Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26618
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭寧馨(Ning-Sing Shaw)
dc.contributor.authorHsin-Yu Chiangen
dc.contributor.author江心瑜zh_TW
dc.date.accessioned2021-06-08T07:17:43Z-
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-11
dc.identifier.citation徐韻欣(2010)膳食鐵營養狀況對於大鼠肌肉硫醇鹼基修飾tRNA的表現 與其修飾作用之影響. 輔仁大學營養科學系碩士論文
Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK: IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry-USus 2000, 39(27):7856-7862.
Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK: IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry-US 2000, 39(27):7856-7862.
Agar JN, Zheng LM, Cash VL, Dean DR, Johnson MK: Role of the IscU protein in iron-sulfur cluster biosynthesis: IscS-mediated assembly of a [Fe2S2] cluster in IscU. J Am Chem Soc 2000, 122(9):2136-2137.
Agris PF, Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang XN, Vendeix FAP, Fabris D: The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Research 2011, 39:D195-D201.
Agris PF, Soll D, Seno T: Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry-US 1973, 12(22):4331-4337.
Agris PF, Vendeix FAP, Graham WD: tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol 2007, 366(1):1-13.
Ayala-Castro C, Saini A, Outten FW: Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 2008, 72(1):110-125, table of contents.
Baczynsk.L, Biemann K, Hall RH: Sulfur-Containing Nucleoside from Yeast Transfer Ribonucleic Acid - 2-Thio-5(or 6)-Uridine Acetic Acid Methyl Ester. Science 1968, 159(3822):1481-&.
Bandyopadhyay S, Chandramouli K, Johnson MK: Iron-sulfur cluster biosynthesis. Biochem Soc Trans 2008, 36(Pt 6):1112-1119.
Banerjee R, Chen S, Dare K, Gilreath M, Praetorius-Ibba M, Raina M, Reynolds NM, Rogers T, Roy H, Yadavalli SS et al: tRNAs: cellular barcodes for amino acids. FEBS Lett 2010, 584(2):387-395.
Baynes RD, Bothwell TH: Iron deficiency. Annu Rev Nutr 1990, 10:133-148.
Beinert H, Holm RH, Munck E: Iron-sulfur clusters: Nature's modular, multipurpose structures. Science 1997, 277(5326):653-659.
Bertrand E, Houser-Scott F, Kendall A, Singer RH, Engelke DR: Nucleolar localization of early tRNA processing. Genes Dev 1998, 12(16):2463-2468.
Biederbick A, Stehling O, Rosser R, Niggemeyer B, Nakai Y, Elsasser HP, Lill R: Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol Cell Biol 2006, 26(15):5675-5687.
Bilder PW, Ding H, Newcomer ME: Crystal structure of the ancient, Fe-S scaffold IscA reveals a novel protein fold. Biochemistry-US 2004, 43(1):133-139.
Bjork GR: Transfer-Rna Modification in Different Organisms. Chem Scripta 1986, 26B:91-95.
Bjork GR, Ericson JU, Gustafsson CED, Hagervall TG, Jonsson YH, Wikstrom PM: Transfer-RNA Modification. Annu Rev Biochem 1987, 56:263-287.
Bjork GR, Kjellin-Straby K: Escherichia coli mutants with defects in the biosynthesis of 5-methylaminomethyl-2-thio-uridine or 1-methylguanosine in their tRNA. J Bacteriol 1978, 133(2):508-517.
Bouadloun F, Srichaiyo T, Isaksson LA, Bjork GR: Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J Bacteriol 1986, 166(3):1022-1027.
Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AHV: Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum Mol Genet 2000, 9(2):275-282.
Cashel M, Gallant J: Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 1969, 221(5183):838-841.
Cazzola M, Skoda RC: Translational pathophysiology: a novel molecular mechanism of human disease. Blood 2000, 95(11):3280-3288.
Craig EA, Marszalek J: A specialized mitochondrial molecular chaperone system: a role in formation of Fe/S centers. Cell Mol Life Sci 2002, 59(10):1658-1665.
Csere P, Lill R, Kispal G: Identification of a human mitochondrial ABC transporter, the functional orthologue of yeast Atm1p. FEBS Lett 1998, 441(2):266-270.
Czerwoniec A, Dunin-Horkawicz S, Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Grosjean H, Rother K: MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res 2009, 37(Database issue):D118-121.
de Souza AI, Batista M, Bresani CC, Ferreira LOC, Figueiroa JN: Adherence and side effects of three ferrous sulfate treatment regimens on anemic pregnant women in clinical trials. Cad Saude Publica 2009, 25(6):1225-1233.
Diaz I, Ehrenberg M, Kurland CG: How do combinations of rpsL- and miaA- generate streptomycin dependence? Mol Gen Genet 1986, 202(2):207-211.
Dirheimer G, Baranowski W, Keith G: Variations in tRNA modifications, particularly of their queuine content in higher eukaryotes. Its relation to malignancy grading. Biochimie 1995, 77(1-2):99-103.
Emilsson V, Naslund AK, Kurland CG: Thiolation of transfer RNA in Escherichia coli varies with growth rate. Nucleic Acids Res 1992, 20(17):4499-4505.
Fontecave M, de Choudens SO, Py B, Barras F: Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 2005, 10(7):713-721.
Foster MW, Mansy SS, Hwang J, Penner-Hahn JE, Surerus KK, Cowan JA: A mutant human IscU protein contains a stable [2Fe-2S](2+) center of possible functional significance. J Am Chem Soc 2000, 122(28):6805-6806.
Frazzon J, Dean DR: Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. Curr Opin Chem Biol 2003, 7(2):166-173.
Garland SA, Hoff K, Vickery LE, Culotta VC: Saccharomyces cerevisiae ISU1 and ISU2: Members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol 1999, 294(4):897-907.
GEBALLE DRMAAP: Uptream Open Reading Frames as Regulators of mRNA Translation. Mocular and Cellular Biology 2000, 20:8.
Gingras AC, Raught B, Sonenberg N: Regulation of translation initiation by FRAP/mTOR. Gene Dev 2001, 15(7):807-826.
Grosjean H, de Crecy-Lagard V, Marck C: Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 2010, 584(2):252-264.
Hagervall TG, Bjork GR: Undermodification in the first position of the anticodon of supG-tRNA reduces translational efficiency. Mol Gen Genet 1984, 196(2):194-200.
Hecht SM, Kirkegaa.Lh, Bock RM: Chemical Modifications of Transfer Rna Species - Desulfurization with Raney Nickel. Proc Natl Acad Sci USA 1971, 68(1):48-&.
Heinemann IU, Soll D, Randau L: Transfer RNA processing in archaea: unusual pathways and enzymes. FEBS Lett 2010, 584(2):303-309.
Hillen W, Egert E, Lindner HJ, Gassen HG: Restriction or Amplification of Wobble Recognition - Structure of 2-Thio-5-Methylaminomethyluridine and Interaction of Odd Uridines with Anticodon Loop Backbone. FEBS Letters 1978, 94(2):361-364.
Hoff KG, Silberg JJ, Vickery LE: Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci USA 2000, 97(14):7790-7795.
Hoff KG, Ta DT, Tapley TL, Silberg JJ, Vickery LE: Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. J Biol Chem 2002, 277(30):27353-27359.
Hopper AK, Pai DA, Engelke DR: Cellular dynamics of tRNAs and their genes. FEBS Lett 2010, 584(2):310-317.
Hopper AK, Phizicky EM: tRNA transfers to the limelight. Genes Dev 2003, 17(2):162-180.
Igloi GL: Interaction of tRNAs and of phosphorothioate-substituted nucleic acids with an organomercurial. Probing the chemical environment of thiolated residues by affinity electrophoresis. Biochemistry-US 1988, 27(10):3842-3849.
Johansson MJO, Esberg A, Huang B, Bjork GR, Bystrom AS: Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 2008, 28(10):3301-3312.
Johnson DC, Dean DR, Smith AD, Johnson MK: Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 2005, 74:247-281.
Johnstone AD, Mullen RT, Mangroo D: Plants, like mammals, but unlike Saccharomyces, do not regulate nuclear-cytoplasmic tRNA trafficking in response to nutrient stress. Plant Signal Behav 2011, 6(8).
Kakuta Y, Horio T, Takahashi Y, Fukuyama K: Crystal structure of Escherichia coli Fdx, an adrenodoxin-type ferredoxin involved in the assembly of iron-sulfur clusters. Biochemistry-US 2001, 40(37):11007-11012.
Kaldor I: Studies on intermediary iron metabolism. VI. The absorption and storage of iron in experimental anaemia. Aust J Exp Biol Med Sci 1954, 32(6):801-805.
Kambampati R, Lauhon CT: IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Biochemistry-US 1999, 38(50):16561-16568.
Kaut A, Lange H, Diekert K, Kispal G, Lill R: Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. J Biol Chem 2000, 275(21):15955-15961.
Kennedy C, Dean D: The Nifu, Nifs and Nifv Gene-Products Are Required for Activity of All 3 Nitrogenases of Azotobacter-Vinelandii. Mol Gen Genet 1992, 231(3):494-498.
Kessler D: Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol Rev 2006, 30(6):825-840.
Khade P, Joseph S: Functional interactions by transfer RNAs in the ribosome. FEBS Lett 2010, 584(2):420-426.
Kimball SR, Jefferson LS: Control of Translation Initiation through Integration of Signals Generated by Hormones, Nutrients, and Exercise. J Biol Chem 2010, 285(38):29027-29032.
Kirkland JG, Kamakaka RT: tRNA insulator function: insight into inheritance of transcription states? Epigenetics 2010, 5(2):96-99.
Kitchingman GR, Fournier MJ: Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation. Biochemistry-US 1977, 16(10):2213-2220.
Krebs C, Agar JN, Smith AD, Frazzon J, Dean DR, Huynh BH, Johnson MK: IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry-US 2001, 40(46):14069-14080.
Kruger MK, Pedersen S, Hagervall TG, Sorensen MA: The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 1998, 284(3):621-631.
Kuroda A, Murphy H, Cashel M, Kornberg A: Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J Biol Chem 1997, 272(34):21240-21243.
Kuroda A, Tanaka S, Ikeda T, Kato J, Takiguchi N, Ohtake H: Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli. Proc Natl Acad Sci USA 1999, 96(25):14264-14269.
Lange H, Kaut A, Kispal G, Lill R: A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc Natl Acad Sci USA 2000, 97(3):1050-1055.
Lauhon CT: Orchestrating sulfur incorporation into RNA. Nat Chem Biol 2006, 2(4):182-183.
Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, Fontecave M, Outten FW: SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly. J Biol Chem 2007, 282(18):13342-13350.
Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M: Iron-sulfur cluster biosynthesis: characterization of Escherichia coli CYaY as an iron donor for the assembly of [2Fe-2S] clusters in the scaffold IscU. J Biol Chem 2006, 281(24):16256-16263.
Lee JH, Yeo WS, Roe JH: Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 2004, 51(6):1745-1755.
Levi S, Rovida E: The role of iron in mitochondrial function. Biochim Biophys Acta 2009, 1790(7):629-636.
Lill R: Function and biogenesis of iron-sulphur proteins. Nature 2009, 460(7257):831-838.
Lill R, Muhlenhoff U: Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 2005, 30(3):133-141.
Lill R, Muhlenhoff U: Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu Rev Biochem 2008, 77:669-700.
Loiseau L, Ollagnier-de Choudens S, Lascoux D, Forest E, Fontecave M, Barras F: Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli. J Biol Chem 2005, 280(29):26760-26769.
Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F: Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 2003, 278(40):38352-38359.
Magnusson LU, Farewell A, Nystrom T: ppGpp: a global regulator in Escherichia coli. Trends Microbiol 2005, 13(5):236-242.
Marquet A: Enzymology of carbon-sulfur bond formation. Curr Opin Chem Biol 2001, 5(5):541-549.
Martin NC, Hopper AK: How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol. Biochimie 1994, 76(12):1161-1167.
Mateyak MK, Kinzy TG: eEF1A: Thinking Outside the Ribosome. J Biol Chem 2010, 285(28):21209-21213.
McCloskey JA, Graham DE, Zhou S, Crain PF, Ibba M, Konisky J, Soll D, Olsen GJ: Post-transcriptional modification in archaeal tRNAs: identities and phylogenetic relations of nucleotides from mesophilic and hyperthermophilic Methanococcales. Nucleic Acids Res 2001, 29(22):4699-4706.
McCloskey JA, Rozenski J: The Small Subunit rRNA Modification Database. Nucleic Acids Res 2005, 33(Database issue):D135-138.
McClung JP, Karl JP, Cable SJ, Williams KW, Nindl BC, Young AJ, Lieberman HR: Randomized, double-blind, placebo-controlled trial of iron supplementation in female soldiers during military training: effects on iron status, physical performance, and mood. Am J Clin Nutr 2009, 90(1):124-131.
Mei Y, Stonestrom A, Hou YM, Yang X: Apoptotic regulation and tRNA. Protein Cell 2010, 1(9):795-801.
Mitou G, Higgins C, Wittung-Stafshede P, Conover RC, Smith AD, Johnson MK, Gaillard J, Stubna A, Munck E, Meyer J: An Isc-type extremely thermostable [2Fe-2S] ferredoxin from Aquifex aeolicus. Biochemical, spectroscopic, and unfolding studies. Biochemistry-US 2003, 42(5):1354-1364.
Morris RC, Elliott MS: Queuosine modification of tRNA: a case for convergent evolution. Mol Genet Metab 2001, 74(1-2):147-159.
Motorin Y, Helm M: tRNA Stabilization by Modified Nucleotides. Biochemistry-US 2010, 49(24):4934-4944.
Mueller EG: Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2006, 2(4):185-194.
Muhlenhoff U, Gerber J, Richhardt N, Lill R: Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. Embo J 2003, 22(18):4815-4825.
Nakai Y, Nakai M, Hayashi H: Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 2008, 283(41):27469-27476.
Nakai Y, Nakai M, Lill R, Suzuki T, Hayashi H: Thio modification of yeast cytosolic tRNA is an iron-sulfur protein-dependent pathway. Mol Cell Biol 2007, 27(8):2841-2847.
Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, Kagamiyama H: Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. J Biol Chem 2004, 279(13):12363-12368.
Nakanishi K, Nureki O: Recent progress of structural biology of tRNA processing and modification. Mol Cells 2005, 19(2):157-166.
Nakanishi K, Nureki O: Recent progress of structural biology of tRNA processing and modification. Mol Cells 2005, 19(2):157-166.
Noma A, Sakaguchi Y, Suzuki T: Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 2009, 37(4):1335-1352.
Ollagnier-de-Choudens S, Mattioli T, Tagahashi Y, Fontecave M: Iron-sulfur cluster assembly - Characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 2001, 276(25):22604-22607.
Olson JW, Agar JN, Johnson MK, Maier RJ: Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry-US 2000, 39(51):16213-16219.
Outten FW, Wood MJ, Munoz FM, Storz G: The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 2003, 278(46):45713-45719.
Pederson T: Regulatory RNAs derived from transfer RNA? RNA 2010, 16(10):1865-1869.
Persson BC, Gustafsson C, Berg DE, Bjork GR: The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci USA 1992, 89(9):3995-3998.
Pestova TV, Hellen CUT: Translation, interrupted. Nat Struct Mol Biol 2006, 13(2):98-99.
Phizicky EM, Hopper AK: tRNA biology charges to the front. Genes Dev 2010, 24(17):1832-1860.
Raulfs EC, O'Carroll IP, Dos Santos PC, Unciuleac MC, Dean DR: In vivo iron-sulfur cluster formation. Proc Natl Acad Sci USA 2008, 105(25):8591-8596.
Reeves PG, Nielsen FH, Fahey GC, Jr.: AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993, 123(11):1939-1951.

Richardson DR, Lane DJR, Becker EM, Huang MLH, Whitnall M, Rahmanto YS, Sheftel AD, Ponka P: Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci USA 2010, 107(24):10775-10782.
Rouault TA, Tong WH: Iron-sulfur cluster biogenesis and human disease. Trends Genet 2008, 24(8):398-407.
Rozenski J, Crain PF, McCloskey JA: The RNA Modification Database: 1999 update. Nucleic Acids Res 1999, 27(1):196-197.
Ryckelynck M, Giege R, Frugier M: tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie 2005, 87(9-10):835-845.
Salinas T, Duchene AM, Marechal-Drouard L: Recent advances in tRNA mitochondrial import. Trends Biochem Sci 2008, 33(7):320-329.
Schwartz CJ, Djaman O, Imlay JA, Kiley PJ: The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci USA 2000, 97(16):9009-9014.
Seaton BL, Vickery LE: A Gene Encoding a Dnak/Hsp70 Homolog in Escherichia-Coli. Proc Natl Acad Sci USA 1994, 91(6):2066-2070.
Sen GC, Ghosh HP: Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5'-end of the anticodon of yeast transfer RNA Lys2. Nucleic Acids Res 1976, 3(3):523-535.
Seznec H, Simon D, Bouton C, Reutenauer L, Hertzog A, Golik P, Procaccio V, Patel M, Drapier JC, Koenig M et al: Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 2005, 14(4):463-474.
Sheftel A, Stehling O, Lill R: Iron-sulfur proteins in health and disease. Trends Endocrin Met 2010, 21(5):302-314.
Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, Matte A, Armengod ME, Cygler M: Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol 2010, 8(4):e1000354.
Shigi N, Sakaguchi Y, Suzuki T, Watanabe K: Identification of two tRNA thiolation genes required for cell growth at extremely high temperatures. J Biol Chem 2006, 281(20):14296-14306.
Silberg JJ, Hoff KG, Tapley TL, Vickery LE: The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. J Biol Chem 2001, 276(3):1696-1700.
Silberg JJ, Hoff KG, Vickery LE: The Hsc66-Hsc20 chaperone system in Escherichia coli: Chaperone activity and interactions with the DnaK-DnaJ-GrpE system. J Bacteriol 1998, 180(24):6617-6624.
Smith AD, Agar JN, Johnson KA, Frazzon J, Amster IJ, Dean DR, Johnson MK: Sulfur transfer from IscS to IscU: The first step in iron-sulfur cluster biosynthesis. J Am Chem Soc 2001, 123(44):11103-11104.
Smith AD, Krebs C, Agar JN, Frazzon J, Dean DR, Huynh BH, Johnson MK: Nif-specific IscA as an alternative scaffold for the assembly of [2Fe-2S] and [4Fe-4S] clusters. J Inorg Biochem 2001, 86(1):436-436.
Steinberg S, Misch A, Sprinzl M: Compilation of Transfer-RNA Sequences and Sequences of Transfer-Rna Genes. Nucleic Acids Research 1993, 21(13):3011-3015.
Takahashi Y, Tokumoto U: A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem 2002, 277(32):28380-28383.
Takano A, Endo T, Yoshihisa T: tRNA actively shuttles between the nucleus and cytosol in yeast. Science 2005, 309(5731):140-142.
Tamura K: Molecular handedness of life: significance of RNA aminoacylation. J Biosci 2009, 34(6):991-994.
Thompson DM, Lu C, Green PJ, Parker R: tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 2008, 14(10):2095-2103.
Thompson M, Haeusler RA, Good PD, Engelke DR: Nucleolar clustering of dispersed tRNA genes. Science 2003, 302(5649):1399-1401.
Tong WH, Rouault TA: Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab 2006, 3(3):199-210.
Vickery LE, Silberg JJ, Ta DT: Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci 1997, 6(5):1047-1056.
Vinayak M: A comparison of tRNA populations of rat liver and skeletal muscle during aging. Biochem Int 1987, 15(2):279-285.
Wegrzyn G, Wegrzyn A: Is tRNA only a translation factor or also a regulator of other processes? J Appl Genet 2008, 49(1):115-122.
West AR, Oates PS: Mechanisms of heme iron absorption: current questions and controversies. World J Gastroenterol 2008, 14(26):4101-4110.
Wolin SL, Matera AG: The trials and travels of tRNA. Gene Dev 1999, 13(1):1-10.
Wolin SL, Matera AG: The trials and travels of tRNA. Genes Dev 1999, 13(1):1-10.
Wu G, Mansy SS, Hemann C, Hille R, Surerus KK, Cowan JA: Iron-sulfur cluster biosynthesis: characterization of Schizosaccharomyces pombe Isa1. J Biol Inorg Chem 2002, 7(4-5):526-532.
Wu G, Mansy SS, Wu SP, Surerus KK, Foster MW, Cowan JA: Characterization of an iron-sulfur cluster assembly protein (ISU1) from Schizosaccharomyces pombe. Biochemistry-US 2002, 41(15):5024-5032.
Wu SP, Cowan JA: Iron-sulfur cluster biosynthesis. A comparative kinetic analysis of native and cys-substituted ISA-mediated [2Fe-2S](2+) cluster transfer to an apoferredoxin target. Biochemistry-US 2003, 42(19):5784-5791.
Xia B, Cheng H, Bandarian V, Reed GH, Markley JL: Human ferredoxin: Overproduction in Escherichia coli, reconstitution in vitro, and spectroscopic studies of iron-sulfur cluster ligand cystein-to-serine mutants. Biochemistry-US 1996, 35(29):9488-9495.
Xu XM, Moller SG: Iron-Sulfur Cluster Biogenesis Systems and their Crosstalk. Chembiochem 2008, 9(15):2355-2362.
Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K: Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. Embo J 2001, 20(17):4794-4802.
Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K: Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNA(Lys) with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 2000, 467(2-3):175-178.
Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, Miyazawa T: Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Natl Acad Sci USA 1985, 82(15):4905-4909.
Yoon T, Cowan JA: Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am Chem Soc 2003, 125(20):6078-6084.
Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR: NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Natl Acad Sci USA 2000, 97(2):599-604.
Zheng B, Chen P, Jager G: Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. Bmc Plant Biol 2010, 10.
Zheng LM, Cash VL, Flint DH, Dean DR: Assembly of iron-sulfur clusters - Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 1998, 273(21):13264-13272.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26618-
dc.description.abstract轉錄作用中,tRNA負責攜帶特定的胺基酸至mRNA上與其密碼子相互配對,進行蛋白質胜鏈的合成。在tRNA的作用機制上,研究指出tRNA上wobble反密碼子之鹼基修飾與mRNA密碼子辨識功能有關,其中第34號wobble位置擁有最多種類之鹼基修飾。鹼基修飾之一是wobble位置的硫醇鹼基修飾,其硫原子的來源與利用與硫鐵蛋白有關,後者之含量則與鐵營養狀況有關。本研究將深入了解鐵營養對tRNA分子形式與功能的影響,首先進行營養depletion-repletion實驗,以tRNALys與tRNAGlu為目標,檢視鐵營養對肌肉組織tRNA硫醇鹼基修飾的劑量效應。針對不同含鐵濃度去偵測大鼠肌肉及肝臟tRNA不同劑量對於tRNALys與tRNAGlu探針的表現,接續欲探討不同濃度硫酸亞鐵之補充(6、12、18、24、35 ppm)對於膳食缺鐵大鼠tRNA表現量及硫醇修飾化程度之關係。實驗步驟分為t RNA定性與定量,以及動物實驗兩大項目。實驗結果顯示,北方點墨分析法及APM-北方點墨分析法分別為偵測肌肉及肝臟組織tRNA表現量及tRNA硫醇鹼基修飾作用之重要工具,不論是在肌肉及肝臟組織, tRNAGlu的探針訊號遠高於tRNALys。另外,本研究證實膳食鐵劑之補充會增加肌肉細胞質tRNALys及tRNAGlu表現量及其硫醇鹼基修飾化作用,但對於肝臟組織,膳食鐵劑量補充對於提高肝臟細胞質tRNAGlu表現量及其硫醇鹼基修飾較為明顯,另外,本實驗也確認了膳食鐵劑對於肌肉含硫醇鹼基修飾tRNA分子之表現為專一性反應。zh_TW
dc.description.abstractIn the process of transcription, transfer RNAs (tRNAs) take responsibility in bringing specific amino acid to its corresponding codon on the messenger RNA (mRNA) and the formation of protein peptides. With the advance of research, in addition to its role in transcription, more diverse active molecular and biological functions of tRNAs have been unveiled. Recent studies have demonstrated that tRNAs have the ability to regulate proliferation and apoptosis and are also implicated in some diseases. Some studies indicated that modified anticodons, on wobble position 34 in particular, play a crucial part in recognizing mRNA. One important tRNA post-transcriptional modification is thio-modification, in which the source and utilization of sulfur are related to the iron-sulfur protein in dietary iron intake. Therefore, in this study, we investigate the effects of iron repletion on tRNA molecular type and function. In the beginning, we used iron depletion-repletion by tRNALys and tRNAGlu as probes to survey dose response of tRNA thio-modification in muscle and liver tissues. We measured the expression of tRNALys and tRNAGlu under different dosage of iron in rat muscle and liver and examined the correlation between tRNA expression and thio-modification with various concentration of FeSO4 repletion after iron deficiency. Two major experimental methods included tRNA qualitative and quantitative analyses and animal model study. We show in this study that Northern blotting and APM Northern blotting are vital tools for the detection of tRNA expression and thio-modification in rat muscle and liver tissues. It is interesting to note that the probe’s signal of tRNAGlu is much stronger than that of tRNALys no matter in muscle or liver tissue. Moreover, repletion of dietary iron rescues both the tRNALys and tRNAGlu expression and thio-modification in rat muscle whereas in rat liver it selectively increases the tRNAGlu expression and thio-modification. Lastly, this study confirmed that dietary iron affects specifically the thio-modified tRNA expression in rat muscle.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:17:43Z (GMT). No. of bitstreams: 1
ntu-100-R97B47210-1.pdf: 5247905 bytes, checksum: 53a2024b0eed5320788f86e5fbf329f9 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 i
Abstract ii
縮寫表 iv
第一章 文獻回顧 1
一、 tRNA之簡介 1
(一) tRNA之結構與種類 1
(二) tRNA之生合成機制 2
(三) tRNA之功能及基因表現調控 3
二、 tRNA轉錄後修飾之重要性 4
(一) tRNA分子之鹼基修飾 4
(二) tRNA硫醇鹼基修飾作用及影響 5
(三) tRNA硫醇鹼基修飾之機制 6
三、 硫鐵蛋白與tRNA硫醇鹼基修飾之相關性 7
(一) 硫鐵蛋白之種類及生理功能 7
(二) 硫鐵蛋白之生合成系統及調節機制 8
(三) 真核生物ISC系統對鐵恆定之影響 12
(四) ISC及CIA系統對於tRNA硫修飾作用扮演之角色 13
(五) 硫鐵蛋白生合成異常與疾病之相關性 15
四、 膳食缺鐵對生物體之影響 16
五、 研究動機與目的 16
第二章 材料與方法 18
一、 實驗設計 18
二、 tRNA定性與定量條件之建立 18
(一) 肌肉組織小片段RNA分子之萃取與分離 18
(二) 肌肉組織tRNA表現量之分析 20
(三) 肌肉組織tRNA硫醇鹼基修飾作用分析 22
(四) 統計分析 22
三、 動物實驗 23
(一) 動物飼養 23
(二) 飼料配製 23
(三) 尾巴採血與犧牲收養 24
(四) 血液鐵指標之測定 24
(五) 肌肉組織之採集 26
(六) 統計分析 26
第三章 結果 30
一、 動物實驗 30
(一) 缺鐵期及再生期大鼠之生長狀況 30
(二) Wister雄性大鼠之鐵營養指標 30
(三) 大鼠膳食缺鐵之臨床表徵及生理影響 31
二、 建立tRNA定性與定量之各項條件 31
(一) Wister雄性大鼠肌肉及肝臟小片段RNA電泳分析 31
(二) 確立小片段RNA於濕式轉印槽之條件 31
(三) 不同劑量對大鼠肌肉及肝臟小片段RNA於tRNALys與tRNAGlu之影響 32
(四) Stripping次數對tRNA表現量之影響 32
(五) 大鼠肌肉細胞質tRNA表現之測試 33
(六) APM對於大鼠肌肉含硫醇鹼基tRNA之硫醇修飾作用之測定 33
三、 膳食補鐵營養狀況對於大鼠肌肉及肝臟tRNA表現及硫醇鹼基修飾作 用之影響 34
(一) 肌肉細胞質中tRNA之表現 34
(二) 肌肉細胞質中硫醇鹼基修飾作用之表現 34
(三) 肝臟細胞質中tRNA之表現 35
(四) 肝臟細胞質中硫醇鹼基修飾作用之表現 35
四、 膳食補鐵營養況狀對於大鼠肌肉tRNA表現之專一性反應 36
第四章 討論 63
一、 北方點墨分析法及APM-北方點墨分析法分別為組織tRNA表現量及tRNA硫醇鹼基修飾作用之重要工具 63
二、 補充膳食鐵對於大鼠肌肉及肝臟細胞質tRNA表現量及tRNA硫醇鹼基修飾作用之影響 63
三、 膳食缺鐵對於生物體tRNA表現及硫醇簡基修飾作用之調控機制 64
四、 膳食鐵對於肌肉細胞質含硫醇鹼基修飾之tRNA表現為專一性反應 65
五、 tRNA於氧化壓力之調控作用 66
六、 結論 67
第五章 參考文獻 68
附錄 83
dc.language.isozh-TW
dc.subjecttRNAzh_TW
dc.subject肌肉zh_TW
dc.subject肝臟zh_TW
dc.subject硫醇鹼基修飾作用zh_TW
dc.subjecttRNAen
dc.subjectliveren
dc.subjectmuscleen
dc.subjectthio-modificationen
dc.title以動物模式探討膳食補鐵狀況對於大鼠肌肉及肝臟tRNA表現量與硫醇鹼基修飾化之情形及其專一性影響zh_TW
dc.titleThe Specific Effects of Iron Repletion on tRNA and Thio-modified tRNA Expression in Rat Muscle and Liveren
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘子明(Tzu-Ming Pan),劉奕方(Yih-Fong Liew)
dc.subject.keyword肌肉,肝臟,tRNA,硫醇鹼基修飾作用,zh_TW
dc.subject.keywordmuscle,liver,tRNA,thio-modification,en
dc.relation.page97
dc.rights.note未授權
dc.date.accepted2011-08-11
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved