydrogen Peroxide by Cell Wall Peroxidases. Plant physiology 70, 1128-1131. Malamy, J., Hennig, J., and Klessig, D.F. (1992). Temperature-Dependent Induction of Salicylic Acid and Its Conjugates during the Resistance Response to Tobacco Mosaic Virus Infection. Plant Cell 4, 359-366. McConn, M., Creelman, R.A., Bell, E., Mullet, J.E., and Browse, J. (1997). Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A 94, 5473-5477. McGurl, B., Pearce, G., and Ryan, C.A. (1994). Polypeptide signalling for plant defence genes. Biochemical Society symposium 60, 149-154. Menke, F.L., Champion, A., Kijne, J.W., and Memelink, J. (1999). A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. The EMBO journal 18, 4455-4463. Mohan, R., Bajar, A.M., and Kolattukudy, P.E. (1993a). Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Plant molecular biology 21, 341-354. Mohan, R., Vijayan, P., and Kolattukudy, P.E. (1993b). Developmental and tissue-specific expression of a tomato anionic peroxidase (tap1) gene by a minimal promoter, with wound and pathogen induction by an additional 5'-flanking region. Plant molecular biology 22, 475-490. Murata, Y., Pei, Z.M., Mori, I.C., and Schroeder, J. (2001). Abscisic acid activation of plasma membrane Ca(2+) channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13, 2513-2523. Nishiuchi, T., Shinshi, H., and Suzuki, K. (2004). Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. The Journal of biological chemistry 279, 55355-55361. Normanly, J., and Bartel, B. (1999). Redundancy as a way of life - IAA metabolism. Current opinion in plant biology 2, 207-213. O'Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., and Bowles, D.J. (1996). Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science (New York, N.Y 274, 1914-1917. Ohme-Takagi, M., and Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7, 173-182. Pearce, G., Johnson, S., and Ryan, C.A. (1993). Purification and characterization from tobacco (Nicotiana tabacum) leaves of six small, wound-inducible, proteinase isoinhibitors of the potato inhibitor II family. Plant physiology 102, 639-644. Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A. (1991). A Polypeptide from Tomato Leaves Induces Wound-Inducible Proteinase Inhibitor Proteins. Science (New York, N.Y 253, 895-897. Pena-Cortes, H., Willmitzer, L., and Sanchez-Serrano, J.J. (1991). Abscisic Acid Mediates Wound Induction but Not Developmental-Specific Expression of the Proteinase Inhibitor II Gene Family. Plant Cell 3, 963-972. Pena-Cortes, H., Fisahn, J., and Willmitzer, L. (1995). Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci U S A 92, 4106-4113. Pena-Cortes, H., Sanchez-Serrano, J., Prat, S., and Willmitzer, L. (1994). Signals involved in the wound-induced expression of the proteinase inhibitor II gene of potato. Biochemical Society symposium 60, 143-148. Pena-Cortes, H., Sanchez-Serrano, J.J., Mertens, R., Willmitzer, L., and Prat, S. (1989). Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U S A 86, 9851-9855. Quiroga, M., Guerrero, C., Botella, M.A., Barcelo, A., Amaya, I., Medina, M.I., Alonso, F.J., de Forchetti, S.M., Tigier, H., and Valpuesta, V. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant physiology 122, 1119-1127. Ramon, M., Rolland, F., Thevelein, J.M., Van Dijck, P., and Leyman, B. (2007). ABI4 mediates the effects of exogenous trehalose on Arabidopsis growth and starch breakdown. Plant molecular biology 63, 195-206. Razem, F.A., and Bernards, M.A. (2003). Reactive oxygen species production in association with suberization: evidence for an NADPH-dependent oxidase. Journal of experimental botany 54, 935-941. Reimers, P.J., Guo, A., and Leach, J.E. (1992). Increased Activity of a Cationic Peroxidase Associated with an Incompatible Interaction Between Xanthomonas oryzae pv oryzae and Rice (Oryza sativa). Plant physiology 99, 1044-1050. Roberts, E., and Kolattukudy, P.E. (1989). Molecular cloning, nucleotide sequence, and abscisic acid induction of a suberization-associated highly anionic peroxidase. Mol Gen Genet 217, 223-232. Rook, F., Corke, F., Card, R., Munz, G., Smith, C., and Bevan, M.W. (2001). Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26, 421-433. Rushton, P.J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K., and Somssich, I.E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. The EMBO journal 15, 5690-5700. Russell, D.J., Pearce, G., Ryan, C.A., and Satterlee, J.D. (1992). Proton NMR assignments of systemin. Journal of protein chemistry 11, 265-274. Schwartz, S.H., Leon-Kloosterziel, K.M., Koornneef, M., and Zeevaart, J.A. (1997). Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant physiology 114, 161-166. Schweizer, P., Buchala, A., and Metraux, J.P. (1997). Gene-Expression Patterns and Levels of Jasmonic Acid in Rice Treated with the Resistance Inducer 2,6-Dichloroisonicotinic Acid. Plant physiology 115, 61-70. Sequeira, L. (1983). Mechanisms of induced resistance in plants. Annual review of microbiology 37, 51-79. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current opinion in plant biology 3, 217-223. Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94, 1035-1040. Stratmann, J.W., and Ryan, C.A. (1997). Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc Natl Acad Sci U S A 94, 11085-11089. Sugimoto, K., Takeda, S., and Hirochika, H. (2000). MYB-related transcription factor NtMYB2 induced by wounding and elicitors is a regulator of the tobacco retrotransposon Tto1 and defense-related genes. Plant Cell 12, 2511-2528. Sugimoto, K., Takeda, S., and Hirochika, H. (2003). Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant J 36, 550-564. Tan, J., Wang, H.L., and Yeh, K.W. (2005). Analysis of organ-specific, expressed genes in Oncidium orchid by subtractive expressed sequence tags library. Biotechnology letters 27, 1517-1528. Thomashow, M.F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599. Thulke, O., and Conrath, U. (1998). Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J 14, 35-42. Vick, B.A., and Zimmerman, D.C. (1984). Biosynthesis of Jasmonic Acid by Several Plant Species. Plant physiology 75, 458-461. Xiong L, Lee H, Ishitani M, Zhu J.K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem. 277:8588-96. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. Yamakawa, H., Kamada, H., Satoh, M., and Ohashi, Y. (1998). Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. Plant physiology 118, 1213-1222. Zhou, L., Jang, J.C., Jones, T.L., and Sheen, J. (1998). Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci U S A 95, 10294-10299. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27035 | - |
| dc.description.abstract | 本實驗室先前從文心蘭扣減式EST cDNA library中得到九個Class Ⅲ的過氧化氫酶基因,有些成員於不同逆境因子(H2O2 、4°C低溫、ABA) 處理下,會被誘導表現;為了解其調控機制,本研究選殖了出文心蘭過氧化氫酶Ppox3-19之1364bp啟動子(peroxidase promoter),經分析發現有ABRE、GARE、以及與防禦反應相關之TC-rich repeats等cis-elements,將啟動子後接β-glucuronidase(GUS)報導基因並轉殖至阿拉伯芥,研究於不同處理(IAA、ABA、JA、GA3各100 μM,以及培養基中1 %、2 %、3 %、4 %、5 % 蔗糖)及不同大小啟動子片段啟動報導基因GUS之表現情形。於不同處理下,GUS組織染色結果顯示,報導基因皆會在七天大之阿拉伯芥轉殖株的保衛細胞表現,推測於啟動子上具有保衛細胞專一的cis-elements;另外,GUS螢光活性分析顯示,100 μM 之JA、GA3、ABA三種賀爾蒙會提高GUS表現,可達2至 2.5 nmole MU/min/mg protein。此外,隨著培養基中蔗糖濃度越高,GUS表現量會越多,其中5% 蔗糖的處理,GUS表現可達4.3 nmole MU/min/mg protein。
分析不同5’端長度之啟動子於阿拉伯芥轉殖株之表現,推測啟動子於-1343 bp~ -1291 bp處,應有保衛細胞專一性表現之cis-element;在-1291 bp 至-701 bp 除了具有葉肉細胞表現之cis-element 外,也可能具有增強GUS 表現量之cis-elements。 為了解Ppox3-19與ABA訊息傳遞之關係,將Ppox3-19全長轉殖入阿拉伯芥aba 及abi 突變株中,結果顯示abi1中無GUS表現,而abi2中仍有GUS表現於保衛細胞中,顯示Ppox3-19表現於保衛細胞需要ABI1存在於植物細胞中。 由阿拉伯芥轉殖株之結果,我們認為ABA 訊息傳遞路徑之參與是影響POX 基因啟動子於細胞中表現的重要因子,而POX啟動子的-1343 bp~ -1291 bp是決定保衛細胞專一性表達的重要cis-element。 | zh_TW |
| dc.description.abstract | Previous studies had shown that expression patterns under abiotic stress of nine class III peroxidase genes isolated from Oncidium substractive cDNA library. Here we cloned a 1.3 kb of Oncidium peroxidase promoter, named Ppox3-19 that was fused with a GUS reporter gene. By using transgenic Arabidopsis, the promoter activity was investigated under various concentrations of different hormones and sucrose. The results revealed that 7-day-old seedlings of transgenic Arabidopsis specifically exhibited higher GUS activities in guard cells in the presence of 5 % sucrose and 100 μM different hormones such as JA, GA3, and ABA. To further characterize the Ppox3-19, a series of deletions of the promoter fused with were established, and transformed into wild-type Arabidopsis. The results revealed that transgenic plants with the full-length of the promoter showed higher GUS activities in guard cells, rather than those with deletion constructs. We concluded that Ppox3-19 contains guard cell-specific cis-elements between -1341 bp and -1291 bp. The regulatory relationship between ABA and guard cells was also analyzed by transforming the Ppox3-19::GUS construct into Arabidopsis aba and abi mutants. Accordingly, it was found that GUS activities were detected in guard cells of abi2 but not in abi1, which indicates that Ppox3-19 be involved in downstream of ABI1 signaling. Thus, the promoter activity of the peroxidase pox3-19 by higher concentration (> 100 μM) of ABA, and a guard cell-specific cis-element may be present in the promoter region from -1343 bp to -1291bp. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:54:14Z (GMT). No. of bitstreams: 1 ntu-97-R94b42007-1.pdf: 2038710 bytes, checksum: cc874fb612355eef458dc2f1a8a946c5 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書……………………………i 致謝…………………………………………ii 目錄…………………………………………iii 中文摘要……………………………………v 英文摘要……………………………………vi 第一章 前言 第一節 植物防禦機制 …………………1 第二節 過氧化氫酶分類及功能 ………5 第三節 過氧化氫酶之啟動子………………9 第四節 論文之研究目的………………10 第二章 材料與方法 一、 實驗材料…………………………12 二、 實驗方法 第一節 文心蘭過氧化氫酶啟動子(Ppox3-19)之釣取…………13 第二節 載體之構築……………………………………………..23 第三節 基因槍法(particle bombardment)轉殖洋蔥表皮細胞 ………………………………………………………27 第四節 農桿菌之轉型與鑑定…………………………………31 第五節 阿拉伯芥之基因轉殖與轉殖株之鑑定………………32 第六節 阿拉伯芥轉殖株中過氧化氫酶啟動子(Ppox3-19)及其他缺失片段之分析……………………………………………35 第三章 結果 第一節 釣取文心蘭過氧化氫酶Ppox3-19 …………39 第二節 POX基因啟動子(Ppox3-19)載體之構築及轉殖洋蔥表皮細胞……………40 第三節 農桿菌之轉型與鑑定…………………………………40 第四節 阿拉伯芥之基因轉殖與轉殖株之鑑定………………40 第五節 阿拉伯芥轉殖株於植物賀爾蒙誘導處理之GUS螢光活性 分析…………………………41 第六節 不同蔗糖濃度對阿拉伯芥轉殖株之GUS螢光活性 分析…………………………42 第七節 阿拉伯芥轉殖株中過氧化氫酶基因啟動子(Ppox3-19)及其他缺失片段之GUS活性分析…………………………42 第八節 Ppox3-19於阿拉伯芥ABA突變株之GUS螢光活性 分析……………………………………………………43 第四章 討論…………………………………………45 參考文獻…………………………………………………50 圖表………………………………………………………70 附錄………………………………………………………92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 過氧化氫酶 | zh_TW |
| dc.subject | 文心蘭 | zh_TW |
| dc.subject | 啟動子 | zh_TW |
| dc.subject | peroxidase | en |
| dc.subject | Oncidium | en |
| dc.subject | promoter | en |
| dc.title | 文心蘭南西品系過氧化氫酶啟動子Ppox3-19基因調控之功能分析 | zh_TW |
| dc.title | Functional studies of promoter activities from Oncidium Gower Ramsey peroxidase gene in Arabidopsis thaliana. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鵬林(Pung-Ling Huang),吳克強(Keqiang Wu),謝旭亮(Hsu-Liang Hsieh),陳仁治(Jen-Chih Chen) | |
| dc.subject.keyword | 文心蘭,過氧化氫酶,啟動子, | zh_TW |
| dc.subject.keyword | Oncidium,peroxidase,promoter, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-02-04 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
