Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26893
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor彭?堅(Kenneth-James Palmer)
dc.contributor.authorSyuan-Ren Huangen
dc.contributor.author黃炫仁zh_TW
dc.date.accessioned2021-06-08T07:30:59Z-
dc.date.copyright2008-07-02
dc.date.issued2008
dc.date.submitted2008-06-26
dc.identifier.citation[1] L.B. Chang and K.J. Palmer. Smooth convergence in the binomial model. Finance and Stochastics, 11(1), 91-105, 2007.
[2] J. Cox, S.A. Ross and M. Rubinstein. Option pricing: A simplified approach. Journal of Financial Economics, 7, 229-263, 1979.
[3] S. Heston and G. Zhou. On the rate of convergence of discrete-time contingent claims. Math. Finacne, 10, 53-75,2000.
[4] M.S. Joshi. Achieving smooth asymptotics for the prices of European option in the binomial trees.
[5] Y.S. Tian. A flexible binomial option pricing model. Journal of Futures Markets, 19, 817-843, 1990.
[6] M. Widdicks, A.D. Andricopoulos, D.P. Newton and P.W. Duck. On the enhanced convergence of standard lattice methods for option pricing. The Journal of Futures Markets, 22,315-338, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26893-
dc.description.abstract近年來衍生性金融商品發展相當迅速,亦發展出許多訂價商品的方法,例如二項樹、偏微分方程、平賭過程及蒙地卡羅法等等。其中二項樹模型是最簡單也廣泛的為人所用,但是其收斂並非平滑收斂,有許多學者為改善收斂行為,提出控制二項樹傾斜的參數,其中Flexible model, WAND model, Joshi model, center binomial model有著重要的地位。
在本篇文章中,我們利用彭栢堅教授以及張洛賓先生所提出的重要定理證明在WAND model中其作者發現但並未詳細說明的收斂行為,並且利用一些性質提出改善的模型以減少所需的計算量,最後我們觀察數值結果並與上樹的模型作比較。
zh_TW
dc.description.abstractThe products of derivative develop rapidly in recent years. There are many methods to price derivatives including
using binomial tree, partial differential equations, martingale methods, and Monte Carlo simulation, etc.
In these methods, binomial tree model is the simplest method that is used widely. The binomial model of Cox, Ross, and Rubinstein, CRR model, is well known.
But CRR model converge to correct option price oscillatory and non-monotonic.
Some models use a 'tilt' parameter that alters the shape and span of the binomial tree to improve the behavior of convergence.
In these models, Tian's flexible model, Widdicks, Andricopoulos, Newton, and Duck's WAND model, Joshi's model, and Chang and Palmer's center binomial model are significant.
In this article, we use the main theorem of Chang-Palmer to prove the convergence rate that is not unspecitied in their paper of WAND model, and we use some relation to estimate the implied n of WAND model to save the computation of using Newton-Raphson iteration.
Finally, we compared with the numerical results of these models.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:30:59Z (GMT). No. of bitstreams: 1
ntu-97-R93221011-1.pdf: 622697 bytes, checksum: ffcc2b546195ba17d08790e8e5f19872 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents1 Introduction [3]
2 The model of M. Widdicks, A.D. Andricopoulos, D. P. New-
ton, P.W. Duck [6] [6]
2.1 Description of WAND model [6]
2.2 Solution of equation (2.1) [8]
2.3 LOGWAND Model [10]
2.4 Comparison of WAND and LOGWAND models [15]
2.5 Convergence in the WAND and LOGWAND models [16]
2.5.1 The Main theorem of Chang and Palmer [16]
2.5.2 Smooth Convergence in the WAND and LOGWAND
models [18]
3 Other Methods to Achieve Smooth Convergence [29]
3.1 Joshi’s model [29]
3.2 Tian’s flexible model [31]
3.3 Chang and Palmer’s [33]
3.4 Comparison of the methods [34]
3.4.1 European Call Option [35]
3.4.2 Digital Call Option [36]
4 Conclusion [37]
dc.language.isoen
dc.subjectWAND 模型zh_TW
dc.subject二項樹zh_TW
dc.subject平滑收斂zh_TW
dc.subjectWAND modelen
dc.subjectsmooth convergenceen
dc.subjectbinomial modelen
dc.title二項樹的平滑收斂zh_TW
dc.titleSmooth Convergence in Binomial Treeen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂育道(Yuh-Dauh Lyuu),張森林(San-Lin Chung)
dc.subject.keyword二項樹,平滑收斂,WAND 模型,zh_TW
dc.subject.keywordbinomial model,smooth convergence,WAND model,en
dc.relation.page40
dc.rights.note未授權
dc.date.accepted2008-06-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
608.1 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved