Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26730
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游偉絢(Wei-Hsuan Yu)
dc.contributor.authorHuang-You Leeen
dc.contributor.author李黃佑zh_TW
dc.date.accessioned2021-06-08T07:22:56Z-
dc.date.copyright2008-08-13
dc.date.issued2008
dc.date.submitted2008-07-23
dc.identifier.citation[1] Pekovich, S.R., Bock, P.E. and Hoover, R.L. (2001). Thrombin-thrombomodulin activation of protein C facilitates the activation of progelatinase A. FEBS Lett 494, 129-32.
[2] Rudolph-Owen, L.A., Chan, R., Muller, W.J. and Matrisian, L.M. (1998). The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res 58, 5500-6.
[3] Przybylo, J.A. and Radisky, D.C. (2007). Matrix metalloproteinase-induced epithelial-mesenchymal transition: tumor progression at Snail's pace. Int J Biochem Cell Biol 39, 1082-8.
[4] Jorda, M., Olmeda, D., Vinyals, A., Valero, E., Cubillo, E., Llorens, A., Cano, A. and Fabra, A. (2005). Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118, 3371-85.
[5] Barbera, M.J. et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23, 7345-54.
[6] Yokoyama, K., Kamata, N., Fujimoto, R., Tsutsumi, S., Tomonari, M., Taki, M., Hosokawa, H. and Nagayama, M. (2003). Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol 22, 891-8.
[7] Kuphal, S., Palm, H.G., Poser, I. and Bosserhoff, A.K. (2005). Snail-regulated genes in malignant melanoma. Melanoma Res 15, 305-13.
[8] Wu, H.L. et al. (2008). Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochem Biophys Res Commun 367, 162-8.
[9] Van de Wouwer, M., Collen, D. and Conway, E.M. (2004). Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 24, 1374-83.
[10] Hanly, A.M., Hayanga, A., Winter, D.C. and Bouchier-Hayes, D.J. (2005). Thrombomodulin: tumour biology and prognostic implications. Eur J Surg Oncol 31, 217-20.
[11] Koutsi, A., Papapanagiotou, A. and Papavassiliou, A.G. (2008). Thrombomodulin: From haemostasis to inflammation and tumourigenesis. Int J Biochem Cell Biol 40, 1669-73.
[12] Kurosawa, S. (1989). The role of complex formation and epidermal growth factor-like domains in the regulation of blood coagulation by the thrombomodulin-protein C system. Nippon Ketsueki Gakkai Zasshi 52, 1343-9.
[13] Boffa, M.C. and Bourin, M.C. (1984). Endothelial cell membrane and plasma protein interaction: The thrombomodulin-protein C system. Rev Fr Transfus Immunohematol 27, 807-16.
[14] Van de Wouwer, M. and Conway, E.M. (2004). Novel functions of thrombomodulin in inflammation. Crit Care Med 32, S254-61.
[15] Kokkola, R. et al. (2005). RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 61, 1-9.
[16] Abeyama, K. et al. (2005). The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115, 1267-74.
[17] Esmon, C. (2005). Do-all receptor takes on coagulation, inflammation. Nat Med 11, 475-7.
[18] Huang, H.C., Shi, G.Y., Jiang, S.J., Shi, C.S., Wu, C.M., Yang, H.Y. and Wu, H.L. (2003). Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278, 46750-9.
[19] Hanly, A.M. and Winter, D.C. (2007). The role of thrombomodulin in malignancy. Semin Thromb Hemost 33, 673-9.
[20] Acloque, H., Thiery, J.P. and Nieto, M.A. (2008). The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep 9, 322-6.
[21] Isermann, B., Hendrickson, S.B., Hutley, K., Wing, M. and Weiler, H. (2001). Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulin-deficient mice from early lethality and reveals a secondary developmental block. Development 128, 827-38.
[22] Isermann, B., Sood, R., Pawlinski, R., Zogg, M., Kalloway, S., Degen, J.L., Mackman, N. and Weiler, H. (2003). The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 9, 331-7.
[23] Lee, J.M., Dedhar, S., Kalluri, R. and Thompson, E.W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172, 973-81.
[24] Thiery, J.P. and Sleeman, J.P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131-42.
[25] Olmeda, D., Jorda, M., Peinado, H., Fabra, A. and Cano, A. (2007). Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 26, 1862-74.
[26] Eastham, A.M., Spencer, H., Soncin, F., Ritson, S., Merry, C.L., Stern, P.L. and Ward, C.M. (2007). Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 67, 11254-62.
[27] Nelson, C.M., Khauv, D., Bissell, M.J. and Radisky, D.C. (2008). Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells. J Cell Biochem
[28] Bolos, V., Peinado, H., Perez-Moreno, M.A., Fraga, M.F., Esteller, M. and Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116, 499-511.
[29] Ohkubo, T. and Ozawa, M. (2004). The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117, 1675-85.
[30] Wei, Y., Fabre, M., Branchereau, S., Gauthier, F., Perilongo, G. and Buendia, M.A. (2000). Activation of beta-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene 19, 498-504.
