請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26748完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
| dc.contributor.author | Grace Jui-Chih Lin | en |
| dc.contributor.author | 林瑞治 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:23:46Z | - |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-19 | |
| dc.identifier.citation | References:
Akinwunmi, O. and Lucas J.A. (2001). The plant defense activator acibenzolar-S-methyl primes cowpea seedlings for rapid induction of resistance. Physiol. Mol. Plant Pathol. 58, 199-208. Ausubel, F.M., Katagiri, F., Mindrinos, M. and Glazebrook J. (1995). Use of Arabidopsis thaliana defense-related mutants to dissect the plant response to pathogens. Proc. Natl. Acad. Sci. U S A. 10, 4189-96 Barre, A., Hervé, C., Lescure, B., and Rougé, P. (2002). Lectin receptor kinases in plants. Critical Rev. in Plant Sci. 21, 379-399. Becraft, P.W. (1998). Receptors kinases in plant development. Trends Plant Sci. 3, 384-388. Berardini, T.Z., Mundodi, S. and Reiser, L. (2004). Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol. 135, 745–755. Bouché, N. and Bouchez, D. (2001). Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4, 111-117. Brill, L.M., Evans, C.J. and Hirsch, A.M. (2000). Expression of MsLEC1- and MsLEC2-antisense genes in alfalfa plants causes severe developmental and reproductive abnormalities. Plant J. 25, 453–61. Campell, B.R. and Bonner, B.A. (1986). Evidence for phytochrome regulation of gibberellin A20 3-hydroxylation in shoots of dwarf (lele) Pisum sativum. Plant Physiol 82, 909–915. Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006). Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814. Conrath, U., Thulke, O., Katz, V., Schwindling, S. and Kohler, A. (2001). Priming as a mechanism in induced systemic resistance of plants. Eur. J. Plant Pathol. 107, 113-119. Côté, F. and Hahn, M.G. (1994). Oligosaccharins: structures and signal transduction. Plant Mol. Biol. 26, 1379-1411. Dempsey, D.A., Shah, J. and Klessig, D.F. (1999). Salicylic Acid and Disease Resistance in Plants. Crit. Rev. Plant Sci. 18, 547- 575. Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1, 316-323. Glzebrook, J. (2001). Genes controlling expression of defense responses in Arabidopsis – 2001 status. Curr. Opin. Plant Biol. 4, 301-308. Gouget, A., Senchou, V., Govers, F., Sanson, A., Barre, A., Rougé, P., Pont-Lezica, R. and Canut, H. (2006). Lectin receptor kinases participate in protein-prtoein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140, 81-90. Hammerschmidt, R. and Dann, E.K. (1999). The role of phytoalexins in plant protection. Novartis Found Symp. 223, 175-187. He, Z.H., He, D. and Kohorn, B.D. (1998). Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J. 14, 55-63. Hervé, C., Dabos, P., Galaud, J.P., Rougé, P. and Lescure, B. (1996). Characterization of an Arabidopsis thaliana gene that defines a new class of putative plant receptor kinases with an extracellular lectin-like domain. J. Mol. Biol. 258, 778-788. Hirsch A.M. (1999). Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol. 2, 320-326. Hulten, M.V., Pelser, M., Loon, L.C.V., Pieterse, C.M.J. and Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 5602-5607. Jones, J.D.G. and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. and Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. U S A 19, 7100-7105. Kauss, H. and Jeblick, W. (1995). Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol. 108, 1171- 1178. Kim, G.T., Yano, S., Kozukad, T. and Tsukaya, H. (2005). Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem. Photobiol. Sci. 4, 770–774. King, E.O., Ward, M.K. and Raney, D.E. (1954). Two simple media for the demonstration of pyocyanin and fluorescein.J. Lab. Clin. Med. 44, 301-307. Kloek, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F. and Kunkel, B.N. (2001). Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana corontatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26, 509-522. Kohler, A., Schwindling, S. and Conrath, U. (2002) Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol. 128, 1046-1056. Kunkel, B.N. and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325-331. Lee, M.W., Lu, H., Jung, H.W. and Greenberg, J.T. (2007). A Key Role for the Arabidopsis WIN3 Protein in Disease Resistance Triggered by Pseudomonas syringae That Secrete AvrRpt2. Mol. Plant Microbe. Interact. 20, 1192–1200. Li, J., Nagpal, P., Vitart, V., McMorris, T.C. and Chory, J. (1996). A role for brassi- nosteroids in light-dependent development of Arabidopsis. Science 272, 398–401. Mita, S., Murano, N., Akaike, M. and Nakamura, K. (1997b). Mutants of Arabi- dopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J 11, 841–851. Mur, L.A.J., Naylor, G., Warner, S.A.J., Sugars, J.M. and White, R. (1996). Salicylic acid potentiates defense gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J. 9, 559-571. Norman-Setterblad, C., Vidal, S., Palva, E. (2000). ET: interacting signal pathways control defense gene expression in Arabidopsis. Mol. Plant Microbe. Interact. 13, 430-438. Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P. and Broekaert, W.F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. 10, 2103-2113. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J. and Parker, J.E. (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111-1120. Reymond, P. and Farmer, E.E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol. 1, 404-411. Riemann, M., Müller, A., Korte, A., Furuya, M., Weiler, E.W. and Nick, P. (2003). Impaired induction of the jasmonate pathway in the rice mutant hebiba1. Plant Physiol. 133, 1820–1830. Riou, C., Herve, C., Pacquit, V., Dabos, P. and Lescure, B. (2002). Expression of an Arabidopsis lectin kinase receptor gene, lecRK-a1, is induced during senescence, wounding and in response to oligogalacturonic acids. Plant Physiol. Biochem. 40, 431-438. Rüdiger, H. (1984). On the physiological role of plant lectins. BioScience 34, 95–99. Rüdiger, H. and Gabius H.J. (2001). Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J. 18, 589- 613. Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y. and Hunt, M.D. (1996). Systemic acquired resistance. Plant Cell 8, 1809–1819 Ryan C. and Farmer, E.F. (1991). Oligosaccharide signals in plants : a current assessment. Annu. Rev. Plant Physiol. Mol. Biol. 42, 651-674. Scheggia, C., Prisco, A.E., Dey, P.M., Daleo, G.R. and Pont-Lezica, R. (1988). Alteration of lectin pattern in potato tuber by virus X. Plant Sci. 58, 9–14. Shakirova, F.M., Bezrukova, M.V., Khayrullin, R.M. and Yamaleev, A.M. (1993). The increase in lectin level in wheat shoots under the action of salt stress. Izv Ross Akad Nauk Ser Biol., 142–5 Sharon, N. and Lis, H. (1989). Lectins as cell recongnition molecules. Science 246, 227-234. Shirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A. and Lamb, C. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9, 261-270. Singh, P., Bhaglal, P. and Bhullar, S. (2000). Wheat germ agglutinin (WGA) gene expression and ABA accumulation in the developing embryos of wheat (Triticum aestivum) in response to drought. Plant Growth Regulation 30, 145–50 Sticher, L., Mauch-Mani, B. and Metraux, J.P. (1997). Systemic acquired resistance. Phytopathol. 35, 235-270. Thulke, O.U. and Conrath, U. (1998). Salicylic acid has a dual role in the activation of defense-related genes in parsley. Plant J. 14, 35-42. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Métraux, J.P. and Mauch-Mani, B. (2005). Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17, 987-999. Turner, J.G., Ellis, C. and Devoto, A. (2002). The jasmonate signal pathway. Plant Cell 14(Suppl), S153-S164. Vandenbussche, F. and Van Der Straetenl, D. (2005). Of light and length: regulation of hypocotyl growth in Arabidopsis. BioEssays 27, 275–284. Wang, X., Zafiau, P., Choudhary, M. and Lawton, M. (1996). The PR5K receptor kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc. Natl. Acad. Sci USA 94, 2598-2602. Zhai, Q., Li, C.B., Zheng, W., Wu, x., Zhao, J., Zhou, G., Jiang, H., Sun, J., Lou, Y. and Li, C. (2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol. 7, 1061-71. Zimmerli, L., Jakab, G., Métraux, J.P., and Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97, 12920-12925. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26748 | - |
| dc.description.abstract | “促發效應”(priming) 是指植物在面對生物和非生物逆境時能啟動更快和更強的防禦反應的一種生理情况。 許多天然物質和人造化合物都可以促使植物進入這樣的一個所謂“警戒狀態”或“促發狀態”,可是這個現象的分子機制到目前為止都還不清楚。 為了辨識參與在這個分子機制的基因,我們使用一種人造化學藥品名叫β-aminobutyric acid,簡稱 BABA,做為研究促發效應的媒介。這種原本不存在植物體本身的物質,不僅幫助植物抵抗各式各樣的生物及非生物逆境,還能在不嚴重影響植物的適應(fitness)下,強化被啟動的防禦反應。根據基因晶片的結果,我們挑選了28個對BABA有特殊反應的基因,並利用有 T-DNA插入的阿拉伯芥的突變株進行BABA所造成根抑制和對抗蕃茄細菌性斑點病病原菌(Pseudomonas syringae pv tomato DC3000) 的反應測試。經過篩選後,一個凝集素激酶受體的突變株 (lecRK-a1)不但對BABA具有更明顯的根抑制情況,對蕃茄細菌性斑點病病原菌也不再保有抗病的效果。失去抗病的現象被認為跟缺乏防禦蛋白質PR-1 (PATHOGENESIS-RELATED 1) 的表現量有很大的關連。 然而,這樣的防禦缺失並沒有在感染其他病原菌中被觀察到。總結來說,這個凝集素激酶受體基因在BABA所誘導對抗蕃茄細菌性斑點病病原菌的抗性是不可獲缺的。 另外,我們觀察到,此基因在原生種被感病的情況下,很快被誘導表現。因此,這個基因極可能是在參與在很上游的植物和微生物戶相辨認的互動中。 | zh_TW |
| dc.description.abstract | “Priming” is defined as a physiological condition in which plants are able to better or more rapidly mount defense responses to biotic or abiotic stresses. Many natural or synthetic compounds can alert plants to enter a so-called ‘alarmed’ or ‘primed state.’ However, the molecular mechanism of priming remains unclear at this moment. To elucidate its mechanism, the priming inducer, β-aminobutyric acid (BABA), was employed as a tool to discover genes involved in priming. The xenobiotic BABA enhances plant resistance to a wide range of biotic and abiotic stresses without a significant tradeoff in plant fitness. Twenty eight Arabidopsis T-DNA insertion lines selected from a group of BABA-responsive genes were tested for their responses to BABA- inhibition of root growth and BABA-induced resistance (BABA-IR) to the virulent bacteria, Pseudomonas syringae pv tomato DC3000 (Pst DC3000). A lectin receptor kinase mutant (lecRK-a1) demonstrated enhanced BABA-mediated root growth inhibition and a deficiency in BABA-IR against Pst DC3000. Absence of PR-1 (PATHOGENESIS-RELATED 1) potentiation was correlated with this deficiency even though the lecRK-a1 mutant still responded normally towards other virulent and avirulent pathogens. We conclude that this lectin receptor kinase is necessary for BABA-IR and BABA-mediated priming of Arabidopsis defense responses towards virulent bacteria. Since LecRK-a1 is induced early during infection, it may be involved in plant-microbe recognition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:23:46Z (GMT). No. of bitstreams: 1 ntu-97-R95b43038-1.pdf: 2978274 bytes, checksum: 61d3f6571c2f9af15ae2175a58e3c1f3 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Table of contents
碩士論文口試委員審定書 謝誌 中文摘要 Abstract List of figures List of tables Abbreviations Introduction……………………………………………1 Material and Methods…………………………………8 1. Screening of Homozygous mutant plants…………….8 2. Root Growth assay……………………………………..9 3. Light treatment………………………………………..10 4. Measurement of anthocyanin content……………….10 5. Hypocotyl measurement under different light sources………………………………………………….11 6. BABA treatment……………………………………….11 7. Hyaloperonospora parasitica Bioassays………………12 8. Pseudomonas syringae Bioassays……………………..12 9. Colony Forming Unit (CFU) counting……………….13 10. RNA extraction and cDNA biosynthesis……………..14 11. Real-time PCR…………………………………………14 Results………………………………………………….16 1. Screening of BABA-responsive kinase and phosphatase genes……………………………………..16 2. Salk_083045 is a knockout line of At3g59700……….20 3. Mutant lecRK-a1 exhibited multiple developmental defects…………………………………………………..22 4. Mutant lecRK-a1 shows enhanced BABA-mediated root growth inhibition and appears to be less sensitive to MeJA ……………………………………..24 5. Mutant lecRK-a1 is impaired in the light response………………………………………………..28 6. Mutant lecRK-a1 is altered in BABA-mediated protection against virulent Pst DC3000, but responds normally to avirulent bacteria and oomycete pathogens………………………………………………32 7. LecRK-a1 is induced early after bacterial inoculation……………………………………………..40 Discussion……………………………………………...42 1. Screening with a reverse genetic approach identifies a mutant impaired in BABA-mediated priming………..42 2. Morphological defects of lecRK-a1 mutant suggest a role of LecRK-a1 in plant development and light-mediated response………………………………..44 3. LecRK-a1 regulates BABA priming of SA-dependent defenses against Pst DC3000 and is likely to function at the recognition level……………………………………46 Conclusion and future perspectives …………………50 Appendix………………….….………………………..52 References…………………………………………......54 | |
| dc.language.iso | en | |
| dc.subject | β-aminobutyric acid | zh_TW |
| dc.subject | 促發效應 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 凝集素 | zh_TW |
| dc.subject | 激酶 | zh_TW |
| dc.subject | 受體 | zh_TW |
| dc.subject | 逆境 | zh_TW |
| dc.subject | 抗病反應 | zh_TW |
| dc.subject | receptor protein kinase | en |
| dc.subject | pathogen response | en |
| dc.subject | priming | en |
| dc.subject | Arabidopsis thaliana | en |
| dc.subject | β-aminobutyric acid | en |
| dc.subject | lectin | en |
| dc.subject | stress | en |
| dc.title | 探討阿拉伯芥中一凝集素在β-aminobutyric acid誘導所造成priming現象的功能性分析 | zh_TW |
| dc.title | Functional analysis of a lectin receptor kinase in BABA-mediated priming | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝旭亮,韋保羅 | |
| dc.subject.keyword | 促發效應,阿拉伯芥,β-aminobutyric acid,凝集素,激酶,受體,逆境,抗病反應, | zh_TW |
| dc.subject.keyword | priming,Arabidopsis thaliana,β-aminobutyric acid,lectin,receptor protein kinase,stress,pathogen response, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-22 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
