請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26989
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭尊仁 | |
dc.contributor.author | Mei-Ching Li | en |
dc.contributor.author | 李梅菁 | zh_TW |
dc.date.accessioned | 2021-06-12T17:53:24Z | - |
dc.date.available | 2009-08-13 | |
dc.date.copyright | 2008-08-13 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-03-18 | |
dc.identifier.citation | Part Ι:
Barceloux DG. Zinc. Clinical Toxicology. 1999;37(2):279-92. Beckett WS, Chalupa DF, Pauly-Brown A, Speers DM, Stewart JC, Frampton MW., Utell MJ, Huang LS, Cox C, Zareba W, and Oberdorster G. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med. 2005;171(10):1129-35. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 2004;77:347-57. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med. 2000;57: 685-91. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 2001;175:191-9. Borm PJ, Schins RP, Albrecht C. Inhaled particles and lung cancer, part B: paradigms and risk assessment. International Journal of Cancer. 2004;110:3-14. de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci 2005;87:409-18. Dick CA, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhalation Toxicology. 2003;15:39-52. Driscoll KE. Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhal Toxicol. 1996;8S:139-53. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15:213-20. Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Beckett WS. Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J Occup Environ Med. 1997;39:722–6. Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Sparer J, Beckett WS. Characterization of clinical tolerance to inhaled zinc oxide in naive subjects and sheet metal workers. J Occup Environ Med. 2000;42:1085-91. Gao PX, Mai W, Wang ZL. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Letters. 2006;6(11):2536-43. Gordon T, Chen LC, Fine JM, Schlesinger RB, Su WY, Kimmel TA, Amdur MO. Pulmonary effects of inhaled inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am Ind Hyg Assoc J. 1992;53(8):503-9. Grassian VH, O'shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 2007;115(3):397-402. Kreyling WG, Semmler M, Moller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17:140-52. Kuschner WG, D’Alessandro A, Wong H, Blanc PD. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ Res. 1997;75:7–11. Kuschner WG., Wong H, D'Alessandro A, Quinlan P, Blanc PD. Human pulmonary responses to experimental inhalation of high concentration fine and ultrafine magnesium oxide particles. Environ Health Perspect. 1997;105(11):1234-7. Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126-34. Lei YC, Chen MC, Chan CC, Wang PY, Lee CT, Cheng TJ. Effects of concentrated ambient particles on airway responsiveness and pulmonary inflammation in pulmonary hypertensive rats. Inhal Toxicol. 2004;16(11-12):785-92. Malandrino G, Blandino M, Perdicaro LMS, Fragalà IL, Rossi P, Dapporto P. A novel diamine adduct of zinc bis(2-thenoyl-trifluoroacetonate) as a promising precursor for MOCVD of zinc oxide films. Inorg. Chem. 2005;44(26):9684-9. Maynard AD. Nanotechnology: the next big thing, or much ado about nothing?. Ann. Occup. Hyg. 2007;51(1):1-12. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311: 622-7. Nemmar A, Hamoir J, Nemery B, Gustin P. Evaluation of particle translocation across the alveolo-capillary barrier in isolated perfused rabbit lung model. Toxicology. 2005;208:105-13. Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF. Vanbilloen H. Mortelmans L. Nemery B. Passage of inhaled particles into the blood circulation in humans. Circulation. 2002;105:411-4. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823-39. Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437-45. Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001;74:1-8. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med. 1997;155:1376-83. Rehn B, Seiler F , Rehn S , Bruch J, Maier M. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol Appl Pharmacol. 2003;189:84-95. Roitt, Brosyoff, Male. Immunology. Wolters Kluwer Company. 1996. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92(1):174-85. Seaton A, Donaldson K. Nanoscience, nanotoxicology, and the need to think small. Lancet 2005;365:923-4. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289:L698-708. Strohl KP, Thomas AJ, St Jean P, Schlenker EH, Koletsky RJ, Schork NJ. Ventilation and metabolism among rat strains. J Appl Physiol. 1997;82(1):317-23. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci. 2006;91:227-36. Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL.Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci. 2005;88:514-24. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117-25. Wichmann HE, Spix C, Tuch T, Wolke G, Peters A, Heinrich J, Kreyling WG, Heyder J. Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: role of particle number and particle mass. Res Rep Health Eff Inst. 2000;98:5-86. Wittmaack K. In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what?. Environ Health Perspect. 2007;115(2):187-94. 鄭尊仁、林宜平、雷侑蓁:奈米科技的健康風險評估,台灣衛誌,2006; 25(3):169-76。 馬遠榮:奈米科技,商周出版,2002。 簡弘民、陳姿名、徐玉杜:奈米微粒產生、監測及控制技術,工業技術研究院/環境與安全衛生技術發展中心,2004。 PartⅡ: Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 2000;55:24-35. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92(1):5-22. Elder A, Gelein R, Azadniv M , Frampton M, Finkelstein J, Oberdorster G. Systemic effects of inhaled ultrafine particles in two compromised, aged rat strains. Inhal Toxicol. 2004;16:461-71. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311: 622-7. Oberdorster G. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 2001;74:1-8. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92(1):174-85. Seaton A, Donaldson K. Nanoscience, nanotoxicology, and the need to think small. Lancet 2005;365:923-4. Uo M, Tamura K, Sato Y, Yokoyama A, Watari F, Totsuka Y, Tohji K. The cytotoxicity of metal-encapsulating carbon nanocapsules. Small. 2005;1:816-9. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol Sci. 2006;91:227-36. Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL.Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci. 2005;88:514-24. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117-25. 工業技術研究院:奈米碳球 http://www.itri.org.tw/chi/rnd/advanced_rnd/materials_chem/XD92-05.jsp 黃贛麟:奈米碳球科學與應用,化工資訊與商情,2006;34:54-6。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26989 | - |
dc.description.abstract | Part Ι:
奈米氧化鋅用途廣泛,可以被應用在塗料、油漆、橡膠輪胎工業、化妝品等產品上,但相關的毒理研究並不多。因此我們利用全身性呼吸暴露的方式,將奈米氧化鋅微粒暴露於健康大鼠,觀察其肺部及系統性的毒性效應。 本實驗利用呼吸暴露的方式,於實驗動物進行奈米氧化鋅微粒的暴露,我們以奈米微粒產生系統產生粒徑約為30 nm的奈米氧化鋅微粒,產生微粒的同時以微粒粒徑濃度分佈自動監測儀(SMPS+CPC)進行微粒粒徑及濃度的監測,分別進行了低暴露組(5 hrs)以及高暴露組(10 hrs)的暴露,並以在相同暴露條件下,未填入鋅粉於爐管內空燒的實驗(暴露5hrs)為對照組,每組暴露6隻大鼠,共計18隻。暴露後24小時進行犧牲,並採集周邊血液樣本,測試血液中血球數目(CBC/DC)及細胞激素的濃度(IL-6、TNF-α),同時採集其肺泡灌洗液(BALF)進行肺部發炎及傷害指標的分析,包括總細胞數、血球分類計數、乳酸脫氫酵素(LDH)及總蛋白質(Total protein)。 實驗結果顯示奈米產生器可穩定產生奈米粒徑的氧化鋅微粒,低暴露組(5 hrs)所產生的奈米氧化鋅微粒,中數粒徑(count median diameter, CMD)為34.0 nm,數目濃度約為5.3 × 105 #/cm3;高暴露組(10 hrs)的中數粒徑為24.7 nm,數目濃度約為4.1 × 106 #/cm3。 動物實驗結果發現大鼠暴露於低暴露組及高暴露組的奈米氧化鋅微粒後,在肺泡灌洗液中的嗜中性球百分比(Neutrophils)及乳酸脫氫酵素(LDH)相較於對照組有顯著增加,而且呈現劑量反應關係(p<0.05)。另外,暴露於高暴露組的奈米氧化鋅微粒後,還發現周邊血液中的白血球數目(WBC)、血小板數目(PLT)以及細胞激素(IL-6)相較於對照組有顯著增加(p<0.05)。 本研究發現,奈米氧化鋅微粒會誘使健康大鼠發生急性肺部發炎與傷害反應,同時有系統性發炎產生,顯示奈米氧化鋅微粒可能具有急性毒性效應,值得進一步關注,不過真正機制需要未來研究加以探討。 Part Ⅱ: 奈米碳球(carbon nanocapsules, CNC)為新興材料,目前國內已成功開發可大量生產並純化奈米碳球的方法,但是其毒性並不清楚。一旦經由呼吸將微粒吸入可能會造成健康危害。所以我們將大鼠暴露於奈米碳球,觀察其肺部及系統性毒性。 本實驗利用氣管灌注的方式,對實驗動物進行奈米碳球的暴露,包括三種奈米碳球(水溶性:CNC-(OH)n、CNC-(COOH)n及非水溶性:純CNC),兩種劑量(1與5 mg/kg),並以生理食鹽水(PBS)為對照組,每一個組別各需要6隻大鼠。實驗動物於微粒灌注後24小時進行犧牲,並採集周邊血液樣本,測試血液中血球數目(CBC/DC)及氧化壓力(oxidative stress),同時採集其肺泡灌洗液(BALF)進行肺部發炎及傷害指標的分析,包括總細胞數、血球分類計數、乳酸脫氫酵素(lactate dehydrogenase, LDH)及總蛋白質(Total protein)。 實驗發現大鼠暴露於高劑量的水溶性奈米碳球微粒(CNC-(OH)n及CNC-(COOH)n)後,在肺泡灌洗液中的總細胞及嗜中性球數目相較於控制組有顯著增加(p<0.05),但是總蛋白質及乳酸脫氫酵素(LDH),及周邊血液血球及分類計數和氧化壓力皆沒有明顯變化。至於純CNC暴露後,各項指標皆沒有顯著差異。 研究顯示經過表面處理的奈米碳球(水溶性),在較高劑量時可能造成肺部發炎反應,真正機轉有待進ㄧ步評估。 | zh_TW |
dc.description.abstract | Part Ι:
Zinc oxides (ZnO) have been used widely, including manufacturing of rubber, paint and cosmetics. However, its toxicity remains unclear. We conducted an animal study to determine its pulmonary and systemic toxicity. Healthy Sprague Dawley (SD) rats were exposed by inhalation to 30 nm of zinc oxides nanoparticles (ZnO) for 5hr (low-exposure group) and 10hr (high-exposure group). Scanning Mobility Particle Sizer (SMPS+CPC) were used to monitor the size and concentration of particles. Each experimental group has six animals. The same number of rats was exposed to filtered-air as controls. Total cells, differential counts, total protein and lactate dehydrogenase activity (LDH) were determined in bronchoalveolar lavage fluid. Complete blood counts and differential counts (CBC/DC) and cytokines levels (IL-6 and TNF-α) in peripheral blood were also determined. Our results showed that the nanoparticles generator can stably produce about 30 nm zinc oxides nanoparticles. The count median diameter (CMD) of zinc oxides nanoparticles for low-exposure group was 34.0 nm, and the number concentration was 5.3 × 105 #/cm3. The CMD for high-exposure group was 24.7 nm, and the number concentration was 4.1 × 106 #/cm3. In both low-exposure group and high-exposure group, the percentage of neutrophils and LDH increased significantly as compared to the controls (P<0.05). There was also a dose-response relationship. Further, WBC, platelet and IL-6 in peripheral blood were also increased in high-exposure group (P<0.05). Our preliminary study has demonstrated that ZnO nanoparticles may cause lung and systemic toxicity. However, factors that determine the toxicity of nanoparticles need further investigation. PartⅡ: Carbon nanocapsules (CNC) have been developed and have a great potential to be applied in many fields. However, its toxicity remains unclear. We conducted animal study to determine its pulmonary and systemic toxicity. Healthy Sprague Dawley (SD) rats were intratracheally administered with the carbon nanocapsules including pure CNC (hydrophobic) and CNC-(OH)n and CNC-(COOH)n (hydrophilic) obtained from Industrial Technology Research Institute at doses of 1 mg/kg and 5 mg/kg suspended in phosphate-buffered saline (PBS). The animal numbers of each experimental group were six. The same number of rats was exposed to PBS as controls. Total cells and differential counts and total protein and lactate dehydrogenase activity (LDH) were determined in bronchoalveolar lavage fluid. Complete blood counts and differential counts (CBC/DC), and oxidative stress (the contents of H2O2 and O2- free radicals determined by Multi Luminescence Spectrometer) in peripheral blood were also determined. Our results showed that after exposure to the high dose (5 mg/kg) of CNC-(OH)n and CNC-(COOH)n (hydrophilic), the counts of total cells and neutrophils increased significantly as compared to the controls (P<0.05). But the levels of total protein, LDH, CBC/DC and oxidative stress (the contents of H2O2 and O2- free radicals) were not significantly different. In the case of exposing to pure CNC (hydrophobic), the above markers were not different. Our study indicates that the high dose (5 mg/kg) of the carbon nanocapsules with surface modification may induce pulmonary inflammation. However, real mechanism needs to be further assessed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-12T17:53:24Z (GMT). No. of bitstreams: 1 ntu-97-R94841017-1.pdf: 1600282 bytes, checksum: 5dba102525d708d90c14314edaa8707f (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄 I
Part Ι 1 摘要 2 Abstract 4 第一章 目的 5 第二章 文獻探討 6 2-1 奈米材料的應用及特性 6 2-2 奈米氧化鋅的特性及應用 6 2-3 奈米微粒毒理研究 7 2-4 奈米微粒與肺部毒性 8 2-5 奈米微粒其他相關毒理研究 10 2-6 奈米氧化鋅相關毒理研究 10 2-7 肺部發炎及發炎反應指標 11 2-8 系統性發炎及發炎反應指標 12 2-9 氣管灌注與呼吸暴露方式比較 12 2-10 奈米微粒產生方法 13 2-10-1 噴霧法 (Atomization) 13 2-10-2 爐管氣流反應器 (Furnace flow reactors) 13 第三章 材料與方法 14 3-1 奈米微粒產生與監測 14 3-1-1 奈米氧化鋅微粒的產生 14 3-1-2 監測系統 14 3-2 實驗動物 14 3-3 實驗設計 15 3-4 全身性呼吸暴露模式(whole-body inhalation exposure) 15 3-5 系統性發炎反應指標分析 15 3-6 肺泡灌洗液發炎損傷指標分析 16 3-7 統計方法分析 16 3-8 實驗架構 17 第四章 結果 18 4-1 奈米氧化鋅微粒的暴露 18 4-2 動物實驗 19 第五章 討論 21 5-1 奈米產生器以及微粒的產生及暴露 21 5-2 呼吸暴露奈米氧化鋅微粒所引起之毒性效應 22 第六章 結論 26 第七章 未來改進與展望 27 參考文獻: 42 PartⅡ 46 摘要 47 Abstract 48 第一章 目的 49 第二章 文獻探討 50 2-1 奈米材料的應用及特性 50 2-2 奈米碳球簡介 50 2-2-1 奈米碳球及其特性 50 2-2-2 奈米碳球的來源及應用 51 2-2-3 奈米碳球官能化方法 52 2-3 奈米微粒毒理研究 53 2-4 奈米微粒與肺部毒性 53 2-5 奈米微粒其他相關毒理研究 53 2-6 奈米碳球相關毒理研究 53 2-7 肺部發炎及發炎反應指標 53 2-8 反應性含氧物種與氧化壓力 54 第三章 材料與方法 55 3-1 微粒 55 3-2 實驗動物 55 3-3 實驗設計 55 3-4 氣管內灌注暴露模式 56 3-5 周邊血液血球與氧化壓力測試 56 3-6 肺泡灌洗液發炎損傷指標分析 56 3-7 實驗架構 57 第四章 結果 58 第五章 討論 59 第六章 結論 61 參考文獻: 68 附錄 70 | |
dc.language.iso | zh-TW | |
dc.title | 1. 奈米氧化鋅微粒毒性研究 2. 奈米碳球毒性研究 | zh_TW |
dc.title | Part Ι: Toxicity study of zinc oxide nanoparticles. Part Ⅱ: Toxicity study of carbon nanocapsules | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃耀輝,蔡孟勳,林文印,劉佩珊 | |
dc.subject.keyword | Part Ι:奈米氧化鋅,呼吸暴露,肺泡灌洗液,發炎指標 Part Ⅱ: 奈米碳球,氣管灌注,水溶性微粒,肺泡灌洗液,發炎指標, | zh_TW |
dc.subject.keyword | Part Ι:Zinc oxide nanoparticles,Inhalation exposure,Bronchoalveolar lavage,Lung inflammation and injury Part Ⅱ:Carbon nanocapsules,Intratracheal instillation,Bronchoalveolar lavage,Inflammation markers, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-03-18 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
顯示於系所單位: | 職業醫學與工業衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。