請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26880
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙治宇 | |
dc.contributor.author | Han-Hsun Chang | en |
dc.contributor.author | 張涵勛 | zh_TW |
dc.date.accessioned | 2021-06-08T07:30:22Z | - |
dc.date.copyright | 2008-07-03 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-06-27 | |
dc.identifier.citation | chapter1
[1] Dyreklev P, and Inganas. O, J. Appl. Phys. 76 7915 (1994) [2] Dmitry K, Kirill A, Alexander K, Benjamin D, and Eli K, Nano Lett 7, 3583 (2007) [3] Grell M, Knoll W, Lupo D, Meisel A, Miteva T, Neher D, Nothofer H G, Scherf U, and Yasuda A, Adv. Mater. 11 671 (1999) [4] Dyreklev P, Berggren M, Inganas O, Andersson M R, Wennerstrom O, and Hjertberg T, Adv. Mater. 7 43 (1995) [5] Era M, Tsutsui T, and Saito S, Appl. Phys. Lett. 67 2436 (1995) [6] Lee H, Hwang W, Oh M, Park H, Zyung T and Kim J, Appl. Phys. Lett. 71 3779 (1997) [7] Burland D. M, Miller R. D, Reiser O, Twieg R. J, and Walsh C. A, J. Appl. Phys. 71 410 (1992) [8] Zijian Z, Keng-HoongY, Mohammad S. M. S, Mark E. W, Richard H. F, Ji-Seon K, and Wilhelm S. H, Nano Lett 7, 987 (2007) [9] Myung-Su K, Jin-Sung K, Jae C. C, Max S, L. Jay Guo,and Jinsang K, Appl. Phys. Lett. 90 123113 (2007) [10] Jian W, Xiaoyun S, Lei C, Lei Z, and S. Y. Chou, Appl. Phys. Lett. 77, 166 (2000) [11] Chou S. Y., Krauss P. R., Renstrom P. J., Science 272, 85 (1996) [12] Mauguin, C. Bull. Soc. fr. Miner. 34, 71 (1911) [13] Xia Y, and Whitesides G. M. Annu. Rev. Mater. Sci. 28 153 (1998) [14] Ma. S, Yan M, Lu X, Wang W, Chen Z, Liu P, Qu C, Lin S, and Ding A, Appl. Phys. Lett. 74 2065 (1999) [15] Cimrova V, Remmers M, Neher D, and Wegner G, Adv. Mater. 8 146 (1996) [16] Bastiaansen C, Schmidt H W, Nishino T, and Smith P, Polymer 34 3951 (1993) [17] Hu, Z, Baralia, G, Bayot, V,Gohy J.-F, Jonas A. M, Nano Lett. 5 1738 (2005) [18] Shklyarevskiy I. O, Jonkheijm P, Stutzmann N, Wasserberg D, Wondergem H. J, Chiristianen P. C. M, Schenning A. P. H, Leeuw D. M, Tomovic Z, Wu J, Mullen K, and Mann J. C, J. Am. Chem. Soc. 127 16233 (2005) [19] Xu Z. S, Lemieux R. P, and Natansohn A, Chem. Mater. 10 3269 (1998) [20] Jin S. H, Seo H. U, Nam D. H, Shin W. S, Choi J. H, Yoon U. C, Lee J. W, Song J. G, Shin D. M, and Gal Y. S, J. Mater. Chem. 15 5029 (2005) [21] Yitychaik S, Bella S. D, Lundquist P. M, Wong G. K, and Marks T. J, J. Am. Chem. Soc. 119 2995 (1997) [22] Buffeteau T, Labarthet F. L, Peyolet M, and Sourisseau C, Macromolecules 31, 7312 (1998) [23] Hagler T. W, Pakbaz K, Voss K. F, and Heeger A. J, Phys. Rev. B 44 8652 (1991) [24] Martin G, and Donal D. C. B, Adv. Mater. 11 895 (1999) [25] Berreman D. W, Phys.Rev.Lett 28 1683 (1972) [26] Chen Z, Kornfield J. A, Smith S. D, Grothaus J. T, and Satkow-shi M. M, Science 277, 1248 (1997) [27] Callaghan P. T, Kilfoil M. L, and Samulski E. T, Phys. Rev. Lett. 81, 4524 (1998) [28] Van Aerle N. A. J. M, Barmentlo M, and Hollering R. W. J, J.Appl.Phys 74, 3111 (1993) [29] Hutley M. C, Diffraction Gratings (Academic, New York) (1982) [30] Haverkorn van Rijsewijk H. C, Legierse P. E. J, and Thomas G. E, Philips Tech. Rev 40 287 (1982) [31] Terris B. D, Mamin H. J, Best M. E, Logan J. A, Rugar D, and Rishton S. A, Appl. Phys. Lett. 69 4262 (1996) [32] Kiewit D. A, Rev. Sci. Instrum. 44 1741 (1973) chapter2 [1] B. Bahadur, “Liquid Crystal Application and Uses Vol.1”, World Scientific (1990) [2] P. Yeh and C.Gu, “Optics of Liquid Crystal Displays”, Wiley (1999) [3] E. Lueder, “Liquid Crystal Displays. Addressing Schemes and Electro-optical effects”, John Wiley & Sons, New York (2001) [4] G.. Stojmenovik, “Ion Transport and Boundary Image Retention in Nematic Liquid Crystal Displays”, Universiteit Gent (2004) [5] D. W. Berreman, Phys.Rev.Lett 28 1683 (1972) chapter3 [1] G. H. Heilmeier and L. A. Zanoni, Appl. Phys. Lett., 13, 91 (1968) [2] G.. Stojmenovik, “Ion Transport and Boundary Image Retention in Nematic Liquid Crystal Displays”, Universiteit Gent (2004) [3] P. Yeh and C.Gu, “Optics of Liquid Crystal Displays”, Wiley (1999) chapter4 [1] Xia Y, and Whitesides G. M. Annu. Rev. Mater. Sci. 28 153 (1998) [2] Sputter Deposition, William D. Westwood, AVS Education Committee Book Series, Vol. 2 (2003) [3] S. H. Sia, Master Thesis, Chapter 3, N. T. U. Taiwan (2005) [4] M. Hamaguchi, Katsumi Y, Appl. Phys. Lett 67 3381 (1995) [5] M. Era, T. Tsutsui, S. Saito, Appl. Phys. Lett 67 2437 (1995) [6] Grell M, Knoll W, Lupo D, Meisel A, Miteva T, Neher D, Nothofer H G, Scherf U, and Yasuda A, Adv. Mater. 11 671 (1999) [7] Dyreklev P, Berggren M, Inganas O, Andersson M R, Wennerstrom O, and Hjertberg T, Adv. Mater. 7 43 (1995) chapter5 [1] M. Hamaguchi, Katsumi Y, Appl. Phys. Lett 67 3381 (1995) [2] M. Era, T. Tsutsui, S. Saito, Appl. Phys. Lett 67 2437 (1995) [3] Grell M, Knoll W, Lupo D, Meisel A, Miteva T, Neher D, Nothofer H G, Scherf U, and Yasuda A, Adv. Mater. 11 671 (1999) [4] Dyreklev P, Berggren M, Inganas O, Andersson M R, Wennerstrom O, and Hjertberg T, Adv. Mater. 7 43 (1995) [5] D. W. Berreman, Phys.Rev.Lett 28 1683 (1972) [6] de Gennes, P. G., “Prost, J. The Physics of Liquid Crystals” Clarendon: Oxford, (1993) [7] J. H. Kim, M. Yoneya, J. Yamamoto, and H. Yokoyama, Nanotechnology 13 133 (2002) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26880 | - |
dc.description.abstract | 溝槽結構的製造和應用在顯示器、光電、電子工業一直很受到重視,其中一個理由是因為溝槽具有導引分子的功能。而有序分子在光電、電子元件等領域中具有很重要的應用前景。過去的方式通常是將細微溝槽製造在高分子薄膜上(摩擦或是光學微影)來配向分子。但是這樣的方式可能會產生靜電、灰塵,或者製程相對複雜,而且應用到可撓式元件上時,其多層結構也可能會有脆裂的問題。
在本研究中,我們使用複製成形法,直接將奈米溝槽轉印到軟性高分子基板上,來改進脆裂的問題,不同以往的高分子薄膜,我們是讓基板本身就具有配向液晶分子的功能,做出不需額外配向層的可撓式扭轉向列型液晶元件。 此外,應用液晶會受到溝槽導引的特性,我們還發展出一個簡單的方法來配向單軸分子。把液晶和染料分子同時摻入熱固型液態高分子裡,在複製成形的過程中,液晶分子會延著溝槽的方向排列,而染料分子就會受到液晶分子的導引而具有方向性。我們對經配向的染料分子做光致螢光光譜的量測,當偏振方向和溝槽方向平行時,螢光強度最大;兩者垂直的時候,螢光強度最弱,由此結果發現染料分子確實延著溝槽方向排列。光學吸收光譜的量測也支持這樣的結果。 | zh_TW |
dc.description.abstract | A lot of attention has been paid to the fabrication and application of grooves in electro-optical display and electronic industry. One of the reasons is that grooves can be used to control the alignment of molecules. The alignment ability of molecules has shown potential for applications in electro-optical and electronics industries. Traditionally, Grooves are often fabricated on thin polymer films via rubbing or photolithography to align molecules. However, dust and static charges can be introduced through these manufacturing processes and they are relatively complicated. Moreover, when we apply them to flexible devices, the multi-layer configurations may crack.
In this thesis, we transfer the microgroove patterns onto the Poly(dimethylsiloxane) (PDMS) substrate to avoid the cracks by means of replica molding method. Different from traditional polymer alignment layers, the bendable materials serve not only as substrates but also as alignment layer; thus, we successfully fabricated the flexible alignment-layer free twisted nematic liquid crystal cell. By means of the character that liquid crystal can be guided by grooves, we also developed an easy approach to align uniaxial molecules. The uniaxial molecules and liquid crystal molecules are mixed with the PDMS. During the cured process, the liquid crystals are oriented along the grating direction, and the uniaxial dye molecules are oriented by liquid crystal. In the photoluminescence measurement, the luminescence intensity is strongest when the grating direction of the samples is parallel to the polarization direction of polarizer and weakest when the grating direction of the samples is perpendicular to the polarization direction of polarizer. It shows that the molecules have macroscopic anisotropic orientation. The measurements of optical absorption spectrum also support the results. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:30:22Z (GMT). No. of bitstreams: 1 ntu-97-R95222061-1.pdf: 3346225 bytes, checksum: e86ab2384e0fa7a8ff0233c96e4cd5b4 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables xi Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Molecular alignment Methods 3 1.3 Grooves Fabrication Methods 5 1.3.1 Rubbing 5 1.3.2 Photolithography 6 1.3.3 Nanoimprint Lithography 7 1.3.4 Electron Beam Lithography 8 1.4 Replica Molding Method 9 1.5 Overview 10 1.5.1 Flexible Alignment Layer Free LC Cell 11 1.5.2 Approach to Align Molecules 11 References: 12 Chapter 2 Introduction to Liquid Crystals 15 2.1 Types of Liquid Crystals 15 2.2 Physical Properties of Liquid Crystals 18 2.2.1 Orientational Order Parameter 19 2.2.2 Dielectric Constants 20 2.2.3 Refractive Index 21 2.2.4 Elastic Constants 22 2.2.5 Surface Alignment and Rubbing 23 2.3 Theory of LC Alignment via Grooves 24 References: 27 Chapter 3 Liquid Crystal Display 28 3.1 Basic Components and Principles of Operation of LCDs 28 3.2 Twisted Nematic (TN) Liquid Crystal Display 30 3.3 Parallel Aligned Liquid Crystal Display 32 References: 35 Chapter 4 Experimental Methods 36 4.1 Flexible Alignment Layer Free LC Cell 37 4.1.1 Substrate Preparation 37 4.1.2 Replica Molding 38 4.1.3 Electrode Layers 41 4.1.4 Cell Assembly 42 4.1.5 Measurement of Electro-Optical Properties 43 4.2 Uniaxial Dye Molecules Alignment 46 4.2.1 Mixing Process 46 4.2.2 Liquid Crystal Assisted Replica Molding 47 4.2.3 Photoluminescence Spectra 49 4.2.4 Absorption Spectra 51 References: 52 Chapter 5 Results & Discussion 53 5.1 Flexible Alignment Layer Free LC Cell 53 5.1.1 Observation with Microscope 53 5.1.2 The anchoring energy of LC Alignment via grooves 56 5.1.3 Observation of The Molds 58 5.1.4 Electro-Optical Properties of TN-LC Cell 59 5.2 Uniaxial Dye Molecules Alignment 61 5.2.1 Photoluminescence Spectra Measurements 61 5.2.2 Optical Absorption Spectra Measurements 66 5.2.3 The interaction between LC and DCMII 71 Reference: 74 Chapter 6 Conclusion 75 | |
dc.language.iso | en | |
dc.title | 複製成形法製備溝槽結構之應用 | zh_TW |
dc.title | The Fabrication and Application of Groove Structures by Using Replica Molding Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 曹培熙,梁啟德,朱士維 | |
dc.subject.keyword | 複製成形法,無配向層,有序分子,液晶顯示器,軟基板,溝槽結構, | zh_TW |
dc.subject.keyword | Replica Molding Method,Alignment-layer free,Molecular alignment,Liquid crystal display,Soft substrate,Groove structures, | en |
dc.relation.page | 76 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-06-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。