請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26846完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張倉榮(Tsang-Jung Chang) | |
| dc.contributor.author | Shu-Yu Huang | en |
| dc.contributor.author | 黃舒郁 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:28:36Z | - |
| dc.date.copyright | 2008-07-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-04 | |
| dc.identifier.citation | [1] 謝怡芳,2004,「三維度紊流大渦模擬在多區間建築物室內環境風場之應用研究」,國立台灣大學生物環境系統工程學系研究所碩士論文。
[2] 林玫珊,2005,「計算生態流體力學在三維度自由液面植栽帶流場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士論文。 [3] 胡庭訓,2005,「多區間建築物室內懸浮微粒傳輸機制之數值硏究」,國立台灣大學生物環境系統工程學研究所碩士論文。 [4] 黃為華,2005,「建築物群排列方式對街谷環境風場與懸浮微粒傳輸之影響硏究」,國立台灣大學生物環境系統工程學研究所碩士論文。 [5] 陳均美,2006,「人工濕地對懸浮固體排除機制之數值模擬」,國立台灣大學生物環境系統工程學研究所碩士論文。 [6] 蘇炯彰,2006,「ALE寬頻元素法於不可壓縮流之發展與應用」,國立臺灣大學機械工程學研究所碩士論文。 [7] 顧可欣,2007,「三維度魚道水理及魚體行進力能之數值模擬硏究」,國立台灣大學生物環境系統工程學研究所碩士論文。 [8] Abt, E., Suh, H.H., Catalano, P., Koutrakis, P., 2000. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science & Technology 34: 3579-3587. [9] Ahmad, K., Khare, M., Chaudhry, K.K., 2002. Model vehicle movement system in wind tunnels for exhaust dispersion studies under various urban street configurations. Journal of Wind Engineering and Industrial Aerodynamics 90: 1051-1064. [10] Alexander, F.J., Chen, S., Sterling, J.D., 1993. Lattice Boltzmann thermohydrodynamics. Physical Review E 47: R2249 - R2252. [11] Bertrand-Krajewski, J.L., Campisano, A., Creaco, E., Modica, C., 2005. Experimental analysis of the hydrass flushing gate and field validation of flush propagation modelling. Water Science and Technology 51: 129-137. [12] Bhatnagar, P.L., Gross, E.P., Krook, M., 1954. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component system. Physical Review 94: 511-525. [13] Bouzidi, M., Firdaouss, M., Lallemand, P., 2001. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids 13: 3452-3459. [14] Chen, H., Chen, S., Matthaeus, W.H., 1992. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method . Physical Review A 45: 5339-5342. [15] Chen, S., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 30: 329-364. [16] Chen, S.Y., Martinez, D., Mei, R.W., 1996. On boundary conditions in lattice Boltzmann methods. Physics of Fluids 8: 2527-2536. [17] Choi, S.U., Kang, H.S., 2004. Reynolds stress modeling of vegetated open-channel flows. Journal of Hydraulic Research 42: 3-11. [18] d'Humières, D., Lallemand, P., Frisch, U., 1986. Lattice Gas Models for 3D Hydrodynamics. Europhysics Letters 2: 291-297. [19] Dutta, S., Panigrahi, P.K., Muralidhar, K., 2007. Sensitivity of a Square Cylinder Wake to Forced Oscillations. Journal of Fluids Engineering 129: 852-870. [20] Frisch, U., Hasslacher, B., Pomeau, Y., 1986. Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters 56: 1505-1508. [21] Garcia Sagrado, A.P., van Beeck, J., Rambaud, P., Olivari, D., 2002. Numerical and experimental modelling of pollutant dispersion in a street canyon. Journal of Wind Engineering and Industrial Aerodynamics 90: 321-339. [22] Gerald, C.F., Wheatley, P.O., 1984. Applied numerical analysis. Addison-Wesley publishing company., [23] Hardy, J., de Pazzis, O., Pomeau, Y., 1976. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions. Physical Review A 13: 1949-1961. [24] He, X., Doolen, G., 1997. Lattice Boltzmann method on curvilinear coordinates system:flow around a circular cylinder. Journal of Computational Physics 134: 306-315. [25] Higuera, F.J., Jiménez, J., 1989. Boltzmann approach to lattice gas simulations. Europhysics Letters 9: 663-668. [26] Higuera, F.J., Succi, S., Benzi, R., 1989. Lattice gas dynamics with enhanced collisions. Europhysics Letters 9: 345-349. [27] Hou, S.L., Zou, Q., Chen, S.Y., Doolen, G., Cogley, A.C., 1995. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics 118: 329-347. [28] Kastner-Klein, P., Berkowicz, R., Plate, E.J., 2000. Modelling of vehicle-induced turbulence in air pollution studies for streets. International Journal of Environment and Pollution 14: 496-507. [29] Ladd, A.J.C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics Digital Archive 271: 285-309. [30] Ladd, A.J.C., 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics Digital Archive 271: 311-339. [31] Lallemand, P., Luo, L.S., 2003. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics 184: 406-421. [32] Liu, F.B., Feyen, J., Berlamont, J., 1995. Downstream control of multireach canal systems. Journal of Irrigation and Drainage Engineering 121: 179-190. [33] McNamara, G.R., Zanetti, G., 1988. Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters 61: 2332-2335. [34] Miller, W., 1995. Flow in the driven cavity calculated by the lattice Boltzmann method. Physical Review E 51: 3659-3669. [35] Murilo, F.T., Sean, M., 1994. GENSMAC: a computational marker and cell method for free surface flows in general domains. Journal of Computational Physics 110: 171-186. [36] Nagayama, K., Tanaka, K., 2006. 2D-PIV analysis of loach motion and flow field. Journal of Visualization 9: 393-401. [37] Oden, J.T., Strouboulis, T., Devloo, P., 1986. Adaptive finite element methods for the analysis of inviscid compressible flow: Part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes. Computer Methods in Applied Mechanics and Engineering 59: 327-362. [38] Pearce, W., Baker, C.J., 1997. Wind-tunnel investigation of the effect of vehicle motion on dispersion in urban canyons. Journal of Wind Engineering and Industrial Aerodynamics 69-71: 915-926. [39] Qian, Y.H., D'Humières, D., Lallemand, P., 1992. Lattice BGK models for Navier-Stokes equation. Europhysics Letters 17: 479-484. [40] Siddiqui, M.H.K., 2007. Velocity measurements around a freely swimming fish using PIV. Measurement Science & Technology 18: 96-105. [41] Succi, S., 2001. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press., New York. [42] Thorne, D., 2007, Personal Communication. [43] Wei, S., Richard, W.S., Udaykumar, H.S., Madhukar, M.R., 1996. Computational fluid dynamics with moving boundaries. Taylor & Francis, Inc., Washington DC. [44] Wolf-Gladrow, D.A., 2000. Lattice-gas cellular automata and lattice Boltzmann models:an introduction. Springer., New York. [45] Xia, J., Y.C. Leung, D., 2001. Pollutant dispersion in urban street canopies. Atmospheric Environment 35: 2033-2043. [46] Yu, D., Mei, R., Luo, L.S., Shyy, W., 2003. Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences 39: 329-367. [47] Zou, Q., He, X., 1997. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids 9: 1591-1598. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26846 | - |
| dc.description.abstract | 在流體問題的探討之中,當使用計算流體力學方法來模擬流場時,首先必須將所要探討的流場區域切割成若干個網格後,再進行Navier-Stokes方程式的離散計算。當遭遇到具有移動物體的流場問題時,傳統計算流體力學方法如有限體積法等,在進行此類移動邊界問題之模擬時,常受到網格必須排除移動固體障礙物的限制,因此在障礙物附近的網格必須隨計算時間不斷地重新切割與調整,使得整體計算處理的複雜程度增加。所以,找尋更有效率處理移動邊界的計算方法一直是目前計算流體力學所努力的目標。在本研究中,我們以新概念計算流體力學的數值方法¬—晶格波茲曼法(lattice Boltzmann method)為基礎,配合上Lallemand及Luo(2003)所提出處理移動邊界問題的數值模式,以該模式中固體邊牆的反彈機制(bounce back)與二次內插法(quadratic interpolation),來模擬具有移動邊界之流場。本研究中利用晶格波茲曼法中不需要將流場進行重新切割變形之優點,來解決以往傳統計算流體力學方法處理移動邊界時,必須要將網格隨計算時間不斷進行更動變形或是重新切割之缺點。
在本研究中,首先我們以二維度層流流況下具外部移動邊界的簡單剪力流(Couette flow)作為模擬目標,配合上傳統有限體積法的運用,藉此比較晶格波茲曼法與有限體積法兩者間的計算效率以及精確度。由結果可以看出晶格波茲曼法有著與有限體積法相近的精確度,而其計算效率則優於有限體積法,因此可認定晶格波茲曼法確實為一有效率且具精確度的計算流體力學方法。 接著本研究使用晶格波茲曼法,配合當中移動邊界之數值模式去模擬一個有障礙物振盪運動的長直渠道。當該障礙物以不同倍數關係的渦街頻率進行振盪運動時,計算其後方尾流區域的速度剖面,並與Dutta等人(2007)以顆粒顯影流速儀所測得之實驗值相互比對,其模擬驗證結果相當不錯。此結果顯示出晶格波茲曼法除了具有效率這項優勢外,亦能夠對於移動邊界的問題,進行有效的處理。 | zh_TW |
| dc.description.abstract | In fluid dynamics, numerical approaches are one of the powerful methods to analyze fluid fields. When traditional numerical methods are used to simulate a flow field, the first step is to divide the flow field into many discrete grids. The discrete Navier-Stokes equation of each grid is next computed. If there exists moving boundaries in the fluid field, these grids need to be re-computed or transformed in each time step. Thus, the traditional computational fluid dynamics (CFD) methods such as finite volume method (FVM) are computationally intensive, if there are moving boundaries in the fluid field. Therefore, the abatement of the computational complexities in numerical methods for processing the moving boundaries in fluid fields is the major issue of present study.
In this thesis, a new numerical method, the Lattice Boltzmann Method (LBM), is introduced. LBM is combined with a numerical technique for solving the moving boundary given by Lallemand and Luo (2003), who proposed a simple bounceback scheme and a quadratic interpolation method. LBM does not need to perform the same re-computed or transformed works used in the traditional CFD, thus the performance of LBM is much better than the traditional CFD methods. Firstly, we use LBM to simulate the 2-D Couette flow and compare the efficiency and accuracy with each other. The results of the simulations show that the efficiency of LBM is better than FVM and the accuracy remains the same as FVM. We also use LBM to simulate a channel flow over a forced oscillating obstacle. In this simulation, we analyze the wake areas of the forced obstacle in several oscillating frequencies. These results are compared with the experiment of the particle image velocimetry conducted by Dutta et al. (2007). The numerical results are found to be in good agreement with the experimental data. Thus, it is concluded that LBM is efficient in processing moving boundary flow problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:28:36Z (GMT). No. of bitstreams: 1 ntu-97-R95622026-1.pdf: 1351710 bytes, checksum: 4b9a8468876fcc2442d72f475b0035e1 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………… i
誌謝……………………………………………………………………… ii 中文摘要………………………………………………………………… iv Abstract………………………………………………………………… vi 目錄………………………………………………………………………viii 圖目錄…………………………………………………………………… x 表目錄……………………………………………………………………xii 第一章、緒論………………………………………………………………1 1.1研究背景……………………………………………………………… 1 1.2研究目的……………………………………………………………… 6 第二章、晶格波茲曼法理論方法介紹………………………………… 8 2.1波茲曼方程式………………………………………………………… 8 2.2晶格氣體法……………………………………………………………10 2.3晶格波茲曼法…………………………………………………………13 第三章、晶格波茲曼法數值方法介紹………………………………… 19 3.1晶格BGK模式…………………………………………………………19 3.2晶格波茲曼法的基礎演算步驟………………………………………24 3.3邊界條件………………………………………………………………27 3.4移動邊界的計算模式…………………………………………………33 3.5晶格波茲曼法的演算流程……………………………………………41 第四章、數值模式與簡單剪力流解析解驗證………………………… 53 4.1具外部移動邊界二維剪力流之數值模式驗證………………………53 4.2晶格波茲曼法與解析解之比較………………………………………54 4.3晶格波茲曼法與有限體積法數值解之比較…………………………57 第五章、障礙物振盪運動案例研究…………………………………… 65 5.1移動邊界模式之案例研究……………………………………………65 5.2障礙物靜止不振盪之模擬……………………………………………67 5.3障礙物於流場中進行振盪運動之模擬………………………………72 第六章、結論與建議…………………………………………………… 91 6.1結論……………………………………………………………………91 6.2建議……………………………………………………………………92 參考文獻………………………………………………………………… 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 渦街頻率 | zh_TW |
| dc.subject | 晶格波茲曼法 | zh_TW |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 移動邊界 | zh_TW |
| dc.subject | 方柱振盪運動 | zh_TW |
| dc.subject | Moving boundary | en |
| dc.subject | Lattice Boltzmann method | en |
| dc.subject | Vortex shedding frequency | en |
| dc.subject | Square-Cylinder oscillation | en |
| dc.subject | Computational fluid dynamic | en |
| dc.title | 晶格波茲曼法於障礙物強制振盪運動之數值探討 | zh_TW |
| dc.title | Lattice Boltzmann Method for Forced Square-Cylinder Oscillation Problems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王藝峰(Yi-Feng Wang),朱佳仁(Chia-Ren Chu),陳明志(Ming-Jyh Chern),謝正義(Cheng-I Hsieh) | |
| dc.subject.keyword | 晶格波茲曼法,計算流體力學,移動邊界,方柱振盪運動,渦街頻率, | zh_TW |
| dc.subject.keyword | Lattice Boltzmann method,Computational fluid dynamic,Moving boundary,Square-Cylinder oscillation,Vortex shedding frequency, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
