請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26845完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Chun-Kai Yang | en |
| dc.contributor.author | 楊竣凱 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:28:33Z | - |
| dc.date.copyright | 2008-07-16 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-07 | |
| dc.identifier.citation | Chapter 1
[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982). [2] Z. H. Sun, Master Thesis, National Taiwan University (2007). [3] R. Dingle, H. L. Störmer , A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978). [4] H. L. Störmer, R. Dingle, A. C. Gossard, W. Wiegmann, and M. D. Struge, Solid state Commun. 29, 705 (1979). [5] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, Jpn J. Appl. Phys. 19, L255 (1980). Chapter 2 [1] W. J. Shieu, Master Thesis, National Taiwan University (2007). [2] R. E. Prange, Phys. Rev. B 23, 4802 (1981). [3] H. Aoki and T. Ando, Solid state Commun. 38, 1079 (1981). [4] Z. H. Sun, Master Thesis, National Taiwan University (2007). [5] K. von Klitzing, G.. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980). [6] K. von Klitzing, Surf. Sci. 113, 1 (1982). [7] The website of Dr. D.R. Leadley in the Physics Department at Warwick University. [8] M. Büttiker, Phys. Rev. B 38, 9375 (1988). [9] B. Jeckelmann and B. Jeanneret, The Quantum Hall effect as an Electrical Resistance Standard, Poincaré Seminar (2004). [10] S. McPhail, C. E. Yasin, A. R. Hamilton, M. Y. Simmons, E. H. Linfield, M. Pepper, and D. A. Ritchie, Phys. Rev. B 70, 245311 (2004). [11] M. Y. Simmons, A. R. Hamilton, M. Pepper, E. H. Linfield, P. D. Rose, and D. A. Ritchie, Phys. Rev. Lett. 84, 2489 (2000). [12] D. E. Khmelnitskii, Physica B 126, 235 (1984). [13] S. Hikami, A.I. Larkin and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980). Chapter 3 [1] T. Y. Huang, Ph. D Thesis, National Taiwan University (2005). [2] J. Y. Lin, Master Thesis, National Taiwan University (2006). [3] Operator’s Handbook of HelioxTL Superconducting Magnet System. Chapter 4 [1] P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997); A. G. Huibers, J. A. Folk, S. R. Patel, C. M. Marcus, C. I. Duruoz, and J. S. Harris, Jr., Phys. Rev. Lett. 83, 5090 (1999). [2] D. Natelson, R. L. Willett, K. W. West and L. N. Pfeiffer, Phys. Rev. Lett. 86, 1821 (2001). [3] Z. Ovadyahu, Phys. Rev. B 63, 235403 (2001). [4] D. P. Pivin, Jr., A. Anderson, J. P, Bird and D. K. Ferry, Phys. Rev. Lett. 82, 4687 (1999). [5] D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett. 81, 1074 (1998). [6] A. Kaminski and L. I. Glazman, Phys. Rev. Lett. 86, 2400 (2001). [7] S. Hikami, A.I. Larkin and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980). [8] H Scherer, L Schweitzer, F J Ahlers, L Bliek, R Losch and W Schlapp, Semicond. Sci. Technol. 10, 963 (1995). [9] A. K. Wennberg, S. N. Ytterboe, C. M. Gould, H. M. Bozler, J. Klem, and H. Morkoc, Phys. Rev. B 34, 4409 (1986). [10] P. L. Gammel, D. J. Bishop, J. P. Eisenstein, J. H. English, A. C. Gossard, R. Ruel, and H. L. Stormer, Phys. Rev. B 38, 10128 (1988). [11] R. P. Feynmann and A. R. Hibbs, Quantum Mechanics and Path Integerals, McGraw-Hill (1965). [12] R. Shankar, Principles of Quantum Mechanics 2nd edition (1994). [13] B. L. Altshuler, D. Khmelnitskii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980). [14] C. W. J. Beenakker and H. van Houten, Phys. Rev. B 38, 3232 (1988). [15] J. J. Lin and J. P. Bird, J. Phys.: Condens. Matter 14, R501 (2002). [16] H. Fukuyama, J. Phys. Soc. Japen 48, 2169 (1980). [17] A. F. Braña, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Munoz, and F. Omnes, J. Appl. Phys. 88, 932 (2000). [18] P. T. Coleridge, A. S. Sachrajda, and P. Zawadzki, Phys. Rev. B 65, 125328. (2002). [19] M.Y. Simmons, A. R. Hamilton, M. Pepper, E. H. Linfield, P. D. Rose, and D. A. Ritchie, Phys. Rev. Lett. 84, 2489 (2000). [20] Z. J. Qiu, Y. S. Gui, T. Lin, N. Dai, J. H. Chu, N. Tang, J. Lu, and B. Shen, Phys. Rev. B 69, 125335 (2004). [21] Z. J. Qiu, Y. S. Gui, T. Lin, J. Lu, N. Tang, B. Shen, N. Dai, and J. H. Chu, Solid State Commun. 131, 37 (2004). [22] K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Rev B 36, 7751 (1987). [23] E. Abrahams, P.W. Anderson, P.A. Lee, T.V. Ramakrishnan, Phys. Rev. B 24, 6783 (1981). [24] K.K. Choi, Phys. Rev. B 28, 5774 (1983). [25] H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988). [26] A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988). [27] H Scherer,L Schweitzer, F J Ahlers, L Bliek, R Losch and W Schlapp, Semicond. Sci. Technol. 10, 963 (1995). [28] T. Brandes, L. Schweitzer and B. Kramer, Phys. Rev. Lett. 72, 3582 (1994). [29] T. Brandes, L. Schweitzer and B. Kramer, Proc. 11th Int. Conf. on High Magnetic Fields in Semiconductor Physics (MIT Cambridge) (1994). [30] J. J. Lin, T. J. Li and Y. L. Zhong, J. Phys. Soc. Jpn. 72, 7 (2003). [31] S. McPhail, C. E. Yasin, A. R. Hamilton, M. Y. Simmons, E. H. Linfield, M. Pepper, and D. A. Ritchie, Phys. Rev. B, 70, 245311 (2004). [32] J. J. Lin and L. Y. Kao, J. Phys.: Condens. Matter 13, L119 (2001). [33] Y. Imry, H. Fukayama, and P. Schwab, Europhys. Lett. 47, 608 (1999). [34] A. Zawadowski, J. von Delft, and D. C. Ralph, Phys. Rev. Lett. 83, 2632 (1999). [35] G..Kastrinakis, Phys. Rev. B 72, 075137 (2005); F.Pierre, A. B. Gougam, A. Anthore, H. Pothier, D. Esteve, and N. O. Birge, Phys. Rev. B 68, 085413 (2003). [36] F. Pierre, H. Pothier, D. Esteve, M. H. Devoret, A. B. Gougam, and N. O. Brige, Kondo Effect and Dephasing in Low-Dimensional Metallic Systems (Kluwer, Dordrecht, 2001). [37] B. L. Al’tshuler, M. E. Gershenson, and I. L. Aleiner, Physica E (Amsterdam) 3, 58 (1998). [38] B. L. Al’tshuler, Pis’ma Zh. Eksp. Teor. Fiz. 41, 530 (1985). Chapter 5 [1] C.-T. Liang, Yen Shung Tseng, Jau-Yang Wu, Sheng-Di Lin, Chun-Kai Yang, Yu-Ru Li, Kuang Yao Chen, Po-Tsun Lin, and Li-Hung Lin, Appl. Phys. Lett. 92, 132111 (2008). [2] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982). [3] K. von Klitzing, Surf. Sci. 113, 1 (1982). [4] L. Bliek, E. Braun, F. Melchert, P. Warnecke, W. Schlapp, G. Weimann, K. Ploog, and G. E. Dorda, IEEE Trans. Instr. Meas. IM-34, 304 (1985). [5] B. Jeckelmann and B. Jeanneret, Phys. Rev B 55, 13124 (1997). [6] F. Delahaye and B. Jecklmann, Metrologia, 40, 217 (2003). [7] J. Matthew and M. E. Cage, J. Rep. Natl. Inst. Stand. Technol. 110, 497 (2005). [8] N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials”, Oxford University Press, 2nd edition (1997). [9] M. M. Fogler, A. Yu Dobin, V. I. Perel, and B. I. Shklovskii, Phys. Rev. B 56, 6823 (1997). [10] John Singleton, “Band Theory and Electronic Properties of Solids”, Oxford University Press (2001). [11] R. J. Nicholas, R. A. Stradling, and R. J. Tidey, Solid State Commun. 23, 341 (1977). [12] S. Kawajii and J. Wakabayashi, Solid State Commun. 22, 87 (1977). [13] M. Pepper, J. Phys. C 10, L173 (1977). [14] R. J. Nicholas, R. A. Stradling, S. Askenazy, P. Perrier, and J. C. Portal, Surf. Sci. 73, 106 (1978). [15] A. Usher, R. J. Nicholas, J. J. Haris, and C. T. Foxon, Phys. Rev. B 41, 1129 (1990). [16] Y. Ono, J. Phys. Soc. Jpn. 51, 237 (1982). [17] E. Stahl, D. Weiss, G.. Weimann, K. von Klitzing, and K. Ploog, J. Phys. C 18, 783 (1985); H. P. Wei, A. M. Chang, D. C. Tsui, and M. Razeghi, Phys. Rev. B 32, 7016 (1985). [18] M. G.. Gavrilov and I. V. Kukushkin, JETP Lett. 43, 103 (1986). [19] T. P. Smith, B. B. Goldberg, P. J. Stiles, and M. Heiblum, Phys. Rev. B 32, 2696 (1985). [20] E. Gornik, R. Lassnig, G.. Strasser, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 54, 1820 (1985). [21] J. P. Eisenstein, H. L. Störmer, V. Narayanamurti, A. Y. Cho, A. C. Gossard, and C. W. Tu, Phys. Rev. Lett. 55, 875 (1985). [22] M. Y. Simmons, A. R. Hamilton, M. Pepper, E. H. Linfield, P. D. Rose, and D. A. Ritchie, Phys. Rev. Lett. 84, 2489 (2000). [23] Klaus von Klitzing, Rev. Mod. Phys. 58, 519 (1986). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26845 | - |
| dc.description.abstract | 本篇論文主要描述在二維砷化鎵電子系統下加熱電子與遷移率能隙的研究。本論文包含下列兩個主題:
1.弱局域化效應和加熱電子在弱無序砷化鎵二維電子系統下之研究 我們研究在低場下弱無序二維砷化鎵異質結構的傳輸特性,將相位鬆弛率對晶格溫度的關係當成溫度計,用來測量不同電流相對應的有效電子溫度在最低的晶格溫度。我們得到電流尺度關係式和觀察到零溫相位破壞。鐵磁性材料可能導致相位鬆弛率變的較大。 2. 遷移率能隙在具閘極砷化鎵二維電子系統下之研究 我們完成在具閘極砷化鎵二維電子氣成長在半絕緣砷化鎵基板上磁傳輸特性的量測。利用縱向電阻率最小值在量子霍爾域對溫度的關係,去探討遷移率能隙在不同偏壓下的性質。我們觀察到遷移率能隙對磁場的關係是線性的,不論所加的偏壓為何。在所有的偏壓下,遷移率能隙在填充係數等於2的量子霍爾態接近相對應的蘭道能隙。所以,對電阻度量衡學來說,霍爾電阻在填充係數等於2的量子霍爾平台是夠精確的。其它相對應較大填充係數的遷移率能隙遠離理論上的蘭道能隙,因為量子局域化效應在低磁場下是不顯著的。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:28:33Z (GMT). No. of bitstreams: 1 ntu-97-R95222024-1.pdf: 1826689 bytes, checksum: 2cdde41399a124a50767ab28e721fd8f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Chapter 1
Introduction to two-dimensional electron system 1 1.1 Two-dimensional electron system………………………………1 1.2 The modulation doped GaAS/AlGaAs heterostructure………2 1.3 Density ofstates…………………………………………………4 1.4 Varing carrier concentration in a 2DES……………………7 1.5 References…………………………………………………………9 Chapter 2 Theoretical background 10 2.1 Classical Hall effect…………………………………………10 2.2 Landau quantization……………………………………………14 2.2.1 Landau levels…………………………………………………14 2.2.2 Shubnikov-de Hass oscillations…………………………16 2.2.3 Integer quantum Hall effect………………………………17 2.2.4 Edge state………………………………………………………19 2.3 Weak localization………………………………………………21 2.4 References…………………………………………………………24 Chapter 3 Sample fabrication and Experimental techniques 25 3.1 Sample fabrication………………………………………………25 3.1.1 Hall bar…………………………………………………………25 3.1.2 Ohmic contacts……………………………………………27 3.1.3 Sample packaging and handing…………………………28 3.2 Cryogenic system: Sorption pumped 3He cryostat…………29 3.2.1 Previous work………………………………………………29 3.2.2 3He condensing……………………………………………30 3.2.3 Controlling the temperature……………………………31 3.3 Four-terminal resistance measurements……………………32 3.4 References…………………………………………………………33 Chapter 4 Weak localization and electron heating in weakly-disordered AlGaAs/GaAs two-dimensional electron systems 34 4.1 Introduction………………………………………………………34 4.2 Theory………………………………………………………………36 4.2.1 Two bath model……………………………………………36 4.2.2 Weak localization…………………………………………37 4.3 Sample structure and Experiment……………………………40 4.4 Results and discussion…………………………………………42 4.5 Conclusion…………………………………………………………51 4.6 References…………………………………………………………52 Chapter 5 Mobility gap in a gated AlGaAs/GaAs two-dimensional electron system 54 5.1 Introduction………………………………………………………54 5.2 Theory………………………………………………………………56 5.3 Sample structure and Experiment……………………………58 5.4 Results and discussion…………………………………………59 5.5 Conclusion…………………………………………………………69 5.6 References…………………………………………………………70 Chapter 6 Conclusion and suggestions for future work 72 | |
| dc.language.iso | en | |
| dc.subject | 加熱電子 | zh_TW |
| dc.subject | 弱局域化效應 | zh_TW |
| dc.subject | 閘極偏壓 | zh_TW |
| dc.subject | 二維電子氣 | zh_TW |
| dc.subject | 遷移率能隙 | zh_TW |
| dc.subject | 2DEG | en |
| dc.subject | Mobility gap | en |
| dc.subject | Gate voltage | en |
| dc.subject | Electron heating | en |
| dc.subject | Weak localization | en |
| dc.title | 二維砷化鎵電子系統加熱電子與遷移率能隙之研究 | zh_TW |
| dc.title | Electron heating and mobility gap in GaAs two-dimensional electron systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林立弘(Li-Hung Lin),張本秀(Pen-Hsiu Chang) | |
| dc.subject.keyword | 二維電子氣,弱局域化效應,加熱電子,閘極偏壓,遷移率能隙, | zh_TW |
| dc.subject.keyword | 2DEG,Weak localization,Electron heating,Gate voltage,Mobility gap, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-07 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
