Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26995
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳朝?
dc.contributor.authorChih-Ching Yangen
dc.contributor.author楊芝青zh_TW
dc.date.accessioned2021-06-12T17:53:31Z-
dc.date.available2008-08-13
dc.date.copyright2008-08-13
dc.date.issued2008
dc.date.submitted2008-03-11
dc.identifier.citationAnders HJ, Banas B & Schlondorff D (2004). Signaling danger: Toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15, 854–867.
Asaba K, Tojo A, Onozato ML, et al. (2005). Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 67, 1890–1898.
Ascher P, Nowak L. (1988).The role of divalent cations in the N-methyl-d-aspartate responses of mouse central neurons in culture. J Physiol 399: 247 266.
Avshalumov MV, Rice ME. (2002) NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices. J Neurophysiol 87: 2896-2903.
Babior BM. (1992) The respiratory burst oxidase. Adv Enzymol Relat Areas Mol Biol 65: 49–95.
Baker MA, Lane DJR, Ly JD et al. (2004) VDAC1 is a transplasma membrane NADH-ferricyanide reductase. J Biol Chem 279: 4811–4819.
Barsotti G, Giovannetti S. (1975) Removal by dialysis of methylguanidine from body fluids. Proc Eur Dial Transplant Assoc 11:105–111
Baue AE, Durham R & Faist E (1998). Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock 10, 79–89.
Beal AL & Cerra FB (1994). Multiple organ failure syndrome in the 1990s. Systemic inflammatory respons‘e and organ dysfunction. JAMA 271, 226–33.
Besarab A, Soman S: (2006) Anemia management in chronic heart failure: Lessons learnt from chronic kidney disease. Kidney Blood Press Res 28: 363–371.
Biber J, Stieger B, Haase W, Murer H. (1981) A high yield preparation for rat kidney brush border membranes. Different behaviour of lysosomal markers. Biochim Biophys Acta 647: 169–176.
Bonomin M, Stuard S, Carreno MP, et al. (1997l) Neutrophil reactive oxygen species production during hemodialysis: Role of activated platelet adhesion to neutrophils through P-selectin. Nephron 75: 402–411.
Borgese N, Pietrini G, Gaetani S. (1987) Concentration of NADH-cytochrome b5 reductase in erythrocytes of normal and methemoglobinemic individuals measured with a quantitative radioimmunoblotting assay. J Clin Invest 80: 1296–1302.
Brandes RP, Koddenberg G, GwinnerW, et al. (1999). Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia. Hypertension 33, 1243–1249.
Calo LA, Stanic L, Davis PA et al. (2003) Effect of epoetin on HO-1 mRNA level and plasma antioxidants in hemodialysis patients. Int J Clin Pharmacol Ther 41: 187–192.
Cartmell J, Schoepp DD. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75: 889–907.
Cavarocchi NC, England MD, Schaff HV, et al. (1986) Oxygen free radical generation during cardiopulmonary bypass: Correlation with complement activation. Circulation 74:III130–III133.
Chen CF, Tsai SY, Ma MC et al. (2003). Hypoxic preconditioning enhances renal superoxide dismutase in rats. J Physiol 552, 561–569.
Chen CF, Chen LW, Chien CT, et al. Renal function of substance P in rats chronically exposed to hypoxia. Aviat Space Environ Med 68:705-709, 1997
Chien CT, Chien HF, Cheng YJ, et al. (2000) Renal afferents signaling diuretic response is impaired in streptozotocin-induced diabetic rats. Kidney Int 57: 203–214.
Chien CT, Fu TC, Wu MS, et al: (1997) Attenuated response of renal mechanoreceptors to volume expansion in chronically hypoxic rats. Am J Physiol Renal Physiology 273: F712–F717.
Chien CT, Lee PH, Chen CF, et al. (2001) De novo demontration and co-localization of free radical production and apoptosis formation in rat kidney subjected to ischemic/reperfusion. J Am Soc Nephrol 12: 973-982.
Chien CT, Chang WT, Chen HW, et al. (2004) Ascorbate supplement reduces oxidative stress in dyslipidemic patients undergoing apheresis. Arterioscler Thromb Vasc Biol 24:1111–7.
Chien CT, Chang TC, Tsai CY, et al. (2005) Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant 5: 1194-1203.
Choi DW. Excitotoxic cell death. (1992) J Neurobiol 23: 1261–1276.
Claster S, Tsun-Yee Chiu D et al. (1984) Neutrophils mediate lipid peroxidation in human red cells. Blood 64: 1079–1084.
Clermont G, Lecour S, Cabanne JF et al. (2001) Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients. Free Radic Biol Med 31: 233–241.
Crespi F, Lazzarini C, Andreoli M, et al.. (2000) Voltametric and functional evidence that N-methyl-D-aspartate and substance P mediated rat vascular relaxation via nitrogen monoxide release. Neurosci Lett 287: 219–222.
Cohen RI, Hassell AM, Marzouk K, et al. (2001). Renal effects of nitric oxide in endotoxemia. Am J Respir Crit Care Med 164, 1890–1895.
Conn PJ, Pin JP. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37: 205–237.
Cunningham PN, Wang Y, Guo R, et al. (2004). Role of Toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol 172, 2629-2635.
Cunningham PN, Dyanov HM, Park P et al. (2002). Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J Immunol 168, 5817–5823.
D’Agnillo F, Alayash AI. (2001) Redox cycling of diaspirin cross-linked hemoglobin induces G2/M arrest and apoptosis in cultured endothelial cells. Blood 98: 3315–3323.
Danielski M, Ikizler TA, McMonagle E, et al. (2003) Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving aintenance hemodialysis therapy. Kidney Int 42: 286 –294.
De Araujo M, Andrade L, Coimbra TM, et al. (2005) Magnesium supplementation combined with N-acetylcysteine protects against postischemic acute renal failure. J Am Soc Nephrol 16: 3339-3349.
de Groot H & Littauer A (1989). Hypoxia, reactive oxygen, and cell injury. Free Radic Biol Med 6, 541-551.
Deng A, Valdivielso JM, Munger KA, et al. (2002) Vasodilatory N-Methyl-D-Aspartate receptors are constitutively expressed in rat kidney. J Am Soc Nephrol 13: 1381–1384.
De Nicola L, Blantz RC, Gabbai FB. (1992) Nitric oxide and angiotensin II: Glomerular and tubular interactions in the rat. J Clin Invest 89: 1248–1256.
Descamps-Latscha B, Goldfarb B, Nguyen AT, et al:(1991) Establishing the relationship between complement activation and stimulation of phagocyte oxidative metabolism in hemodialyzed patients: A randomized prospective study. Nephron 59:279–285,
Descamps-Letscha B, Herbelin A, Nguyen AT et al. (1995) Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J Immunol 154: 882–892.
Dingledine R, Borges K, Bowie D, et al. (1999) The glutamate receptor ion channels. Pharmacol Rev 51: 8–61.
Dobashi K, Ghosh B, Orak JK, et al. (2000) Kidney ischemia-reperfusion: Modulation of antioxidant defenses. Mol Cell Biochem 205: 1–11.
Donohoe JF, Venkatachalam MA, Bernald DB, et al.. (1978) Tubular leakage and obstruction after renal ischemia: Structure-Functional correlations. Kidney Int 13: 208-222.
East SJ, Garthwaite J. (1991) NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine-nitric oxide pathway. Neurosci Lett 123: 12–19.
Eharas S, Ueda M, Naruko T, et al: (2001) Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 103:1955–1960.
Esterbauer H, Gebicki J, Puhl H, et al: (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13:341–390.
Erdö SL. (1991) Excitatory amino acid receptors in the mammalian periphery. Trends Pharmacol Sci 2: 426–429.
Fandrey J, Frede S, Ehleben W et al. (1997) Cobalt chloride and desferrioxamine antagonize the inhibition of erythropoietin production by reactive oxygen species. Kidney Int 51: 492–496.
Faraci FM, Breese KR. (1993) Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ Res 72: 476–480.
Ferguson M, Bell C (1988) Ultrastructural localization and characterization of sensory nerves in rat kidney. J Comp Neurol 247: 9–16.
Fogelman AM, Shechter I, Seager J, et al. (1980) Malondialdehyde alteration of low density lipoprotein leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A 77:2214–8.
Freedman JE, Loscalzo J, Benott SE, et al: (1996) Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 97:979–987.
Fry DE, Pearlstein L, Fulton R L et al. (1989). Multiple system organ failure: The role of uncontrolled infection. Arch Surg 89, 517–23.
Fujii S, Zhang L, Igarashi J et al. (2003). l-Arginine reverses p47phox and gp91phox expression induced by high salt in Dahl rats. Hypertension 42, 1014–1020.
Futh R, Herder C, Forster S, et al. (2004) Evaluation of diagnostic relevance of mRNAconcentrations in peripheral blood: predictive value for mortality in hemodialysis patients. Cytokine 27:166 –72.
Galle J, Bassenge R, Busse R. (1990) Oxidized low-density lipoproteins potentiate vasoconstrictions to various agonists by direct interaction with vascular smooth muscle. Circ Res 66:1287–93.
Galle J, Schneider R, Heinloth A, et al (1999) Lp(a) and LDL induce apoptosis in human endothelial cells and in abbit aorta: role of oxidative stress. Kidney Int 55: 1450 –1461.
Galli F, Benedetti S, Floridi A, et al. (2005) Glycoxidation and inflammatory markers in patients on treatment with PMMA-based protein-leaking dialyzers. Kidney Int 67:750 –9.
Garthwaite J, Garthwaite G, Palmer RM, et al. (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172: 413–416.
Genever PG, Wilkinson DJ, Patton AJ, et al. (1999) Expression of a functional N-methyl-D-aspartate-type glutamate receptor by bone marrow megakaryocytes. Blood 93: 2876–2883.
Giardini O, Taccone-Gallucci M, Lubrano R et al. (1984) Evidence of red blood cell membrane lipid peroxidation in hemodialysis patients. Nephron 36: 235–237.
Girndt M, Kaul H, Sester U et al. (2002) Anti-inflammatory interleukin-10 genotype protects dialysis patients from cardiovascular events. Kidney Int 62: 949–955.
Glaumann G, Glaumann H, Trump BF. (1977) Studies of cell recovery from injury. III. Ultrastructural studies of the recovery of pars recta of the proximal tubule (P3) segment of the rat kidney from temporary ischemia. Virchows Arch 25: 281-308..
Gonzalez-Cadavid NF, Ryndin I, Vernet D, et al. (2000) Presence of NMDA receptor subunits in the male lower urogenital tract. J Androl 21: 566–578.
Griendling KK, Sorescu D & Ushio-Fukai M (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res 86, 494–501.
Gullo A (1999). Sepsis and organ dysfunction/failure. An overview. Minerva Anestesiol 65, 529-40.
Guo R, Wang Y, Minto AW, et al. (2004). Acute renal failure in endotoxemia is dependent on caspase activation. J Am Soc Nephrol 15, 3093-3102.
GwinnerW, Deters-Evers U, Brandes RP, et al. (1998). Antioxidant-oxidant balance in the glomerulus and proximal tubule of the rat kidney. J Physiol 509, 599–606.
Happe RP, Roseboom W, Pierik AJ, et al (1997) Biological activation of hydrogen. Nature 385:126.
Hawkins CL, Davies MJ: (1999) Hypochlorite-induced oxidation of proteins in plasma: Formation of chloramines and nitrogen-centered radicals and their role in protein fragmentation. Biochem J 340: 539–548.
Hayashi H. (1995) Water regulating theory: Hayashi’s model. Explore 6:28–31.
Herbelin A, Nguyen AT, Zingraff J et al. (1990) Influence of uremia and hemodialysis on circulating interleukin-1 and tumor necrosis factor alpha. Kidney Int; 37: 116–125.
Himmelfarb J, Lazarus JM, Hakim RM. (1991) Reactive oxygen species production by monocytes and polymorphonuclear leukocytes during hemodialysis. Am J Kidney Dis 7:271–6.
Himmerfalb J, Hakim RM. (2002) Oxidative stress in uremia. Curr Opin Nephrol Hypertens 12: 593–598.
Himmelfarb J, Stenvinkel P, Ikizler TA, et al. (2003) The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62: 1524-1538..
Holgren R, Venge P, Daniselson BG: (1982) Neutrophil and eosinophil degranulation during hemodialysis are mediated by the dialysis membrane. Nephron 32:329–334.
Huang HS, Ma MC, Chen J et al. (2002). Changes in the oxidant–antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 167, 2584–2593.
Inagaki N, Kuromi H, Gonoi T, et al. (1995) Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9:686–691.
Isaac J, Tögel FE, Westenfelder C. (2007) Extent of glomerular tubularization is an indicator of the severity of experimental acute kidney injury in mice. Nephron Exp Nephrol 105:e33-40.
Ishii T, Moriyoshi K, Sugihara H, et al. (1993) Molecular characterization of the family of N-methyl-d-aspartate receptor subunits. J Biol Chem 268: 2836 2843.
Jialal I, Fuller CJ, Huet BA. (1995) The effect of_-tocopherol supplementation on LDL oxidation. A dose-response study. Arterioscler Thromb Vasc Biol 15:190–8.
Jung O, Schreiber JG, Geiger H, et al. (2004). gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 109, 1795–1801.
Junhui Zhang, Hong Qian, Peng Zhao, et al. (2006) Rapid Hypoxia Preconditioning Protects Cortical Neurons From Glutamate Toxicity Through d-Opioid Receptor. Stroke 37:1094-1099.
Kawanishi S, Caughey WS. (1985) Mechanism of electron transfer to coordinated dioxygen of oxyhemoglobins to yield peroxide and methemoglobin. Protein control of electron donation by aquopentacyanoferrate(II). J Biol Chem 260: 4622–4631.
Kawanishi S, Caughey WS. (1985) Mechanism of electron transfer to coordinated dioxygen of oxyhemoglobins to yield peroxide and methemoglobin. Protein control of electron donation by aquopentacyanoferrate(II). J Biol Chem 260: 4622–4631.
Khan RZ & Badr KF (1999). Endotoxin and renal function: perspectives to the understanding of septic acute renal failure and toxic shock. Nephrol Dial Transplant 14, 814-818.
Kim BS, Lim SW, Li C, et al. (2005). Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation 79, 1370–1377.
Kimmel PL, Phillips TM, Simmens SJ, et al. (1998) Immunologic function and survival in hemodialysis patients. Kidney Int 54:236–44.
Klahr S. (1997) Oxygen radicals and renal diseases. Miner Electrolyte Metab 23: 140–143,
Kobayashi SD, Voyich JM, Braughton KR, et al. (2003) Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. J Immunol 170: 3357–3368.
Krizbai IA, Deli MA, Pestenacz A, et al. (1998) Expression of glutamate receptors on cultured cerebral endothelial cells. J Neurosci Res 54: 814–819.
Kutnink MA, Hawkes WC, Schaus EE et al. (1987) An internal standard method for the unattended high-performance liquid analysis of ascorbic acid in blood components. Anal Biochem 166: 424–430.
Lai IR, Ma MC, Chen CF, et al..(2003) The effect of an intestinal ischemia-reperfusion injury on renal nerve activity among rats. Shock 19: 480-485.
Leach M, Frank S, Olbrich A, et al. (1998) Decline in the expression of copper/zinc superoxide dismutase in the kidney of rats with endotoxic shock: effects of the superoxide anion radical scavenger, tempol, on organ injury. Br J Pharmacol. 125(4):817-25.
Leung JC, Travis BR, Verlander JW, et al. (2002) Expression and development al regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am J Physiol Regul Integr Comp Physiol 283: R964–R971.
Leung JC, Marphis T, Craver RD, et al. (2004) Altered NMDA receptor expression in renal toxicity: Protection with a receptor antagonist. Kidney Int 66: 167-176..
Li Y, Nishimura T, Teruya K et al. (2002) Protective mechanism of reduced water against alloxan-induced pancreatic cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40: 139–149.
Lin AM, Dung SW, Chen CF, et al. (2003). Hypoxic preconditioning prevents cortical infarction by transient focal ischemia-reperfusion. Ann N Y Acad Sci 1993, 168-178.
Libetta C, Zucchi M, Gori E et al. (2004) Vitamin E-loaded dialyzer resets PBMC-operated cytokine network in dialysis patients. Kidney Int 65: 1473–1481.
Li JM, Mullen AM, Yun S, et al. (2002). Essential role of the NADPH oxidase subunit p47phox in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-α. Circ Res 90, 143–150.
Li Y, Nishimura T, Teruya K et al. (2002) Protective mechanism of reduced water against alloxan-induced pancreatic cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40: 139–149.
Lombardi G, Dianani C, Miglio G, et al. (2001) Characterization of ionotropic glutamate receptors in human lymphocytes. Br J Pharmacol 133: 936–944..
Lugon JR, Boim MA, Ramos OL, et al. (1989). Renal function and glomerular hemodynamics in male endotoxemic rats. Kidney Int 36, 570–575.
Lu YM, Yin HZ, Chiang J, et al. (1996) Ca2+-permeable AMPA/Kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J Neurosci 16: 5457–5465.
Macdougall IC. (2004) Could anti-inflammatory cytokine therapy improve poor treatment outcomes in dialysis patients? Nephrol Dial Transplant 19(Suppl 5): V73–V78.
Ma MC, Huang HS, Chien CT, et al. (2002a) Temporal decrease in renal sensory responses in rats after chronic ligation of bile duct. Am J Physiol Renal Physiol 138: 164-172.
Ma MC, Huang HS, Chen CF. (2002b) Impaired renal sensory responses after renal ischemia in the rat. J Am Soc Nephrol 13: 1872-1883.
Ma MC, Qian H, Ghassemi F, et al. (2005). Oxygen sensitive d-opioid receptor-regulated survival and death signals: Novel insights into neuronal preconditioning and protection. J Biol Chem 280, 16208-16218.
McLeod LL, Alayash AI. (1999) Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia–reoxygenation. Am J Physiol Heart Circ Physiol; 46: H92–H99.
Monyer H, Sprengel R, Schoepfer R, et al. (1992) Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 256: 1217 1221.
Moriyoshi M, Masu M, Ishii T, et al. (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31-37.
Muller C, Eisenbrand G, Gradinger M et al. (2004) Effects of hemodialysis, dialyser type and iron infusion on oxidative stress in uremic patients. Free Radic Res 38: 1093–1100.
Mydlik M, Derzsiova K, Racz O et al. (2001) A modified dialyzer with vitamin E and antioxidant defense parameters. Kidney Int Suppl 78: S144–S147.
Nagata O, Li WM, Sato A. (1995) Glutamate N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists administered into the brain stem depress the renal sympathetic reflex discharges evoked by single shock of somatic afferents in anesthetized rats. Neurosci Lett 201: 111–114..
Nakanishi S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13: 1031 – 1037.
Nakanishi K, Tajima F, Nakamura A, et al. (1995). Effects of hypobaric hypoxia on antioxidant enzymes in rats. J Physiol 489, 869-876.
Okuda M, Lee HC, Kumar C, et al (1992). Oxygen radical generation during ischemia-reperfusion in the isolated perfused rat liver monitored by enhanced chemiluminescence. Cir Shock 38, 228–237.
Olney JW. (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30: 47–71.
Orringer EP, Roer MES. (1979) An ascorbate-mediated transmembrane-reducing system of the human erythrocyte. J Clin Invest 63: 53–58.
Panichi V, Migliori M, De Pietro S, et al:)(2000) The link of biocompatibility to cytokine production. Kidney Int 58(Suppl 76):S96–S103.
Peng, Tianqing ; Lu, Xiangru; Feng, Qingping (2005). Pivotal Role of gp91phox-Containing NADH Oxidase in Lipopolysaccharide-Induced Tumor Necrosis Factor-[alpha] Expression and Myocardial Depression. Circulation 111, 1637-1644.
Pfafferott C, Neiselman J, Hochstein P. (1982) The effect of malonyldialdehyde on erythrocyte deformability. Blood 59: 12–15.
Pivovarova NB, Nguyen HV, Winters CA, et al. (2004) Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. J Neurosci 24: 5611-5622.
Poltorak A, He X, Smirnova I et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088.
Puddu GM, Cravero E, Arnone G, et al. (2005) Molecular aspects of atherogenesis: New insights and unsolved questions. J Biomed Sci 12: 839–853.
Quinn MT, Parthasarathy S, Fong LG, et al. (1987) Oxidatively modified lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A 84:2995– 8.
Reimer KA, Ganote CE, Jennings RB. (1972).Alteration in renal cortex following ischemic injury. III. Ultrastructure of proximal tubule after ischemia and autolysis. Lab Invest 26: 347-363.
Rodrigues Dias AC, Talman WT, Colombari E. (2001) Hemodynamic effects elicited by microinjection of glutamatergic agonists into NTS of conscious rats. Am J Physiol Heart Circ Physiol 281: 1026-1034.
Rolton HA, McConnell KN, Modi KS et al. (1989) A simple, rapid assay for plasma oxalate in uremic patients using oxalate oxidase, which is free from vitamin C interference. Clin Chim Acta 182: 247–254.
Said SI, Pakbaz H, Berisha HI, et al. (2000) NMDA receptor activation: critical role in oxidant tissue injury. Free Radic Biol Med 28: 1300–1302..
Schizukuda Y, Mallet RT, Lee SC et al. (1992). Hypoxic preconditioning of the ischemic canine myocardium. Cardiovas Res 26, 534-542.
Schoepp DD. (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299: 12–20.
Schoonbroodt S, Legrand-Poels S, Best-Belpomme M, et al. (1997) Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J 321:777– 85.
Schouten WE, Grooteman MP, Van Houte AJ, et al: (2000) Effects of dialyser and dialysate on the acute phase reaction in clinical bicarbonate dialysis. Nephrol Dial Transplant 15:379–384.
Schumer M, Colombel MC, Sawczuk IS, et al. (1992) Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 140: 831–838.
Scott EM. (1969) The relation of diaphorase of human erythrocytes to inheritance of methemoglobinemia. J Clin Invest 39: 1176–1179.
Sela S, Shurtz-Swirski R, Shapiro G, et al. (2001) Oxidative stress during hemodialysis:
effect of heparin. Kidney Int 78(suppl):S159–63.
Shen W, Zhang C, Zhang G. (2002) Nuclear factor kappaB activation is mediated by NMDA and non-NMDA receptor and L-type voltage-gated Ca(2+) channel following severe global ischemia in rat hippocampus. Brain Res 933: 23-30.
Shirahata S, Kabayama S, Nakano M et al. (1997) Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophysic Res Commun 234: 269–274.
Shiraishi Y, Nagai J, Murakami T, et al. (2000) Effect of cisplatin on H+ transport by H+-ATPase and Na+/H+ exchanger in rat renal brush-border membrane. Life Sci 67: 1047–1058.
Siren AL, Vonhof S, Feuerstein G. (1991) Hemodynamic defense response to thyrotropin-releasing hormone injected into medial preoptic nucleus in rats. Am J Physiol 261: 305-312.
Skerry TM, Genever PG.. (2001) Glutamate signaling in non-neuronal tissues. Trends Pharmacol Sci 22: 174–181.
Snyder JJ, Foley RN, Gilbertson DT et al. (2004) Hemoglobin levels and erythropoietin doses in hemodialysis and peritoneal dialysis patients in the United States. J Am Soc Nephrol 15: 174–179.
Tanaka T, Nangaku M, Miyata T, et al. (2004) Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells. J Am Soc Nephrol 15: 2320-2333.
Tarng DC, Huang TP, Liu TY et al. (2000) Effect of vitamin E-bonded membrane on the 8-hydroxy 20-deoxyguanosine level in leukocyte DNA of hemodialysis patients. Kidney Int 58: 790–799.
Uehara M, Tateishi S, Chiba H, et al. (1998) Effects of iron and copper supplementation on the formation of thiobarbituric acid-reactive substances and phosphatidylcholine hydroperoxide in the livers of iron- and copper-deficient rats. J Nutr Sci Vitaminol 44:705–714.
Usberti M, Lima G, Arisi M et al. (1997) Effect of exogenous reduced glutathione on the survival of red blood cells in hemodialyzed patients. J Nephrol 10: 261–265.
Van Rensburg CE, Van Staden AM, Anderson R, et al. (1992) Hypochlorous acid potentiates hydrogen peroxide-mediated DNA strand breaks in human mononuclear leucocytes. Mutat Res 265: 255–261.
Vaziri ND: (2004) Oxidative stress in uremia: Nature, mechanisms and potential consequences. Semin Nephrol 24: 469–473..
Vaziri ND, Dicus M, Ho ND, et al. (2003). Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int 63, 179-185.
Wang W, Jittikanont S, Falk SA, et al. (2003). Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure. Am J Physiol Renal Physiol 284, F532–F537.
Waston AD, Leitinger N, Navab M et al. (1997) Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272: 13597–13607.
Weiss SJ. (1982) Neutrophil-mediated methemoglobin formation in the erythrocyte. The role of superoxide and hydrogen peroxide. J Biol Chem 257: 2947–2953.
Welch WJ, Wilcox CS, Thomson SC: (1999) Nitric Oxide and Tubuloglomerular Feedback. Semin Nephrol 19: 251–262.
Wenzel RP (2002). Treating sepsis. N Engl J Med 347, 966–968.
Wiesel P, Patel AP, DiFonzo N, Marria PB, Sim CU, Pellacani A, Maemura K, LeBlanc BW, Marino K, Doerschuk CM, Yet SF, Lee ME & Perrella MA (2000). Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1-deficient mice. Circulation 102, 3015–3022.
Winterbourn CC. (1990) Oxidative reactions of hemoglobin. Methods Enzymol 186: 265–272.
Wolfs TG, BuurmanWA, van Schadewijk A, et al. (2002). In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells. IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 168, 1286–1293.
Wong PMC, Chung SW & Sultzer BM (2000). Genes, receptors, signals and responses to lipopolysaccharide endotoxin. Scand J Immunol 51, 123–127.
Wratten ML, Galaris D, Tetta C, et al. (2002) Sevanian A. Evolution of oxidative stress and inflammation during hemodialysis and their contribution to cardiovascular disease. Antioxid Redox Signal 4: 935–944.
Yang CC, Ma MC, Chien CT, et al. (2007) Hypoxic preconditioning attenuates lipopolysaccharide-induced oxidative stress in rat kidneys. J Physiol 582:407-419.
Yang CC, Hsu SP, Wu MS et al. (2006) Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress. Kidney Int 69: 706–714.
Zachee P, Ferrant A, Daelemans R et al. (1988) Oxidative injury to erythrocytes, cell rigidity and splenic hemolysis in hemodialyzed patients before and during erythropoietin treatment. Nephron 65: 288–293.
Zager RA, Fuerstenberg SM, Baehr PH, et al. (1994) An evaluation of antioxidant effects on recovery from postischemic acute renal failure. J Am Soc Nephrol 4: 1588–1597.
Zenser TV, Lakshmi VM, Hsu FF, et al. (2001) Methemoglobin oxidation of N-acetylbenzidine to form a sulfinamide. Drug Metab Dispos 29: 401–406.
Zhan CD, Sindhu RK & Vaziri ND (2004). Upregulation of kidney NAD(P)H oxidase and calcineurin in SHR: reversal by lifelong antioxidant supplementation. Kidney Int 65, 219–227.
Zimmermann J, Herrlinger S, Pruy A et al. (1999) Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int 55: 648–658.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26995-
dc.description.abstract尿毒症患者接受血液透析時,就開始承受心血管疾病的負擔。乃因慢性系統性發炎、貧血、加速動脈硬化及心血管疾病併發症與氧化壓力增加有密切相關。因在血液透析過程中當血液中白血球與人工腎臟接觸時會活化白血球細胞上的NADPH oxidase,使得O2轉為Superoxide(O2.-),Superoxide(O2.-)需經Superoxide dimutase或Glutathion peroxidase轉為過氧化氫(H2O2),H2O2再經Catalase轉為H2O。當吞噬細胞被激化時MPO被迅速分泌且在H2O2存在的情況下經MPO催化而氧化產生相對應的次氯酸鹵化物。當產生的氧化劑超過局部的抗氧化能力時,於是乎氧化壓力不斷地進行。將更進一步導致碳水化合物,類脂及存在於此種環境中的蛋白質和DNA 等重要的大分子氧化。
在我們的研究中發現病患在血液透析後血裡的氧化自由基明顯增加,其氧化自由基主要是過氧化氫和較小數量Superoxide(O2.-)及HOCl。 血液透析過程中流失抗氧化劑維生素C、導致血液中維生素C減少,總抗氧化劑狀態和RBC-MFR 活性減少,血漿中及紅血球細胞膜上的phosphatidylcholine hydroperoxide (PCOOH)和methemoglobin增加。靜脈灌注維生素C明顯清除血液透析後引起的氧化壓力,降低了血漿中及紅血球細胞膜上的PCOOH 和methemoglobin 的量和保護RBC-MFR 活性。覆被維他命E的人工腎臟對血液透析後血裡的總氧化自由基的活性只有部分影響,但仍能有效地防止紅血球免於受到氧化壓力的傷害。靜脈灌注維生素C或使用覆被維他命E的人工腎臟能有效地降低血液透析後引發的氧化壓力,如紅血球溶血和類脂超氧化程度的改善,並進一步降低血液透析病患前發炎細胞素的過度表現。
還原電解水(ERW)的保護機制乃源於具還原能力的活性原子氫,這有助于清除氧化自由基,並且參與細胞功能的還原。為了減少血液透析提升的氧化壓力,我們透過新安裝的HD-24K (Nihom Trim Co., Osaka, Japan)所產生的還原電解水運用在血液透析病患。在未接受還原電解水治療的末期腎衰竭病人其血液透析前血漿中單一次血液透析後,氧化壓力明顯增加。單一次血液透析時施予ERW處理將降低75±14 % 的氧化自由基的形成,此意味著血液透析合併ERW處理可能具有降低在尿毒病患與慢性透析患者體內的氧化性大分子的臨床重要性。ERW能降低氧化自由基,特別是H2O2和HOCl,ERW 處理應具有對白血球細胞和內皮細胞氧化損害減到最低的好處。將ERW的應用在透析液裡可以有效地改善血液透析提升的氧化壓力,也降低了血漿中及紅血球細胞膜上的PCOOH 和methemoglobin 的量和保護RBC-MFR 活性。經使用六個月的 ERW 處理,二十六種前發炎細胞素被向下調控。且經六個月ERW處理後在沒有增加紅血球生成素劑量的情況下能明顯改善血比容。總之,我們的研究發現於接受透析過程中使用維他命C或覆被維他命E的人工腎臟可降低後續氧化壓力的增加並減少紅血球的傷害,進而改善貧血,而以電解還原水作為透析用水亦然,但長期於透析過程中使用維他命C,仍有草酸累積的疑慮,而長期於透析過程中以電解還原水作為透析用水則無草酸累積的危險。
除了電解還原水可作為降低氧化壓力的工具,也有報告指出慢性低氧預處理可降低氧化傷害,我們的研究發現慢性低氧預處理透過超氧自由基轉化酵素的活性和總量的向上調控來降低超氧自由基對腎臟引起的機能失調。內毒素調降腎臟的抗氧化狀態。我們假設慢性低氧預處理可以保護腎臟以降低內毒素引起的氧化傷害。在慢性低氧預處理四星期的大鼠[相當5500米高度的低氧環境(每天15小時)]和海平面四星期的大鼠之腹腔內注射內毒素(LPS,4毫克每千克體重)。LPS會提升xanthine oxidase(XO)和gp91phox (NADPH oxidase的亞單位)的表現,同時經lucigenin提升的chemiluminescence可發現海平面大鼠來自腎臟表面和腎靜脈血的superoxide產生有爆發性的表現。且LPS會增加腎臟的IL-1b的產生。當與海平面大鼠相比時,在四星期的慢性低氧預處理後,在腎臟皮層Cu/ZnSOD、MnSOD、catalase顯著增加。以及調降腎臟皮層的XO和腎臟皮層的gp91phox和腎臟髓質的gp91phox 。結合了提升抗氧化蛋白質酵素並調降氧化性蛋白酵素而達到降低LPS引發superoxide產生,調降腎臟XO和gp91phox表現,和腎臟的IL-1b產生的效應。我們確認慢性低氧預處理提升腎內抗氧化性/氧化性蛋白比率而克服了內毒素引起的氧化自由基的形成並進一步降低發炎性細胞素的釋放,而達到保護腎臟免於氧化傷害的後果。
麩胺酸受體(glutamate receptor)不只在中樞神經系統表現亦存在於週邊某些組織內,然而週邊麩胺酸受體的功能卻鮮少知道。己有報告指出glutamate/glycine啟動的N-methyl-D-aspartate (NMDA)感受器位于腎臟上。而NMDA 感受器亜單位NR1已被發現在受損的腎臟上表現增加。Said等學者發現麩胺酸受體的活化是造成肺臟氧化傷害的主因,NMDA感受器在gentamicin nephrotoxicity中也扮演主要角色。我們利用一個腎臟缺血再灌流的氧化傷害模式來評估腎內功能性的NMDA感受器的亞單位NR1的角色。基於NMDA感受器在gentamicin nephrotoxicity裡扮演重要的角色,腎內近端小管裡有相當高的NMDA感受器的表現,以及腎臟的缺血再灌流的氧化傷害在近端小管裡最嚴重,故我們進一步研究NMDA感受器在腎臟缺血再灌流的氧化傷害中是否被活化並且是否在腎臟缺血再灌流引起腎臟氧化傷害中扮演重要的角色。為了驗証是否在腎臟遭受缺血再灌流引起的腎臟氧化傷害中,NMDA 感受器可能在腎臟功能的損害上所扮演的角色,我們利用西方點墨法來分析NMDA 感受器(功能性亞單位NR1)在缺血後老鼠腎臟(左腎動脈經45分鐘缺血封閉後再經24小時再灌流)上的表現。 在評估老鼠腎臟NMDA 感受器被活化時對腎臟血流動力學的影響,我們利用NMDA(NMDAR agonist )經老鼠腎內動脈(ira)注入及NMDA抑制劑AP-5 (2毫微毫升的體積,經老鼠腎內動脈(ira)注入)。利用perivascular 脈搏都普勒來測量腎臟的血流。利用3H-inulin廓清率來測量GFR。在老鼠腎內動脈(ira)注入NMDA或NMDA抑制劑D-AP-5之前及注入之後做測量。在NMDA注入之後會降低GFR,尿量和尿鈉和鉀的的排泄,且此現象與使用NMDA劑量成正相關。而D-AP-5完全拮抗掉NMDA引起的腎臟功能變化。利用西方點墨法來分析正常的老鼠腎臟和缺血後老鼠腎臟NMDA感受器,發現缺血後腎臟NMDA感受器無論在外部髓質及內部髓質和皮層皆顯示向上調控的情況,尤其是缺血後老鼠腎臟的外部髓質。缺血後腎臟上的NMDA感受器表現增加且對在腎內動脈(ira)注入NMDA的反應上表現出GFR 進一步降低和在腎臟的排泄方面其尿量和尿鈉和鉀的的排泄的顯著減少。D-AP-5在缺血再灌流的腎臟對NMDA 感受器的抑制導致的GFR的相當程度的增加並使得尿量和尿鈉排泄量更大。這些發現在老鼠腎臟裡的glutamate的excitotoxic的作用提供了一個分子生物學的基礎。總之,腎臟NMDA感受器的表現可以透過缺血再灌流而被向上調控,並且在腎臟遭受缺血再灌流傷害之後扮演重要的功能上的角色,NMDA感受器可以讓受損的老鼠腎臟降低腎絲球的回應和腎小管的排泄功能。
zh_TW
dc.description.abstractHemodialysis (HD) is used for removal of excessive toxins, metabolic products, and blood components from patients with end-stage renal diseases (ESRD). However, the interaction of blood with non-biological materials of the extracorporeal circuit can activate polymorphonuclear leukocytes (PMNs) to produce quantities of reactive oxygen species (ROS). Increased oxidative stress in ESRD patients may oxidize macromolecules and impair neighboring tissues/cells (including RBCs) and evoke an inflammatory response, then consequently lead to cardiovascular events during chronic hemodialysis. There is increasing evidence that oxidative stress plays a key role in the genesis and severity of dialysis anemia. It reduces RBC survival, impairs the effect of erythropoietin, and increases the susceptibility to hemolysis due to inflammatory, infectious and mechanical stimuli. During the process of oxidative stress, RBCs are subject to membrane lipid peroxidation and susceptible to destruction. Increased ROS can oxidize oxyhemoglobin (oxyHb) to yield H2O2 and methemoglobin (metHb). A trans-plasma membrane electron transport system is present on RBC membranes and plays a role to reduce cytotoxic ferricyanide/metHb to functional ferrocyanide/oxyhemoglobin (oxyHb). We demonstrated intravenous vitamin C (VC) or vitamin E (VE)-coated dialyzer can improve HD-enhanced erythrocyte lipid peroxidation and hemolysis via the preservation of NADH-ferricyanide reductase and NADH-methemoglobin reductase.
The protective mechanism of electrolyzed reducing water (ERW) obtained by electrolysis results from active atomic hydrogen with high reducing ability, which can contribute to ROS scavenging activity, and may participate in the redox regulation of cellular function. Therefore, for decreasing hemodialysis-enhanced oxidative stress, we administered ERW by a new setup of HD-24K (Nihom Trim Co., Osaka, Japan) to the patients during HD course. ERW administration diminished HD-enhanced H2O2 and HOCl activity, minimized atherosclerotic, oxidized and inflammatory markers, and partly restored total antioxidant status during one-month treatment. We evaluated oxidative stress in blood and plasma, erythrocyte methemoglobin/ferricyanide reductase (RBC-MFR) activity, plasma methemoglobin, and proinflammatory cytokines in the chronic HD patients without treatment or with vitamin C, vitamin E-coated dialyzer, or ERW treatment during an HD course. The patients showed marked increases in blood ROS, mostly H2O2, and in lesser amounts, O2-. and HOCl after HD without any treatment. HD also resulted in decreased plasma vitamin C, total antioxidant status, and RBC-MFR activity and increased erythrocyte levels of phosphatidylcholine hydroperoxide (PCOOH) and plasma methemoglobin. Antioxidants treatment significantly palliated single HD course-induced oxidative stress, plasma and RBC levels of PCOOH, and plasma methemoglobin levels, and preserved RBC-MFR activity. However, ERW had no side effect of oxalate accumulation easily induced by vitamin C. Six-month ERW treatment increased hematocrit and attenuated proinflammatory cytokines profile in the ESRD patients. ERW treatment administration is effective in palliating HD-evoked oxidative stress, as indicated by lipid peroxidation, hemolysis, and over-expression of proinflammatory cytokines in HD patients. A beneficial consequence of increased hematocrit in the ESRD patients undergoing chronic HD with ERW treatment was also recognized.
Except for the reducing power of ERW, chronic hypoxic (CH) preconditioning had been reported to reduce oxidative tissue injury. Chronic hypoxic (CH) preconditioning reduces superoxide-induced renal dysfunction via the upregulation of superoxide dismutase (SOD) activity and contents. Endotoxemia reduces renal antioxidant status. We hypothesize that CH preconditioning might protect the kidney from subsequent endotoxemia-induced oxidative injury. Endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (LPS; 4mg/k) in rats kept at sea level (SL) and rats with CH in an altitude chamber (5500m for 15 h/day) for 4 weeks. LPS enhanced xanthine oxidase (XO) and gp91phox (catalytic subunit of NADPH oxidase) expression associated with burst amount of superoxide production from the SL kidney surface and renal venous blood detected by lucigenin-enhanced chemiluminescence. LPS induced increased renal IL-1β protein in the SL rats. After 4 weeks of induction, CH significantly increased Cu/ZnSOD, MnSOD and catalase expression in renal cortex, and depressed renal cortex XO and renal cortex and medulla gp91phox when compared with SL rats. The combined effect of enhanced antioxidant proteins and depressed oxidative proteins significantly reduced LPS-enhanced superoxide production, renal XO and gp91phox expression, and renal IL-1β production. We conclude that CH treatment enhances the intrarenal antioxidant/oxidative protein ratio to overcome endotoxaemia-induced reactive oxygen species formation and inflammatory cytokine release.
Said et al. had reported that excitotoxicity due to overactivation of its N-methyl-D-aspartate (NMDA) receptor may be a key factor in oxidant tissue injury. The NMDA receptor is expressed in the kidney. The receptor plays a major role in gentamicin nephrotoxicity. We assessed the role of the functional subunits NR1 of renal NMDA receptor in a model of renal ischemic-reperfusion injury. Based upon the prominent role the receptor plays in gentamicin nephrotoxicity, the high expression of the NMDA receptor in the renal proximal tubule, and the high degree of renal ischemic-reperfusion injury found in the proximal tubule, we speculated that the NMDA receptor might be activated by and may play a role in renal injury caused by renal ischemic-reperfusion injury in the part III study. In order to clarify whether NMDA receptors may have a role on functional detriment after kidneys suffered ischemic reperfusion injury, the expression of NMDA receptors (as functional subunit NR1) in the post-ischemic kidney (obtained by 45-min occlusion of left renal artery and reperfusion for 24 h) were examined by Western blot analysis. Renal hemodynamic effects of NMDA-R activation was assessed in rats using intrarenal arterial (ira) infusion of NMDA and NMDA-R inhibition was assessed in rats using a specific antagonist of the NMDA-R (AP-5) before treatment of NMDA. Renal blood flow was measured by perivascular pulse Doppler. GFR was measured by 3H-inulin clearance. Measurements were made before and during intrarenal arterial infusion of NMDA or D-AP5. Surprisingly, NMDA-infusion reduced GFR, urine amount and urinary excretion of sodium and potassium in dose- dependent manner. D-AP5 completely abolished the decreased renal function due to NMDA. Western blots of normal- and post-ischemic kidneys demonstrate that renal NMDA receptor is upregulated on outer medulla, inner medulla and cortex of post-ischemic kidneys, especially the outer medulla. The post-ischemic kidneys after 45-min occlusion of left renal artery and reperfusion for 24 h results in reduced GFR responses and significant decrease in renal excretion due to NMDA-infusion associated with increased renal NMDA receptor expression. The significant increments of GFR and renal excretion due to NMDA receptor inhibition by D-AP5 in the IR kidneys were larger than those of control kidneys except urinary potassium excrection. These findings provide a molecular-biological basis for the excitotoxic actions of glutamate in rat kidneys. In conclusion, kidney NMDA receptor expression is upregulated by ischemic-reperfusion, and this receptor may play an important functional role in detrimental effects on rat kidney glomerular response and excretion function after kidneys suffered ischemic reperfusion injury.
Chronic hypoxic preconditioning was reported to reduce significantly the glutamate-induced neuronal injury. In the part II of our study, the benefit of CH-induced HPC is to prevent excessive generation of ROS by shifting the intrarenal redox status towards antioxidative defense. During ischemia/reperfusion injury, overactivation of its N-methyl-D-aspartate (NMDA) receptor is toxic to renal cells, that is excitotoxicity may be a key factor in renal oxidative injury. Therefore application of reducing water or chronic hypoxia will attenuate the renal oxidative injury caused by excitotoxicity due to overactivation of its N-methyl-D-aspartate (NMDA) receptors.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:53:31Z (GMT). No. of bitstreams: 1
ntu-97-D91441001-1.pdf: 2540143 bytes, checksum: aa60bbd9559f6c03f222fe5ff020d8e8 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents論文口試委員審定書
誌謝
中文摘要
英文摘要
Chapter One: Introduction
1.1. Oxidative Stress and Cardiovascular Disease 15
1.2. Oxidative Stress and MIA syndrome in Uremia 16
1.3. Oxidative Stress and Erythropoietin Resistance in Uremia 18
1.4. Endotoxemia-induced Oxidative Stress and Acute Renal Injury 19
1.5. Electrolyte-reduced water and Oxidative Stress 20
1.6. Hypoxic preconditioning and Oxidative Stress 21
1.7. Oxidative stress, Glutamate receptors and Ischemic Renal Nerve Injury 21
Chapter Two : Aim, Materials and Methods
2.1 Study I 26
2.2 Study II 33
2.3 Study II 38

Chapter Three : Results
3.1 Study I 43
3.2 Study II 62
3.3 Study III 71

Chapter Four : Discussions
References 98

Table Index
Table 1. Effect of electrolyzed reduced water (ERW) on the levels of low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), lipoprotein (a) [Lp(a)], interleukin-6 (IL-6), and C-reactive protein (CRP) in end-stage renal disease (ESRD) patients before and after hemodialysis treatment.------------------------------------54
Figure Index
Fig. 1.1. Typical emission spectra of the chemiluminescence (CL) of a test mixture containing H2O2 and luminol for reference H2O2 (RH2O2), HOCl, and luminol for reference HOCl(RHOCl) and different volumes of plasma or [phosphate buffered saline (PBS)] obtained from a healthy control.----------------------------------------------49
Fig. 1.2. Typical emission spectra of the reference H2O2 (RH2O2) (A) and reference HOCl (RHOCl) (B) counts with various kinds of antioxidants [vitamin C, epigallocatechin-3-gallate (EGCG), and electrolyzed reduced water (ERW)], plasma from healthy subjects and phosphate-buffered saline (PBS) are displayed.----------50
Fig. 1.3. Hemodialysis (HD) effect on emission spectra of the reference H2O2 (RH2O2) and reference HOCl (RHOCl) counts of prehemodialysis and posthemodialysis plasma from one end-stage renal disease (ESRD) patient before electrolyzed reduced water (ERW) treatment (A), after initial ERW (B), and 1-month ERW (C) treatment are displayed.-------------------------------------------------------------------------51
Fig. 1.4. Effects of hemodialysis (HD) and electrolyzed reduced water (ERW) supplement on reference H2O2 (R H2O2) (A), and reference HOCl (RHOCl) (B) counts in plasma obtained from 37 end-stage renal disease (ESRD) patients.-------52
Fig. 1.5. Effects of hemodialysis (HD) and electrolyzed reduced water (ERW) supplement on PCOOH (A), total antioxidant status (TAS) (B), methylguanidine (MG) (C), and dityrosine (DT) (D) in plasma obtained from 37 end-stage renal disease (ESRD) patients.-------------------------------------------------------------------------53
Fig. 1.6. (a) On palliating ROS formation in HD-activated blood, the effects of intravenous VC, a VE-coated dialyzer, and ERW are clarified. (b) The effects of superoxide dismutase, catalase (CAT), epigallocatechin-3-gallate (EGCG), VC, VE, or ERW on post-HD enhanced blood ROS activity in vitro are displayed for comparison.-----------------------------------------------------------------------------------------54
Fig. 1.7. Effects of intravenous infusion of VC, VE-coated dialyzer VE, or ERW on plasma VC, VE, TAS, and plasma oxalate (Oxalate) levels during a hemodialysis session.-----------------------------------------------------------------------------------------------55
Fig. 1.8. Mean values of pre/post-HD blood H2O2–luminal counts, and PCOOH level in plasma and in RBC membrane are displayed.-------------------------------------------56
Fig. 1.9. Effects of intravenous infusion of VC, VE-coated dialyzer, or ERW treatment on HD-affected erythrocyte ferricyanide reductase activity, metHb reductase activity, and plasma metHb level.-------------------------------------------------57
Fig. 1.10. Effects of 6-month ERW treatment on post-HD-affected erythrocyte ferricyanide reductase activity, metHb reductase activity, and plasma metHb level in 43 ESRD patients.------------------------------------------------------------------------------58
Fig. 1.11. Effects of 6-month ERW treatment on post-HD-affected hematocrit (Hct) and erythropoietin dose (EPO) in 43 ESRD patients.--------------------------------------59
Fig. 1.12. Determination of multiple cytokines determination by cytokine antibody array in the pre-HD plasma of one ESRD patient before and during 6-month ERW treatment.-------------------------------------------------------------------------------------------60
Fig. 2.1. Changes in Lucigenin-enhanced chemiluminescence (CL) counts in response to LPS in the different groups.-----------------------------------------------------66
Fig. 2.2. Renal response of IL-1b protein expression in the renal cortex and medulla
----------------------------------------------------------------------------------------------67
Fig. 2.3. Expression of antioxidative and oxidative enzymes in response to LPS in the different groups.------------------------------------------------------------------------------68
Fig. 2.4. Representative micrographs of renal tissues stained for MnSOD------------69
Fig. 2.5. Representative micrographs of renal sections stained for gp91phox--------70
Fig. 3.1. Western blot analysis displays the differential expression of NMDA receptors (functional subunit NR1) in various renal tissues.-----------------------------75
Fig. 3.2. When compared to sham-control kidney, the expression of NMDA receptor subunit, NR1, was significantly enhanced in the renal cortex (C), medulla (M), and pelvis (P) of post-ischemic kidneys.------------------------------------------------------------76
Fig. 3.3. Effect of ischemia/reperfusion (IR) on NMDA NR1 receptor expression in the post-ischemic kidney subjected to 45-min renal ischemia followed by 24-hour reperfusion.-----------------------------------------------------------------------------------------77
Fig. 3.4. Intrarenal activation of NMDA receptors by intrarenal arterial infusion of receptor agonist NMDA dose-dependently decreased GFR and UV as well as UNaV and UKV in the normal rats.--------------------------------------------------------------------78
Fig. 3.5. Intrarenal arterial infusion of D-AP-5 blocks the NMDA-mediated renal functional changes in the post-ischemic kidney.--------------------------------------------79
Fig. 3.6. Renal functional and excretory responses to NMDA receptor blocker D-AP-5 between the sham (Sham) and ischemia/reperfusion (IR) kidneys.-----------80
dc.language.isozh-TW
dc.title抗氧化治療策略在基礎與臨床氧化傷害模式之評估zh_TW
dc.titleStrategy of Antioxidation Treatment in Basic and Clinical Oxidative Injury Modelsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳明修,鄭劍廷,黃萬出,楊志剛
dc.subject.keyword血液透析,氧化壓力,電解還原水,慢性低氧預處理,麩胺酸受體,腎臟氧化傷害,zh_TW
dc.subject.keywordHemodialysis,Oxidative stress,Electrolyzed reduced water,Chronic hypoxic preconditioning,Glutamate receptor,Renal oxidative injury,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2008-03-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved