Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李學智
dc.contributor.authorChung-Ming Lien
dc.contributor.author李宗明zh_TW
dc.date.accessioned2021-06-12T17:52:50Z-
dc.date.available2012-08-11
dc.date.copyright2011-08-11
dc.date.issued2011
dc.date.submitted2011-08-09
dc.identifier.citation[1] G. Y. Yeh, C-P. Lai, M.-C Tseng, and H. J. Li,“An OFDM-based Channel Sounder
system”, IEEE AP-S, South Charleston, Jun. 2009.
[2] R. Van Nee and R. Parasad, OFDM for wireless multimedia communication.
Artech House, Boston, 2000.
[3] IEEE Standard 802.11a-1999, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in
the 5 GHz Band.
[4] IEEE Standard 802.11g-2003, Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications: Amendment 4: Further Higher
Data Rate Extension in the 2.4 GHz Band.
[5] IEEE P802.11n™/D3.00, September 2007.
[6] Local and Metropolitan Area Networks—Part 16, Air Interface for Fixed
Broadband Wireless Access Systems, IEEE Standard IEEE 802.16a.
[7] IEEE.Standard 802.16e-2005.Part16:Air interface for fixed and mobile boardard
wireless access systems-Amendment for physical and medium access control
layers for combined fixed and mobile operation in licensed band.December 2005,
available at http://standards.ieee.org/getieee802/802.16.html.
[8] H. Ekström et al., “Technical Solutions for the 3G Long-term Evolution”, IEEE
Communications Magazine, March 2006.
[9] R. V. Cox and C. V. Sundberg, ‘An Efficient Adaptive Circular Viterbi Algorithm
for Decoding
[10] Generalized Tailbiting Convolutional Codes’. IEEE Trans. on Vehicular
Technology, Vol. 43,pp. 57–68, February 1994.
[11] EURO-COST-231 Revision 2, “Urban transmission loss models for mobile radio
in the 900 and 1800 MHz bands,” Sept. 1991.
[12] Andreas Molisch, Wireless Communications. Wiley-IEEE Press, 2005.
[13] Agilent Technologies E4438C ESG Vector Signal Generator of the User's Guide
http://www.home.agilent.com/agilent/redirector.jspx?action=ref&cname=AGILEN
T_EDITORIAL&ckey=409180&lc=cht&cc=TW&nfr=-11143.0.00.
[14] R&S®AMIQ, I/Q Modulation Generator Operating Manual, 1110.2003.02/03/04
http://www2.rohde-schwarz.com/file_2026/amiq_u8.pdf.
[15] R&S®SMIQ, Vector Signal Generator Operating Manual, 01.05.2002
http://www2.rohde-schwarz.com/file/smiqb_e11_bd1.pdf.
[16] Tekronix RSA6114A, Real Time Spectrum Analyzer Operating Manual,
http://www.tek.com/.
[17] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver Design for Wireless
Communications. Wiley, September 2007.
[18] J.G.Andrews, Arunabha Ghosh and Rias Muhamed, Fundamentals of
WiMAX-understanding Broadband Wireless Networking. Prentice Hall, Feb, 2007.
[19] H.-G. Ryu, Y. Li and J.-S. Park “An improved ICI reduction methods in OFDM
communication system,” IEEE Trans. Broadcast., vol. 51, pp.395, Sep. 2005.
[20] T.M. Schmidl and D.C. Cox, “Robust Frequency and Timing Synchronization for
OFDM,” IEEE Transactions on Communication, Vol. 45, No. 12, December 1997.
104
[21] M. Speth, F. Classen and H. Meyr, “Frame synchronization of OFDM systems in
frequency selective fading channel,” in Proc. IEEE Vehicular Technology
Conference, vol. 4, pp. 1807-1811, May 1997.
[22] T.Pollet, M. Van Bladel “ BER sensitivity of OFDM systems to carrier frequency
offset and Wiener phase noise,” IEEE Trans. Commun., vol. 43, pt. 1, pp. 191-193,
Feb.-Apr. 1995.
[23] S. Coleri, M. Ergen, A. Puri and A. Bahai, “A Study of Channel Estimation in
OFDM Systems,” in Proc. IEEE Vehicular Technology Conference, vol. 2, pp.
894-898, Vancouver, Canada, Sep. 2002.
[24] J. van de Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson, “On channel
estimation in OFDM systems,” in Proc. IEEE Vehicular Technology Conference,
vol. 2, pp. 815–819, Chicago, USA, July 1995.
[25] J. –J van de Beek, O.Edfors, M.Sandell, S. K. Wilson and P. O. Borjesson, “OFDM
channel estimation by singular value decomposition,” IEEE Trans. Commun, vol.
