Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 護理學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26668
標題: Mishel疾病不確定感量表中文版之信效度研究
The Reliability and Validity of Chinese Version of Mishel's Uncertainty in Illness Scale
作者: En-Tse Yang
楊恩慈
指導教授: 黃秀梨(Shiow-Li Hwang)
關鍵字: 疾病不確定感量表,
Mishel's Uncertainty in Illness Scale,
出版年 : 2008
學位: 碩士
摘要: 本研究的目的在測試「Mishel疾病不確定感量表─成人版( Mishel’s Uncertainty in Illness Scale – Adult form; MUIS-A )」在台灣的適用性。本研究採立意取樣,樣本來自北部某醫學中心心臟內科加護病房之急性心肌梗塞患者110名,以結構式問卷訪談收集資料,並進行中文版「Mishel疾病不確定感量表」之信效度檢定。
MUIS-A包括33題,其中不明確性因素13題,複雜性因素7題,不一致性因素7題,不可預測性因素5題。本研究將MUIS-A翻譯成中文後,以內容效度指標、項目分析、建構效度、效標關聯效度、區辨效度、內在一致性信度,測試整份量表之信度與效度。並探討急性心肌梗塞病患之人口學特質及疾病特性,與患者疾病不確定感間的關係。
研究結果發現:1.量表之專家內容效度指標為.96,支持本量表具有內容效度。2.量表整體的內在一致性信度係數Cronbach’s α為.894,其中各因素之α值分別為:不明確性.837,複雜性.622,不一致性.275,不可預測性.683。因其中複雜性、不一致性與不可預測性因素之α偏低,故進行量表之修訂,經項目分析後將10題從量表中刪除。3.經修訂後含23題之中文疾病不確定感量表,以探索性因素分析進行建構效度之檢定,結果產生兩個因素(不明確性、複雜性),可解釋34.17%的變異量。4. 修訂後之中文疾病不確定感量表,其Cronbach’s α為.896,其中不明確性與複雜性因素的α分別為.891與.796,均較修訂前為高。5.以情境焦慮量表作為效標,修訂後之疾病不確定感量表與效標具有顯著之相關(r = .496、p < .01),並高於修訂前量表與效標之相關(r = .492、p < .01)。6.區辨效度部分,修正後之疾病不確定感量表具有良好之區辨效度(t = 24.688、p < .05),並較修訂前量表之區辨效度(t = 18.071、p < .05)更為顯著。7. 心肌梗塞病患於加護病房期間感受到中度至高度的不確定感,其不確定感分數來自於不明確性因素較複雜性因素為高。8. 由t檢定與變異數分析之方式得知,年齡、性別、教育程度、有無合併症、住院天數,均與不確定感得分有顯著相關,為影響心肌梗塞病患疾病不確定感之重要因素。由多元迴歸分析發現,初次患病、教育程度、性別、有合併症、年齡為心肌梗塞病患疾病不確定感之預測因子,共可解釋55.2%的變異量。
本研究之結果支持,此修訂後含23題之中文疾病不確定感量表可適用於台灣,並可作為心臟科護理人員了解病患疾病不確定感之評量工具,進而在未來設計系統性之護理措施,以有效降低心肌梗塞病患之疾病不確定感。
The purpose of this study was to examine the usefulness of the Mishel’s Uncertainty in Illness Scale – Adult form (MUIS-A) by conducting item analysis, testing validity and reliability of the scale.
The data were collected by conducting questionnaire survey with 110 subjects purposively sampled who were admitted to coronary care unit at a university hospital in Taipei. We tested content validity, construct validity, criterion-related validity, discriminate validity and internal consistency.
The MUIS-A consisted of four factors: 13 items for ambiguity, 7 items for complexity, 7 items for inconsistency, and 5 items for unpredictability. We revised and established the reliability and validity of the Chinese version of this scale, and found the relationship between demographic factors, disease attributes and uncertainty of illness in acute myocardial infarction patients.
The results showed that :
1.Content validity was supported by revealing .96 of content validity index.
2.The internal consistency (Cronbach’s α) of the MUIS-A was .894, and that of the ambiguity was .837,the complexity was .622, the inconsistency was .275, and the unpredictability was .683. 10 items were deleted after conducting item analysis.
3.Exploratory factor analysis revealed two factors : ambiguity and complexity, which could explain 34.17% of the variance.
4.The Cronbach’s α of the MUIS-A was .896, and that of the ambiguity was .891,the complexity was .796. It revealed better reliability after revising the MUIS-A.
5.We used State Anxiety Scale as the criterion-related validity tool. The Chinese version of MUIS-A had significant correlations with State Anxiety Scale ( r = .496, p < .01). The criterion-related validity was better then that of un-revised MUIS-A ( r = .492, p < .01).
6.Discriminate validity was supported by revealing significant difference between acute myocardial infarction and chronic hypertension patients( t = 24.688, p < .05). Compared with MUIS-A before revising ( t = 18.071, p < .05), it had better discriminate validity.
7.Acute myocardial infarction patients experienced moderate to high uncertainty in coronary care unit. The uncertainty sources from ambiguity was more then that from complexity.
8.T test and ANOVA revealed that significantly correlative factors of uncertainty in acute myocardial infarction patients were age, gender, years of education, complications and days stayed in hospital. Multiple regression model revealed that the best factors of predicting uncertainty in acute myocardial infarction patients were years of education, gender, complications and age. This model explained 55.2% of variance.
The study showed that the revised Chinese version of MUIS-A was an acceptable instrument to measure uncertainty after deleting ten items from the MUIS-A. The results could also contribute to evaluation of uncertainty in coronary care unit, and suggest nurses to develop systematic nursing instructions to decrease the uncertainty of acute myocardial infarction patients.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26668
全文授權: 未授權
顯示於系所單位:護理學系所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
820.07 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved