請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27023完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉(Hsin-Chia Lu) | |
| dc.contributor.author | Ying-Hsiung Hsieh | en |
| dc.contributor.author | 謝穎雄 | zh_TW |
| dc.date.accessioned | 2021-06-12T17:54:01Z | - |
| dc.date.available | 2008-03-27 | |
| dc.date.copyright | 2008-03-27 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-02-05 | |
| dc.identifier.citation | [1] Philip Garrou, “Wafer Level Chip Scale Packaging (WL-CSP): An Overview,” IEEE Transactions on Advanced Packaging, vol. 23, no. 2, pp. 198-205, May 2000.
[2] Rao R. Tummala, “Fundamentals of Microsystems Packaging,” McGraw-Hill, 2001. [3] http://www.pb.izm.fhg.de/hdi/010_technologies/030_wlp/wlp_image1.html [4] http://www.chipscalereview.com/issues/0701/techForum01_01.html [5] http://www.future-fab.com/documents.asp?grID=217&d_ID=660 [6] A. Bahdi et al., “Shellcase—A true miniature integrated circuit package,” in Proc. Int. Flip Chip, BGA Symp., San Jose, CA, 1995, p.244. [7] T. J. Spencer, P. J. Joseph, T. H. Kim, M. Swaminathan, P. A. Kohl, “Air-gap transmission lines on organic substrates for low-loss interconnects,” vol. 55, no. 9,pp. 1919-1925, IEEE Trans. Microwave Theory Tech., Sep. 2007. [8] H. Henri, S. Gonzague, V. Matthieu, C. Alain, D. Gilles, ” Ultra low loss transmission lines on low resistivity silicon substrate,” IEEE MTT-S Int. Symp. Dig., vol.3, pp. 1809-1812, June 2006. [9] Eun-Chul Park, Yun-Suk Choi, Byeong-Il Kim, Jun-Bo Yoon, Euisik Yoon, “A low loss MEMS transmission line with shielded ground,” IEEE Micro Electro Mechanical Systems, pp. 136- 139, Jan. 2003. [10] J. Kim, B. Jung, P. Cheung, and R. Harjani, “Novel CMOS low loss transmission line structure,” IEEE Radio and Wireless Conf., pp. 235-238, Sept. 2004. [11] Jun-De Jin, Shawn S. H. Hsu1, Ming-Ta Yang, and Sally Liu, “Low-loss single and differential semi-coaxial interconnects in standard CMOS process,” IEEE MTT-S Int. Symp. Dig., pp. 420-423, June 2006. [12] Tsung-Yi Chou, “4-Gbps on-chip interconnect circuit in TSMC 0.18 μm technology,” M.S. thesis, National Taiwan University, Taipei, Taiwan, Jan. 2007. [13] Yukihisa Yoshida, Tamotsu Nishino, Jiwei Jiao, Sang-Seok Lee, Yoshiyuki Suehiro, Ken’ichi Miyapchi, Tatsuya Fukami, Masafumi Kimata and Osami Ishida, “A Novel Grounded Coplanar Waveguide With Cavity Structure,” 2003 IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, pp. 140- 143, Jan. 2003. [14] Van Tuyen Vo, Lokesh Krishnamurthy, I Qing Sun, and Ali A. Rezazadeh, ”3-D low-loss coplanar waveguide transmission lines in multilayer MMICs,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 6, pp. 2864- 2871, June 2006. [15] Luuk F. Tiemeijer, Ralf M. T. Pijper, Ramon J. Havens, and Olivier Hubert, ”Low-loss patterned ground shield interconnect transmission lines in advanced IC processes,” IEEE Trans. Microwave Theory Tech., vol. 55, no.3, pp. 561-570, March 2007. [16] David M. Pozar, Microwave Engineering, John Wiley & Sons, Inc., 2005. [17] http://eesof.tm.agilent.com/pdf/si_seminar_2006_eye_diagrams.pdf [18] 新電子科技雜誌, http://www.mem.com.tw [19] Clayton R. Paul, Introduction to Electromagnetic Compatibility, 2nd, John Wiley& Sons, Inc. 2005. [20] SI8000, http://www.polarinstruments.com/ [21] http://www.picoprobe.com/dual.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/27023 | - |
| dc.description.abstract | 本論文以一種新的傳輸線架構-挖槽的半同軸纜線為基礎,實作於環苯丁烷的材質上。並同時與微帶線及半同軸纜線作比較,探討其單端與差動對時的損耗優劣及其他特性,並研究此種架構與微帶線對於傳輸線的耦合現象之優劣。模擬及量測結果的顯示,在相同的線寬下,開槽線具有較低的損耗,在差動情況下,模擬結果則未顯示有明顯的差異。 | zh_TW |
| dc.description.abstract | This work is based on a new structure of transmission line- slotted semi-coaxial line and made on BCB substrate. We compared attenuation constant and other properties with microstrip line and semi-coaxial line in single-ended and differential mode. We also compared the coupling effect between proposed transmission lines and conventional microstrip line. The single-ended slotted semi-coaxial line shows lower attenuation constant by simulation and measurement under same line dimensions. However, differential slotted semi-coaxial line does not show clear improvement in attenuation constant. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-12T17:54:01Z (GMT). No. of bitstreams: 1 ntu-97-R94943080-1.pdf: 4486177 bytes, checksum: 07f284e251e28383b979c9b1e155857f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Motivation 1 1.2 Benzocyclobutene (BCB) 1 1.3 Wafer Level Chip Scale Package (WLCSP) 4 1.3.1 Advantage of WLP [2] 6 1.3.1.1 Size benefits 6 1.3.1.2 Cost benefits 7 1.3.2 Disadvantage of WLP 7 1.3.2.1. Incompatibility of PWB 7 1.3.2.2 Bad ICs packaged 7 1.3.2.3 Solder ball interconnect for wafer-level packaging 8 1.3.3 WLP process technologies 8 1.3.3.1 Redistribution of WLP Technology 9 1.3.3.2 Encapsulated WLP technology 10 1.3.3.3 Flex tape WLP technologies 12 1.4 Summary 13 Chapter 2 Literature survey on low loss transmission lines 15 2.1 Transmission lines with shielded ground 15 2.1.1 Air-gap transmission lines 15 2.1.2 Ground bridge 17 2.1.3 A low loss MEMS transmission line with shielded ground 19 2.2 Semi-circular line series 20 2.2.1 Semi-circular GCPW and V-shaped GCPW [10] 20 2.2.2 Semi-coaxial lines 22 2.2.3 Slotted differential semi-coaxial line [12] 24 2.3 A grounded coplanar waveguide with air cavity on a silicon substrate 26 2.4 3-D coplanar waveguide transmission line 28 2.5 Patterned ground shield interconnect transmission lines 29 2.6 Comparison on previous low loss transmission lines 31 Chapter 3 Foundation of Transmission Line 35 3.1 RLGC Model of Transmission Line 35 3.1.1 The RLGC model [16] 35 3.1.2 Converting scattering matrix to RLGC Model 37 3.2 Eye diagram parameters 40 3.3 Coupled capacitor Cm and inductor Lm for differential transmission line 46 3.3.1 Extended RLGC model for differential transmission line 46 3.3.2 Equation for TDR 51 Chapter 4 Simulation of Transmission Line 55 4.1 Simulation of single-ended transmission lines 55 4.1.1 Structure of single lines 55 4.1.2 Simulation results of single-ended lines 58 4.1.3 The analysis of alpha by RG and Zc 64 4.2 Simulation results of differential lines 65 4.2.1 Structure of differential lines 65 4.2.2 Simulation results of differential lines 67 Chapter 5 Measurement of Transmission Lines 73 5.1 Preparation of measurement 73 5.1.1 Process of measurement. 73 5.1.2 TRL calibration. 74 5.2 Description of whole layout. 77 5.2.1 Layout of single-ended transmission lines and calibration 77 5.2.2 Layout of differential transmission lines and calibrators 82 5.2.3 Layout of coupled transmission lines. 90 5.3 The measurement results of single-ended transmission lines 93 Chapter 6 Conclusion 99 Reference 100 | |
| dc.language.iso | en | |
| dc.subject | 傳輸線 | zh_TW |
| dc.subject | 環苯丁烷 | zh_TW |
| dc.subject | 半同軸纜線 | zh_TW |
| dc.subject | Benzocyclobutene | en |
| dc.subject | Transmission line | en |
| dc.subject | semi-coaxial line | en |
| dc.title | BCB製程上傳輸線特性之研究 | zh_TW |
| dc.title | The study of transmission line properties on BCB process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林宗賢(Tsung-Hsien Lin),盧奕璋(Yi-Chang Lu),林坤佑(Kun-You Lin) | |
| dc.subject.keyword | 傳輸線,半同軸纜線,環苯丁烷, | zh_TW |
| dc.subject.keyword | Transmission line,semi-coaxial line,Benzocyclobutene, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-02-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