46, pp. 931-939, no. 7, Jul. 1998.
[26] ] X. Hou, Z. Zhang, and H. Kayama, “Low-Complexity Enhanced DFT-based
Channel Estimation for OFDM Systems with Virtual Subcarriers,” in Proc. IEEE
PIMRC’07, Sep. 2007.
[27] L. Deneire, P. Vandenameels, L. van der Perre, B. Guselinckx and M. Engels, “A
low-complexity ML channel estimator for OFDM,” IEEE Trans. Commun, vol. 51,
no. 2, pp. 135-140, Feb. 2003.
[28] Google earth, http://earth.google.com/userguide/v4/.
[29] Kim, H., J. H. Cho, S. Kim, K. U. Song, H. Lee, J. Lee, B. Kim, Y. Oh, J. Lee, and
S. Hwang, “Radio-over-fiber system for TDD-based OFDMA wireless
communication systems, ” J. Lightw. Technol., Vol. 25, 3419-3427, 2007.
[30] D. Wake, M. Webster, G. Wimpenny, K. Beacham, and L. Crawford, “Radio over
fiber for mobile communications,” in Proc. IEEE Int. Topical Meeting Microwave
Photonics, Ogunquit, ME, pp. 157–160, Oct. 2004.
[31] Chien-Hung Yeh, Chi-Wai Chow, Yen-Liang Liuand A. J. Paulraj, “Theory and
Technology for Standard WiMAX Over Fiber in High Speed Train Systems,” in
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 16, AUGUST 15,
2010
[32] David Tse, Pramod Viswanath, “Fundamentals of Wireless Communication”,
Cambridge University Press, 2005
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26964-
dc.description.abstract在本篇論文中,我們對於實作在WiMAX標準上的光載無線通信(RoF)技術有深入的討論,不管是同步優化技術,通道估計演算法還是後端解調效能。在同步方面,我們對於載波偏移估計,時間的粗同步與細同步都有充足的討論,另外對於頻率載波偏移追蹤(CFO tracking)也有完整的模擬分析。另一方面,在通道估計上,配合通道的頻域響應特性,我們發展出一套根據通道長度的適應性通道估計機制達到節省計算功率消耗的效果。我們進一步利用一正交分頻多工之通道量測系統在台灣高速鐵路的戶外與隧道環境下進行光載無線通信系統的量測,此量測系統並非昂貴且笨重的通道探測機,而是由一般的實驗儀器組成,因此在量測訊號上可以依據量測目的而設計。通道特性包含通道頻率響應、角擴散、功率延遲擴散、都卜勒頻譜與傳播損失都是我們量測的重點。由量測分析的結果,我們可以觀察出高鐵環境相當單純,其通道大部分都含有很強的直視波,且其傳播損失也很接近Friss formula所計算出來的值。我們亦根據量測的結果來探討台灣高鐵上WiMAX基地台配合光載無線通信(RoF)技術的佈建方案。此部分我們配合台灣所使用的WiMAX系統參數來模擬實際通訊傳輸時會產生的現象,並且提出三種狀況相互比較,一個是光纖佈建長度依造地理上的長度,另一個是在基地台端將所有光纖補成等長,最後一種狀況是利用開關控制演算法的機制來避免系統效能的降低。此模擬結果證明了使用開關控制演算法可以大幅提升系統效能。zh_TW
dc.description.abstractIn this thesis, we go into details on radio-over-fiber (RoF) wireless communication system based on WiMAX standard not only for synchronization but also channel estimation and detection performance. In view of synchronization, we discuss the synchronization procedure and algorithms such as carrier frequency offset (CFO) estimation, fine timing and CFO tracking. For another way, we describe the channel estimation methods for the channel measurement. According to the relationship between the variation of channel frequency response (CFR) and channel length, we propose an adaptive channel estimation mechanism which can save computing power. Furthermore, we apply an OFDM-based channel sounder to measure the channel characteristics of RoF system in Taiwan High Speed Rail (THSR) environment at the 2.5GHz band. This measurement system is made of general-purpose commercial equipments. Based on the requirement of channel measurement, the OFDM signal format is able to be flexibly designed. The channel characteristics we are going to measure are the frequency responses, delay spread, angular spread, Doppler spectrum and propagation loss. From the measurement result, a strong line of sight (LOS) component is usually observed and the measured path loss is close to the prediction by the Friss formula.
Radio over Fiber (RoF) technique is attractive for both extending the wireless cell coverage and reducing the cost by using distributed remote antenna units (RAUs). In order to observe multipath effect of WiMAX-RoF system in THSR, we use the Elektrobit C2 channel emulator to simulate three cases which are non-equal fiber length, equal fiber length and RAUs switching. From the simulation, we prove that switching on only one RAU at a time can indeed promote the performance of the whole system.
en
dc.description.provenanceMade available in DSpace on 2021-06-12T17:52:50Z (GMT). No. of bitstreams: 1
ntu-100-R98942104-1.pdf: 6030458 bytes, checksum: 968bd24b58213f60eca205069eccbe17 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
國立臺灣大學碩士學位論文 口試委員會審定書 ....................................................... I
致謝 ..............................................................................................................................II
摘要 ............................................................................................................................ III
Abstract ...................................................................................................................... IV
Contents ...................................................................................................................... VI
List of Figures ............................................................................................................. IX
List of Tables ........................................................................................................... XIII
Chapter 1 Introduction ........................................................................................................................................ 1
1.1 Motivation .................................................................................................. 1
1.2 Thesis Overview ......................................................................................... 2
Chapter 2 OFDM-based Channel Measurement System ....................................................................... 3
2.1 OFDM Modulation ..................................................................................... 3
2.2 WiMAX System Parameters ....................................................................... 8
2.2.1 Preamble Structure............................................................................. 9
2.2.2 Subcarrier Allocation ....................................................................... 10
2.2.3 Interleaver and Puncturing ............................................................... 11
2.3 Channel Characteristics............................................................................. 13
2.3.1 Power Delay Profile ......................................................................... 13
2.3.2 Doppler Spectrum ............................................................................ 14
2.3.3 Propagation Loss ............................................................................. 16
2.4 Measurement Equipments Setup ............................................................... 17
Chapter 3 Synchronization............................................................................................................................... 20
3.1 Packet Detection ....................................................................................... 20
3.2 Carrier Frequency Offset........................................................................... 21
3.2.1 Fractional Carrier Frequency Offset ................................................. 22
3.2.2 Inter-carrier Interference .................................................................. 25
3.2.3 Integer Carrier Offset ....................................................................... 27
3.3 Sampling Clock Offset .............................................................................. 28
3.4 Fine Symbol Timing ................................................................................. 30
3.5 Carrier Offset Tracking ............................................................................. 36
Chapter 4 Adaptive Channel Estimation..................................................................................................... 42
4.1 Pilot Pattern .............................................................................................. 42
4.2 Pilot-Based Channel Estimator.................................................................. 44
4.2.1 Least square Estimator ..................................................................... 44
4.2.2 Minimum Mean Square Error Estimator .......................................... 45
4.2.3 Linear Interpolation Estimator ......................................................... 47
4.2.4 Higher-Order Interpolation Estimator .............................................. 47
4.2.5 Time Domain Transform Estimator .................................................. 48
4.3 Adaptive Channel Estimation .................................................................... 54
Chapter 5 Channel Measurements in THSR Environment.................................................................. 62
5.1 Channel Measurement Setup ..................................................................... 63
5.1.1 Measurement Routes........................................................................ 65
5.1.2 Measurement Equipments ................................................................ 65
5.2 Data analysis............................................................................................. 68
5.2.1 Propagation Loss ............................................................................. 68
5.2.2 Doppler Frequency .......................................................................... 71
5.2.3 RMS delay spread ............................................................................ 74
5.2.4 Bit Error Rate Analysis .................................................................... 76
5.2.5 Power Delay Profile ......................................................................... 79
Chapter 6 WiMAX Over Fiber System in THSR .................................................................................... 85
6.1 Radio-over-Fiber (RoF) System ................................................................ 85
6.2 MIMO Channel Correlation in THSR ....................................................... 88
6.3 Initial Ranging in WiMAX Standard ......................................................... 91
6.4 Transmission Simulations of the RoF System............................................ 92
Chapter 7 Conclusion......................................................................................................................................... 99
References ………………………………………………………………………………....101
dc.language.isoen
dc.subject台灣高速鐵路zh_TW
dc.subject通道量測zh_TW
dc.subject正交分頻多工zh_TW
dc.subject光載無線通信zh_TW
dc.subjectChannel Measurementen
dc.subjectOFDMen
dc.subjectRoFen
dc.subjectWiMAXen
dc.subjectTHSRen
dc.title台灣高鐵之光載無線通訊系統設計zh_TW
dc.titleWiMAX over Fiber System Design for Taiwan High Speed Rail Wireless Communicationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林丁丙,闕志達,蘇柏青,曾銘健
dc.subject.keyword通道量測,正交分頻多工,光載無線通信,台灣高速鐵路,zh_TW
dc.subject.keywordChannel Measurement,OFDM,THSR,WiMAX,RoF,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2011-08-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved