請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26879
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳希立 | |
dc.contributor.author | Meng-Hsun Wu | en |
dc.contributor.author | 吳孟勳 | zh_TW |
dc.date.accessioned | 2021-06-08T07:30:19Z | - |
dc.date.copyright | 2008-07-03 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-06-27 | |
dc.identifier.citation | 參考文獻
1. Semi-conductor Industry Association, International Technology Roadmap for Semiconductors, 2006 Update. 2. Phelan P., Chiriac V., Lee T.T., 'Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics,' Proceedings of the Seventeenth SEMI-THERM Symposium, IEEE, 2001, p. 158-167. 3. Naeemi A., Meindl J.D., 'An upper limit for aggregate I/O interconnect bandwidth of GSI chips constrained by power dissipation,' Proceedings of the International Interconnect Technology Conference, IEEE, 2004, p. 157-159. 4. Schmidt R.R., Notohardjono B.D., 'High-end Server Low-Temperature Cooling,' IBM Journal of Research and Development 46, no. 6 (2002): 739-751. 5. Peeples J., 'Vapor Compression Cooling for High Performance Applications,' Electronics Cooling 7, no. 3 (2001). 6. Harper, D. R. and Brown, “Mathematical Equations for Heat Conduction in the Fins if Air Cooled Engines,” NACA Report No.158, 1922. 7. Murray, M. N., “Heat Transfer Through an Annular Disk or Fin of Uniform Thickness,” Trans. ASME, J. Applied Mech., 60, A78, 1938. 8. D. Strassberg, 'Cooling Hot Microprocessor,' EDN, Vol. 39, pp. 40-50, 1994. 9. R.C. Chu, “Thermal management roadmap cooling electronic products from handheld device to supercomputers,” MIT Rohsenow Symposium, Cambridge, MA, May 2002. 10. 邱治凱,「毛細熱板性能之研究」,碩士論文,國立臺灣大學機械工程學研究所,民國九十四年六月(2005)。 11. Kolander, W.L., and Lyon, H.B., 'Thermoelectric Cooler Utility for Electronic Applications,' ASME HTD-Vol. 239, National Heat Transfer Conference, Vol. 7, 1996. 12. Vandersande, J.W., and Fleurial, J-P., 'Thermal Management of Power Electronics Using Thermoelectric Coolers,' Proceedings of the 15th International Conference on Thermoelectrics, pp. 252-255, 1996. 13. Stockholm, J.G., 'Current State of Peltier Cooling,' Proceedings of the 16th International Conference on Thermoelectrics, pp. 37-46, 1997. 14. Morelli, D.T., 'Potential Applications of Advanced Thermoclectrics in the Automobile Industry,' Procecdings of the 13th International Conference on Thermoclcctrics, pp. 383-386, 1996. 15. Kraus, AD., Cooling Electronic Equipment, Prcntice-Hall, New York, NY, 1965. 16. P. E. Phelan, “Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics”, Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, March 20-22, 2001, pp. 158-167. 17. Suwat Trutassanawin, Eckhard A. Groll, Suresh V. Garimella, and Lorenzo Cremaschi, “Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling.” IEEE Transactions on components and packaging technologies, Vol. 29, No. 3, Sep. 2006. 18. N. S. Ashraf, H. C. Carter, K. Casey, L. C. Chow, S. Corban, M. K. Drost, A. J. Gumm, Z. Hao, A. Q. Hasan, J. S. Kapat, L. Kramer, M. Newton, K. B. Sundaram, J. Vaidya, K. Yerkes, and C. C. Wong, “Design and Analysis of a Meso-Scale Refrigerator,” in ASME International Mechanical Engineering Congress & Exposition, Nashville, Tennessee, November 1999. 19. H. C. Carter, L. C. Chow, J. S. Kapat, A. Laveau, K. B. Sundaram, and J. Vaidya, “Component Fabrication and Testing for a Meso-Scale Refrigerator,”, AIAA Paper no. 99-4514, 1999. 20. M. A. Shannon, M. L. Philpott, N. R. Miller, C.W. Bullard, D. J. Beebe, A. M. Jacobi, P. S. Hrnjak, T. Saif, N. Aluru, H. Sehitoglu, A. Rockett, and J. Economy, “Integrated Mesoscopic Cooler Circuits (IMCCS),” in Proceedings of the ASME Advanced Energy Systems Division, vol. AES-39, 1999, pp. 75–82. 21. A. Laveau, J. S. Kapat, L. C. Chow, E. Enikov, and K. B. Sundaram, “Design, Analysis and Fabrication of a Meso-Scale Centrifugal Compressor,” in ASME International Mechanical Engineering Congress & Exposition, Orlando, Florida, November 5-10, 2000. 22. R. Trujillo, J.I. Mou, P.E. Phelan, and D. S. Chau, “A Prototype Mesoscale Compressor Using Electrostrictive Actuation,” Energy Conversion & Management, 2001, submitted for publication. 23. R. Trujillo, J.I. Mou, P.E. Phelan, and D. S. Chau, “A Prototype Mesoscale Compressor Using Electrostrictive Actuation,” Energy Conversion & Management, 2001, submitted for publication. 24. J. S. Kolodzey, “Cray-1 computer technology,” IEEE Trans. Compon., Hybrids, Manufact. Technol., Vol. CHMT-4, No. 2, pp. 181-186, Jun. 1981. 25. Ellsworth M.J., Schmidt R.R., Angonafer D., 'Design and Analysis of a scheme to mitigate condensation on an assembly used to cool a processor module,' IBM Journal of Research and Development 46, no. 6 (2002): 753-761. 26. Chow L.C., Ashraf N.S., Carter III H.C., Casey K., Corban S., Drost M.K., Gumm A.J., Hao Z., Hasan A.Q., Kapat J.S., Kramer L., Newton M., Sundaram K.B., Vaidya J., Wong C.C., Yerkes K., 'Design and Analysis of a Meso-Scale 79 Refrigerator,' Proceedings of the ASME International Mech. Eng. Congr. and Expos., ASME, 1999, p. 1-8. 27. Peeples, J.W., “Vapor Compression Cooling for High Performance Applications”, Electronics Cooling, Vol. 7, pp. 16-24. 2001. 28. R. R. Schmidt and B. D. Notohardjono, “High-End server low-temperature cooling,” IBM J. Res. Develop., Vol. 46, pp. 739-751, 2002. 29. Heydari A., 'Miniature vapor compression refrigeration systems for active cooling of high performance computers,' Proceedings of the Inter Society Conference on Thermal Phenomena, IEEE, 2002, p. 371-378. 30. Maveety, J.G., et. al., “Thermal Management for Electronics Cooling Using a Miniature Compressor,” International Microelectronics and Packaging Society, Palo Alto, CA, October 24-26, 2002. 31. Phelan P.E., Swanson J., Chiriac F., Chiriac V., 'Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronics,' Proceedings of the Inter Society Conference on Thermal Phenomena, IEEE, 2004, p. 218-23. 32. Wadell R., Experimental Investigation of Compact Evaporators for Ultra Low Temperature Refrigeration of Microprocessors, M.S. Thesis, Georgia Institute of Technology, 2005. 33. Mongia R., Masahiro K., DiStefano E., Barry J., Weibo C., Izenson M., Possamai F., Zimmermann A., Mochizuki M., 'Small Scale Refrigeration System for Electronics Cooling within a Notebook Computer,' IEEE, 2006, p. 751-758. 34. Asetek, Inc., 2006, www.asetek.com. 35. Suwat Trutassanawin, Eckhard A. Groll, Suresh V. Garimella, and Lorenzo Cremaschi, “Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling.” IEEE Transactions on components and packaging technologies, Vol. 29, No. 3, Sep. 2006. 36. A.G. Agwu Nnanna, “Application of refrigeration system in electronics cooling”, Applied Thermal Engineering 26 (2006) 18–27. 37. Charles Lee Coggins ,“Single- And Multiple-Stage Cascaded Vapor Compression Refrigeration For Electronics Cooling”, George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology ,2007. 38. P.E. Phelan and J. Swanson, “Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronic,” in Proc. Inter Soc. Conf. Thermal Themomech. Phenom. Electron. Syst. (I-THERM), Las Vegas, NV, Jun. 1-4, 2004, pp. 218-223. 2004. 39. Chow, L.C., Ashraf, N.S., Carter III, H.C., Casey, K., Corban, S., Drost, M.K., Gumm, A.J., Hao, Z., Hasan, A.Q., Kapat, J.S., Kramer, L., Newton, M., Sundaram, K.B., Vaidya, J., Wong, C.C., Yerkes, K., “Design and Analysis of a Meso-Scale Refrigerator,” Proc. ASME Int. Mech. Eng. Congr. and Expos., ASME: pp. 1-8. 1999. 40. Yovanovich M. M., Culham J. R. and Teertstra P., “Calculating interface resistance,” Electronics Cooling, Vol.3, No.2, 1997. 41. Jaeseon Lee,Issam Mudawar, “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics,” International Journal of Heat and Mass Transfer Volume 48, Issue 5, February 2005, Pages 941-955. 42. 虞晉瑞,「蒸氣壓縮循環式電子散熱系統之性能研究」,碩士論文,國立臺灣大學機械工程學研究所,民國九十六年六月(2007)。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26879 | - |
dc.description.abstract | 本研究設計並製造微流道蒸發器,應用於蒸氣壓縮循環式電子散熱系統中。實驗規劃穩態及動態實驗,設計完整的實驗方法與流程,分析各實驗參數對系統性能之影響。實驗結果顯示本研究所開發之散熱系統最大散熱(冷凍)能力為250~400W、COP由1.7~3、第二定律效率最高達70%,並同時對熱源溫度做控制。
穩態實驗中,微流道蒸發器有效將CPU底板的熱和冷媒做熱交換,提升系統COP;微流道極高熱交換能力使得冷媒過熱,但是過多的氣態冷媒使得蒸發熱阻隨加熱瓦數提高呈指數型增加,本研究深入探討冷媒在微流道中兩相之流動機制,建立兩相蒸發熱阻理論模式驗證實驗結果,最後歸納出適當蒸發溫度對熱源溫度做控制。 動態實驗中,動態蒸發溫度可改變微流道中冷媒之流量與乾度,在加熱瓦數提升時,動態選取適當蒸發溫度,對CPU溫度做最佳化控制。未來將縮小系統體積及壓縮機變頻的方式,將蒸汽壓縮應用於電子散熱中。 | zh_TW |
dc.description.abstract | This research apply Micro-channel Evaporator to Vapor Compression Refriger- ation System (VCRS) for electrical Cooling. Steady and transient States experimental investigations are conducted to analysis the thermal properties depends on the design experimental factor.The cooling capacity of the VCRS varied from 250W to 400W, with COP from 1.7 to 3, at pressure ratios of 1.6 to 2.8.The highest overall second-law efficiency was 70%.
In steady state experiment. Micro-channel evaporator efficiently make the heat exchange between CPU base and the evaporator, improving the coefficient of perfor- mance .Because of the icreacing heat load ,too much gass R-134a decreased the heat transfer coefficient.This research discussed the mechanism of the two phase flow in high-heat-flux micro-channel ,using evaporator thermal resistance model in order to predict and control the CPU temperature. In transient experiment.Transient evaporator temperature can control R-134a quality and mass flow rate .A complete experimental and numerical medole was built and tested in order to find out optimimal control of the CPU temperature. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:30:19Z (GMT). No. of bitstreams: 1 ntu-97-R95522102-1.pdf: 2562852 bytes, checksum: 8e6487190922f59b4a7a686fbe3a381d (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄
摘要 I Abastract II 目錄 III 表目錄 V 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 文獻回顧 6 1-4 研究目的 9 第二章 基礎理論 17 2-1 蒸氣壓縮循環原理 17 2-2 熱力學第二定律分析 21 2-3 表面效率與兩相熱對流係數 25 2-3.1. 兩項熱對流係數 25 2-3.2. 表面效率 26 2-4 熱阻分析模式 30 第三章 實驗設備及研究方法 41 3-1 系統說明 41 3-1.1. 系統元件說明 42 3-1.2. 實驗設備與量測儀器 46 3-2 實驗參數 51 3-2.1. 穩態冷媒填充量 51 3-2.2. 穩態熱源加熱功率 52 3-2.3. 穩態蒸發溫度 52 3-2.4. 動態CPU熱源加熱功率 53 3-2.5. 動態蒸發溫度 53 3-2.6. 熱源溫度控制 54 3-3 實驗流程 55 3-3.1. 冷媒填充量實驗 55 3-3.2. 穩態實驗 56 3-3.3 動態實驗 57 3-4 誤差分析 59 第四章 結果與討論 85 4-1 冷媒填充量對系統之影響 85 4-2 穩態加熱瓦數對系統之影響 87 4-2.1. 穩態加熱瓦數對系統COP之影響 87 4-2.2. 穩態加熱瓦數對系統過熱度之影響 88 4-2.3. 穩態加熱瓦數對蒸發熱阻之影響 89 4-3 穩態蒸發溫度對系統之影響 91 4-3.1. 穩態蒸發溫度對壓縮比之影響 91 4-3.2. 穩態蒸發溫度對系統COP之影響 91 4-3.3. 穩態蒸發溫度對第二定律效率之影響 92 4-3.4. 穩態蒸發溫度對流量與乾度 93 4-3.5. 穩態蒸發溫度對蒸發熱阻 94 4-4 穩態熱阻模擬 96 4-4.1. 模擬過程 96 4-4.2. 模擬結果與討論 97 4-5 動態應用下之系統性能分析 100 4-5.1. 動態加熱功率對系統之影響 100 4-5.2. 動態蒸發溫度對系統之影響 101 4-5.3. 動態CPU溫度控制對系統之影響 102 第五章 結論與建議 127 5-1 結論 127 5-2 建議 129 參考文獻 131 | |
dc.language.iso | zh-TW | |
dc.title | 微流道蒸氣壓縮循環電子散熱系統 | zh_TW |
dc.title | Micro-channel Vapor Compression Refrigeration System for Electrical Cooling | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳輝俊,李文興,江沅晉 | |
dc.subject.keyword | 微流道,蒸氣壓縮循環,電子散熱,溫度控制, | zh_TW |
dc.subject.keyword | Micro-channel Vapor compression refrigeration cycle,Electronic cooling,Temperature control, | en |
dc.relation.page | 135 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-06-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。