[31] Yook, J.I., Li, X.Y., Ota, I., Fearon, E.R. and Weiss, S.J. (2005). Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280, 11740-8.
[32] Locascio, A., Manzanares, M., Blanco, M.J. and Nieto, M.A. (2002). Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc Natl Acad Sci U S A 99, 16841-6.
[33] Zhang, A.L., Wang, Q.S., Zhong, Y.H., Chen, G., Xi, L., Xie, C.H., Zhou, Y.F. and Ma, D. (2005). [Effect of transcriptional factor snail on epithelial-mesenchymal transition and tumor metastasis]. Ai Zheng 24, 1301-5.
[34] Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M. and Hung, M.C. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6, 931-40.
[35] Yang, Z., Rayala, S., Nguyen, D., Vadlamudi, R.K., Chen, S. and Kumar, R. (2005). Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail's subcellular localization and functions. Cancer Res 65, 3179-84.
[36] Dominguez, D. et al. (2003). Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol 23, 5078-89.
[37] Peinado, H. et al. (2005). A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24, 3446-58.
[38] Peinado, H., Portillo, F. and Cano, A. (2005). Switching on-off Snail: LOXL2 versus GSK3beta. Cell Cycle 4, 1749-52.
[39] Ding, K., Lopez-Burks, M., Sanchez-Duran, J.A., Korc, M. and Lander, A.D. (2005). Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J Cell Biol 171, 729-38.
[40] Mitsiades, N., Yu, W.H., Poulaki, V., Tsokos, M. and Stamenkovic, I. (2001). Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61, 577-81.
[41] Noe, V. et al. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114, 111-118.
[42] Milward, E. et al. (2008). Cleavage of myelin associated glycoprotein by matrix metalloproteinases. J Neuroimmunol 193, 140-8.
[43] Ii, M., Yamamoto, H., Adachi, Y., Maruyama, Y. and Shinomura, Y. (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231, 20-7.
[44] Orlichenko, L.S. and Radisky, D.C. (2008). Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis
[45] Brabletz, T., Jung, A., Dag, S., Hlubek, F. and Kirchner, T. (1999). beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155, 1033-8.
[46] Miyoshi, A., Kitajima, Y., Sumi, K., Sato, K., Hagiwara, A., Koga, Y. and Miyazaki, K. (2004). Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 90, 1265-73.
[47] Lynch, C.C., Vargo-Gogola, T., Martin, M.D., Fingleton, B., Crawford, H.C. and Matrisian, L.M. (2007). Matrix metalloproteinase 7 mediates mammary epithelial cell tumorigenesis through the ErbB4 receptor. Cancer Res 67, 6760-7.
[48] Ogawa, H. et al. (2000). Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett 149, 95-103.
[49] Yu, W.H., Woessner, J.F., Jr., McNeish, J.D. and Stamenkovic, I. (2002). CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16, 307-23.
[50] Yu, W.H. and Woessner, J.F., Jr. (2000). Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275, 4183-91.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26730-
dc.description.abstract凝血脢調節素(TM)最初發現於血管壁內皮細胞表面的一種醣蛋白,初期此蛋白質具有天然內皮層抗凝血素之特性。不過,近年來的研究著重於凝血脢調節素的表現量與上皮細胞的上皮-間質轉化(EMT)兩者的關聯性。為了研究基質金屬蛋白酵素7(MMP-7)在上皮細胞進行上皮-間質轉化時,凝血脢調節素受蛋白質水解時可能扮演的角色,本實驗建立了一個共同轉染有凝血脢調節素與基質金屬蛋白酵素7兩者表現質體的細胞株(MDCK)。利用西方墨點分析法確認了凝血脢調節素與基質金屬蛋白酵素7的表現量後,觀察到一個有趣的結果,即在共轉染有凝血脢調節素與基質金屬蛋白酵素7兩基因的MDCK細胞中,凝血脢調節素會受到金屬水解酵素所切割。另外,從核質分離試驗中,本實驗發現了凝血脢調節素片段中的一個分子量約為34 kDa的蛋白質片段,的確存在於細胞核內,從共軛焦顯微鏡之影像分析結果,也確認了此凝血脢調節素片段確實會分布於細胞核。
  在胚胎發育過程中會發生上皮-間質轉化現象,而與其相關之腫瘤形成之初,也具有此轉換之現象。在上皮-間質轉化的過程之中,SNAIL蛋白的表現量與腫瘤細胞的移動性與侵犯性之強弱有很高的關聯性。從初步的實驗結果看來,在MDCK細胞株中,基質金屬蛋白脢7所切割後而形成之人類凝血調節素片段,會與SNAIL蛋白進入細胞核機制有關,進而調控下游各種基因的表達,包括凝血調節素本身基因。然而,SNAIL蛋白與細胞質中的凝血脢調節素片段如何形成複合體,進而轉移到細胞核中和其背後所代表的生物功能仍需被釐清。
zh_TW
dc.description.abstractThrombomodulin (TM) is a glycoprotein that was originally identified in vascular endothelium and characterized as a natural endothelial anticoagulant [1]. From recent studies[2] [3] [4], it is focusing on the role of TM during Epithelial-mesenchymal transition (EMT). In this study, we investigated the potential role of MMP-7 in proteolysis of TM protein during EMT. An epithelial cell line, MDCK, was transfected with TM and/or MMP-7. Using western blotting analysis the expression of MMP7 proteins could make TM being proteolytically processed with formation of multiple fragments of TM in the TM and MMP7-cotransfected MDCK. Furthermore, from the nuclear v.s. cytoplasmic fraction assay, we demonstrated that the major ~34 kDa fragment was seen in the nuclear fraction. Confocal microscopy image analysis also further confirmed the nuclear localization of TM fragments.
Epithelial-mesenchymal transition (EMT) occurs during embryonic development and may also be responsible for onset of EMT-associated tumorigenesis. During EMT, SNAIL protein is up-regulated and its expression levels are strongly correlated with increased motility and invasion of cells [5] [6]. From the preliminary results, we found that the processing of human thrombomodulin protein by MMP-7 in MDCK cells, which may be associated with translocation of SNAIL protein into nucleus to regulate its target genes [7], including TM gene activation. However, the biological functions of nuclear-translocation of the ternary complex of SNAIL and cytosol TM are still unclear and need to be further elucidated in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:22:56Z (GMT). No. of bitstreams: 1
ntu-97-R95442004-1.pdf: 3283570 bytes, checksum: a84f93d68a8a783f1cf74d941e3c74a3 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTable of contents
Acknowledge……………………………………………………………I
摘要……………………………………………………………………III
Abstract………………………………………………………………IV
List of figures........................................VII
Abbbeviations........................................VIII
Chapter 1 Introduction............................................1
1.1 The protein structure of thrombomodulin…………2
1.2 The role of the thrombomodulin in anti-coagulantion…………………………………………………………2
1.3 The role of the thrombomodulin in anti-inflammatory response ……………………………………………3
1.4 The role of the thrombomodulin in cell-cell adhesion………………………………………………………………3
1.5 The phenotypes associated with thrombomodulin knock-out mice model………………………………………………4
1.6 The involvement of Thrombomodulin in Epithelia-Mesenchymal transition (EMT)……………………………………4
1.7 The protein structures of SNAIL……………………5
1.8 The post-translational modification and regulation of SNAIL…………………………………………………6
1.9 The role of Metalloproteinase -7 (MMP-7) in EMT…7
Chapter 2
Materials and methods………………………………………………8
2.1 Materials…………………………………………………9
2.2 Cell culture……………………………………………11
2.3 Transfection……………………………………………11
2.4 Western blot……………………………………………11
2.5 Plasmid construction…………………………………14
2.6 Immunofluorescence staining………………………18
2.7 Total RNA extraction…………………………………19
2.8 Reverse transcription and PCR……………………20
2.9 Transient transfection and luciferase reporter gene assays…………………………………………………………20
2.10 Nuclei isolation……………………………………………………………21
Chapter 3 Results………………………………………………………………22
3.1 MMP-7 is a putative protease involved in the EMT associated thrombomodulin (TM) shedding……………………………………………………………23
3.2 The nucleus translocation of the proteolytic shedding TM c-terminal fragment is a MMP-7 mediated proteolytic process during the EMT…………………………23
3.3 The nucleus-translocation of SNAIL is MMP-7 mediated TM shedding dependent process during the EMT of MDCK cells…………………………………………………………24
3.4 The nucleus-translocated SNAIL could be involved in the MMP-7 mediated shedding TM dependent positive feedback of the TM gene expression…………………………25
3.5 The MMP-7 mediated TM shedding dependent nucleus-translocation of SNAIL could also down-regulate E-cadherin expression…………………………………………………………25
Chapter 4 Discussion…………………………………………………………27
Chapter 5 Figures……………………………………………………………32
Chapter 6 References…………………………………………………………46
dc.language.isoen
dc.subject金屬蛋白&#37238zh_TW
dc.subject凝血&#37238zh_TW
dc.subject調節素zh_TW
dc.subject表皮-間葉過渡zh_TW
dc.subjectMMP-7en
dc.subjectThrombomodulinen
dc.subjectEMTen
dc.title基質金屬蛋白酶-7水解凝血調節素之衍生片段參與表皮細胞株之表皮-間葉過渡研究zh_TW
dc.titleMMP-7 mediated proteolytic processing Thrombomodulin involved in Epithelial-Mesenchymal transition (EMT)en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee湯志永(Chih-Yung Tang),李明學(Ming-Shyue Lee),俞松良(Suong-Liang Yu)
dc.subject.keyword金屬蛋白&#37238,-7,凝血&#37238,調節素,表皮-間葉過渡,zh_TW
dc.subject.keywordMMP-7,Thrombomodulin,EMT,en
dc.relation.page52
dc.rights.note未授權
dc.date.accepted2008-07-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved